相似三角形存在性问题
1.如图,二次函数图象的顶点坐标为C(4,-),且在x轴上截得的线段AB的长为6. (1)求二次函数的解析式;
(2)点P在y轴上,且使得△PAC的周长最小,求:①点P的坐标;②△PAC的周长和面积; (3)在x轴上方的抛物线上,是否存在点Q,使得以Q、A、B三点为顶点的三角形与△ABC相似?
如果存在,求出点Q的坐标;如果不存在,请说明理由.
解:(1)设二次函数的解析式为y=a(x -4)2-(a≠0),且A(x1,0),B(x2,0). ∵y=a(x -4)2-3=ax 2-8ax+16a- ∴x1+x2=8,x1x2=16-∴AB 2=(x1-x2)2=(x1+x2)2-4x1x2=82-4(16-
3
(x -4)2-3. 9
. a
33)=36,∴a=. a9
∴二次函数的解析式为y=
(2)①如图1,作点A关于y轴的对称点A′,连结A′C交y轴于点P,连结PA,则点P为所求. 令y=0,得
(x -4)2-=0,解得x1=1,x2=7. 9
∴A(1,0),B(7,0).∴OA=1,∴OA′=1.
设抛物线的对称轴与x轴交于点D,则AD=3,A′D=5,DC=.
OPOPAO1
∵△A′OP∽△ADC,∴,即. ==,∴OP=
5AD5DC∴P(0,-
). 5
②∵A′C=AD2DC2=52(3)2=27 AC=AD2DC2=32(3)2=2
∴△PAC的周长=PA+PC+AC=A′C+AC=27+2.
3411
S△PAC=S△A′AC - S△A′AP=A′A(DC-OP)=×2×(3-)=.
5522
(3)存在. ∵tan∠BAC=
DC=,∴∠BAC=30°.
3AD
同理,∠ABC=30°,∴∠ACB=120°,AC=BC.
①若以AB为腰,∠BAQ1为顶角,使△ABQ1∽△CBA,则AQ1=AB=6,∠BAQ1=120°. 如图2,过点Q1作Q1H⊥x轴于H,则 Q1H=AQ1·sin60°=6×
31
=3,HA=AQ1·cos60°=6×=3. 22
HO=HA-OA=3-1=2. ∴点Q1的坐标为(-2,3). 把x=-2代入y=
3(x -4)2-3,得y=(-2-4)2-3=3. 99
∴点Q1在抛物线上.
②若以BA为腰,∠ABQ2为顶角,使△ABQ2∽△ACB,由对称性可求得点Q1的坐标为(10,3). 同样,点Q2也在抛物线上.
③若以AB为底,AQ,BQ为腰,点Q在抛物线的对称轴上,不合题意,舍去.
综上所述,在x轴上方的抛物线上存在点Q1(-2,)和Q2(10,3),使得以Q、A、B三点为顶点的三
角形与△ABC相似.
2.如图,抛物线y=ax 2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴相交于点C(0,).当x=-4和x=2时,二次函数y=ax 2+bx+c(a≠0)的函数值y相等,连结AC、BC. (1)求实数a,b,c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
9a3bc0
解:(1)由题意得c3
16a4bc4a2bc
解得a=-
23,b=-,c=. 33
·······
(2)由(1)知y=-解得x1=-3,x2=1. ∵A(-3,0),∴B(1,0).
又∵C(0,),∴OA=3,OB=1,OC=,∴AB=4,BC=2. ∴tan∠ACO=
OA
=3,∴∠ACO=60°,∴∠CAO=30°. OC
2222x -x+,令y=0,得-x -x+=0. 3333
同理,可求得∠CBO=60°,∠BCO=30°,∴∠ACB=90°. ∴△ABC是直角三角形.
又∵BM=BN=t,∴△BMN是等边三角形. ∴∠BNM=60°,∴∠PNM=60°,∴∠PNC=60°.
∴Rt△PNC∽Rt△ABC,∴
PNAB
. =
NCBC
t4
=. 22t
由题意知PN=BN=t,NC=BC-BN=2-t,∴
4
∴t=. ····················································· 4分
3
41
∴OM=BM-OB=-1=.
33
234
如图1,过点P作PH⊥x轴于H,则PH=PM·sin60°=×=.
233
412
MH=PM·cos60°=×=.
