摘 要:通过引入参数函数�H(t,s)及h(t,s),�利用积分平均技巧,积分变换和广义Riccati变换给出了一类二阶微分方程的振动准则。� 中国论文网 http://www.xzbu.com/4/view-16446.htm 关键词:振动性;微分方程;广义Riccati变换� 中图分类号:O175�8文献标识码:A [WT]文章编号:1672-1098(2011)02-0061-05� 收稿日期:2011-03-15� 基金项目:安徽理工大学青年教师科学研究基金资助项目(2010)� 作者简介:唐楠(1981-),女,河北邢台人,助教,硕士,主要从事微分方程定性与稳定性理论的教学和研究工作。� [JZ(〗[WT3BZ]Oscillation Criteria of A Class of Second Order Differential Equation� TANG Nan� (School of Mathematics, Anhui University of Science and Technology, Huainan Anhui 232001, China)� Abstract:By introducing �H(t,s),h(t,s),�using the iterated integral transformations and generalized Riccati transformation, some oscillation criteria of a class ofsecond order differential equation were given.� Key words:oscillation; differential equation; generalized Riccati transformation.�� 近年来,微分方程解的振动性问题引起了广泛关注。文献�[1-4]�分别讨论了二阶非线性方程解的振动性问题。目前二阶半线性微分方程已有较多研究成果��[5-8]�,但对于具有特殊形式的二阶半线性微分方程的结果并不多见。� 考虑二阶微分方程�� 引理1 如果�A,B是非负数,那么A�λ+(λ-1)B�λ-λAB��λ-1�≥0,λ>1,� 等号成立当且仅当�A=B���[9]�。� 通过引入参数函数�H(t,s)及h(t,s),�下面给出式(1)的解振动的充分条件。� 定理1 令�D={(t,s)|t≥s≥t�0},D�0={(t, s)|t>s≥t�0}; 若�d��d�tg(t, a)存在, 并且存在函数H(t,s)∈C(D,R),h(t,s)∈C(D�0,R�+),�满足以下条件�� H(t,t)=0,t≥t�0;�H(t,s)�s≤0;H(t,s)>0,(t,s)∈D�0(2)� h(t,s)=-�H(t,s)�s,(t,s)∈D�0(3)�� 参考文献:�� [1] YU Y H, FU X L.Oscillation of second order nonlinear neutral equation with continuous distributed deviating argument[J].Rad Mat, 1991, 7: 167-176.� [2] WANG P G, LI X W. Further results on oscillation of a class of second-order neutral equations[J].Comp Appl Math, 2003, 157: 407-418.� [3] WANG P G, YU Y H.Oscillation of second order neutral equations with deviating arguments[J].Math J Toyama Univ, 1998, 21: 55-66.� [4] WANG P G, M WU.Oscillation of certain second order nonlinear damped difference equations with damping with continuous variable[J].Appl Math Lett, 2007, 20(6): 637-644.� [5] HSU H B, YEH C C.Oscillation theorems for second order half-linear differential equations[J].Appl Math Lett, 1996, 9: 71-77.� [6] LI H J,YEH C C.Oscillations of half-linear second order differential equations[J].Hiroshima Math J,1995,25:585-594.� [7] MANOJLOVI\'{C}.Oscillation Criteria for Second-Order Half-Linear Differential Equations[J].Math Comput Model, 1999, 30: 109-119.� [8] YANG X J. Oscillation Results for Second-Order Half-LinearDifferential Equations[J].Math Comput Model, 2002, 36: 503-507.� [9] WANG Q R.Oscillation and asymptotics for second-order half-lineardifferential equations[J]. Appl Math Comp, 2001, 122: 253-266.�� (责任编辑:何学华)
摘 要:通过引入参数函数�H(t,s)及h(t,s),�利用积分平均技巧,积分变换和广义Riccati变换给出了一类二阶微分方程的振动准则。� 中国论文网 http://www.xzbu.com/4/view-16446.htm 关键词:振动性;微分方程;广义Riccati变换� 中图分类号:O175�8文献标识码:A [WT]文章编号:1672-1098(2011)02-0061-05� 收稿日期:2011-03-15� 基金项目:安徽理工大学青年教师科学研究基金资助项目(2010)� 作者简介:唐楠(1981-),女,河北邢台人,助教,硕士,主要从事微分方程定性与稳定性理论的教学和研究工作。� [JZ(〗[WT3BZ]Oscillation Criteria of A Class of Second Order Differential Equation� TANG Nan� (School of Mathematics, Anhui University of Science and Technology, Huainan Anhui 232001, China)� Abstract:By introducing �H(t,s),h(t,s),�using the iterated integral transformations and generalized Riccati transformation, some oscillation criteria of a class ofsecond order differential equation were given.� Key words:oscillation; differential equation; generalized Riccati transformation.�� 近年来,微分方程解的振动性问题引起了广泛关注。文献�[1-4]�分别讨论了二阶非线性方程解的振动性问题。目前二阶半线性微分方程已有较多研究成果��[5-8]�,但对于具有特殊形式的二阶半线性微分方程的结果并不多见。� 考虑二阶微分方程�� 引理1 如果�A,B是非负数,那么A�λ+(λ-1)B�λ-λAB��λ-1�≥0,λ>1,� 等号成立当且仅当�A=B���[9]�。� 通过引入参数函数�H(t,s)及h(t,s),�下面给出式(1)的解振动的充分条件。� 定理1 令�D={(t,s)|t≥s≥t�0},D�0={(t, s)|t>s≥t�0}; 若�d��d�tg(t, a)存在, 并且存在函数H(t,s)∈C(D,R),h(t,s)∈C(D�0,R�+),�满足以下条件�� H(t,t)=0,t≥t�0;�H(t,s)�s≤0;H(t,s)>0,(t,s)∈D�0(2)� h(t,s)=-�H(t,s)�s,(t,s)∈D�0(3)�� 参考文献:�� [1] YU Y H, FU X L.Oscillation of second order nonlinear neutral equation with continuous distributed deviating argument[J].Rad Mat, 1991, 7: 167-176.� [2] WANG P G, LI X W. Further results on oscillation of a class of second-order neutral equations[J].Comp Appl Math, 2003, 157: 407-418.� [3] WANG P G, YU Y H.Oscillation of second order neutral equations with deviating arguments[J].Math J Toyama Univ, 1998, 21: 55-66.� [4] WANG P G, M WU.Oscillation of certain second order nonlinear damped difference equations with damping with continuous variable[J].Appl Math Lett, 2007, 20(6): 637-644.� [5] HSU H B, YEH C C.Oscillation theorems for second order half-linear differential equations[J].Appl Math Lett, 1996, 9: 71-77.� [6] LI H J,YEH C C.Oscillations of half-linear second order differential equations[J].Hiroshima Math J,1995,25:585-594.� [7] MANOJLOVI\'{C}.Oscillation Criteria for Second-Order Half-Linear Differential Equations[J].Math Comput Model, 1999, 30: 109-119.� [8] YANG X J. Oscillation Results for Second-Order Half-LinearDifferential Equations[J].Math Comput Model, 2002, 36: 503-507.� [9] WANG Q R.Oscillation and asymptotics for second-order half-lineardifferential equations[J]. Appl Math Comp, 2001, 122: 253-266.�� (责任编辑:何学华)