323
12
∴OH=OM+MH=+=1.
33
∴点P的坐标为(-1,(3)存在.
2······················································ 6分 ). ·
3
由(2)知△ABC是直角三角形,若△BNQ与△ABC相似,则△BNQ也是直角三角形. ∵二次函数y=-
322x -x+3的图象的对称轴为x=-1. 33
∴点P在对称轴上. ∵PN∥x轴,∴PN⊥对称轴. 又∵QN≥PN,PN=BN,∴QN≥BN. ∴△BNQ不存在以点Q为直角顶点的情形.
①如图2,过点N作QN⊥对称轴于Q,连结BQ,则△BNQ是以点N为直角顶点的直角三角形,
且QN>PN,∠MNQ=30°.
4
8PN3∴∠PNQ=30°,∴QN=.
==9cos30o2
823QN
∴. =9=
43BN
3
∵
QNACAC
. =tan60°=,∴≠
BCBNBC
∴当△BNQ以点N为直角顶点时,△BNQ与△ABC不相似. ··········· 7分 ②如图3,延长NM交对称轴于点Q,连结BQ,则∠BMQ=120°. ∵∠AMP=60°,∠AMQ=∠BMN=60°,∴∠PMQ=120°. ∴∠BMQ=∠PMQ,又∵PM=BM,QM=QM.
∴△BMQ≌△PMQ,∴∠BQM=∠PQM=30°. ∵∠BNM=60°,∴∠QBN=90°. ∵∠CAO=30°,∠ACB=90°.
∴△BNQ∽△ABC. ·············································· 8分
∴当△BNQ以点B为直角顶点时,△BNQ∽△ABC. 设对称轴与x轴的交点为D.
∵∠DMQ=∠DMP=60°,DM=DM,∴Rt△DMQ≌Rt△DMP. ∴DQ=PD,∴点Q与点P关于x轴对称. ∴点Q的坐标为(-1,-
2··········································································· 9分 ). ·
3
2),使得以B,N,Q为顶点的三角形与△ABC相似.3
综合①②得,在抛物线的对称轴上存在点Q(-1,-
····························································································································· 10分
3.如图,抛物线y=a(x+3)(x-1)与x轴相交于A、B两点(点A在点B右侧),过点A的直线交抛物线于另一点C,点C的坐标为(-2,6). (1)求a的值及直线AC的函数关系式;
(2)P是线段AC上一动点,过点P作y轴的平行线,交抛物线于点M,交x轴于点N.
①求线段PM长度的最大值;
②在抛物线上是否存在这样的点M,使得△CMP与△APN相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由.
解:(1)由题意得6=a(-2+3)(-2-1),∴a=-2 ······································ 1分 ∴抛物线的解析式为y=-2(x+3)(x-1),即y=-2x 2-4x+6 令-2(x+3)(x-1)=0,得x1=-3,x2=1
∵点A在点B右侧,∴A(1,0),B(-3,0)
设直线AC的函数关系式为y=kx+b,把A(1,0)、C(-2,6)代入,得
k+b = 0k = -2
解得
-2k+b = 6b = 2
∴直线AC的函数关系式为y=-2x+2 ·········································· 3分 (2)①设P点的横坐标为m(-2≤ m ≤1),
则P(m,-2m+2),M(m,-2m 2-4m+6) ·································· 4分 ∴PM=-2m 2-4m+6-(-2m+2)
=-2m 2-2m+4
19
=-2(m+)2+
22
19
∴当m=-时,线段PM长度的最大值为 ······························· 6分
22
②存在
M1(0,6) ············································································································ 7分
155
M2(-) ····································································································· 9分
48
点M的坐标的求解过程如下(原题不作要求,本人添加,仅供参考) ⅰ)如图1,当M为直角顶点时,连结CM,则CM⊥PM,△CMP∽△
ANP
∵点C(-2,6),∴点M的纵坐标为6,代入y=-2x 2-4x+6 得-2x 2-4x+6=6,∴x=-2(舍去)或x=0 ∴M1(0,6)
(此时点M在y轴上,即抛物线与y轴的交点,此时直线MN与y轴 重合,点N与原点O重合)
ⅱ)如图2,当C为直角顶点时,设M(m,-2m 2-4m+6)(-2≤ m ≤1) 过C作CH⊥MN于H,连结CM,设直线AC与y轴相交于点D 则△CMP∽△NAP
又∵△HMC∽△CMP,△NAP∽△OAD,∴△HMC∽△OAD ∴
CHMH
=
ODOA
∵C(-2,6),∴CH=m+2,MH=-2m 2-4m+6-6=-2m 2-4m 在y=-2x+2中,令x=0,得y=2 ∴D(0,2),∴OD=2
2m24mm2∴ =
12
1
整理得4m 2+9m+2=0,解得m=-2(舍去)或m=-
411155
当m=-时,-2m 2-4m+6=(-)2-4×(-)+6=
4448
155
∴M2(-)
48
4.已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1). (1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.
(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.
①当△BDE是等腰三角形时,直接写出此时点E的坐标. ....
②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.
解:(1)由题意知Rt△△AOC∽Rt△COB,∴
OAOC
. =
OCOB
∴OC 2=OA·OB=OA(AB-OA),即22=OA(5-OA).
∴OA 2-5OA+4=0,∵OA<OB,∴OA=1,OB=4. ··················· 2分 ∴A(-1,0),B(4,0),C(0,2).
∴可设所求抛物线的关系式为y=a(x+1)(x-4). ························ 3分
1
将点C(0,2)代入,得2=a(0+1)(0-4),∴a=-.
2
1
∴经过点A、B、C的抛物线的关系式为y=-(x+1)(x-4).···· 4分
213
即y=-x 2+x+2.
22
14842
(2)①E1(3,),E2(,),E3(4······················· 7分 5). ·
25555
关于点E的坐标求解过程如下(原题不作要求,本人添加,仅供参考):
设直线BC的解析式为y=kx+b.
1
4kb0k则 解得2
b2b2
1
∴直线BC的解析式为y=-x+2.
21
∵点E在直线BC上,∴E(x,-x+2).
2
1
若ED=EB,过点E作EH⊥x轴于H,如图2,则DH=DB=1.
2
∴OH=OD+DH=2+1=3.
∴点E的横坐标为3,代入直线BC的解析式,得y=-
1
∴E1(3,).
2
11×3+2=. 22
若DE=DB,则(x-2)2+(-
1
x+2)2=22. 2
整理得5x 2-24x+16=0,解得x1=4(舍去),x2=
14848
∴y=-×+2=,∴E2(,).
255551
若BE=BD,则(x-4)2+(-x+2)2=22.
2
4. 5
整理得5x 2-24x+16=0,解得x1=4
44
(此时点P在第四象限,舍去),x2=4.
55
14242
∴y=-×(4)+2=5,∴E3(4).
25555
②△CDP有最大面积. ··································································· 8分 过点D作x轴的垂线,交PC于点M,如图3.
设直线PC的解析式为y=px+q,将C(0,2),P(m,n)代入,
n2q2p得 解得m
mpqnq2
∴直线PC的解析式为y=
n22n4
x+2,∴M(2+2).
mm
S△CDP=S△CDM+S△PDM=
1
xP·yM 2
12n4
+2) =m(
2m
=m+n-2
13
=m+(-m2+m+2)-2
2215
=-m2+m
221525=-(m-)2+
228
525
∴当m=时,△CDP有最大面积,最大面积为. ··················· 9分
28153521
此时n=-×()2+×+2=
22228
521
∴此时点P的坐标为(,). ················································· 10分
28
5.如图,已知抛物线y=x 2+4x+3交x轴于A、B两点,交y轴于点C,•抛物线的对称轴交x轴于点E,点
B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)在平面直角坐标系xOy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;
(3)连结CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.
解:(1)对称轴为直线x=-4············································· 2分 =-2,即x=-2; ·2
令y=0,得x 2+4x+3=0,解得x1=-1,x2=-3.
∵点B的坐标为(-1,0),∴点A的坐标为(-3,0). ········································· 4分
(2)存在,点P的坐标为(-2,3),(2,3)和(-4,-3). ································ 7分
(3)存在. ··········································································································· 8分
当x=0时,y=x 2+4x+3=3,∴点C的坐标为(0,3).
AO=3,EO=2,AE=1,CO=3.
∵DE∥CO,
∴△AED∽△AOC.∴AEDE1DE,即=. =AOCO33
∴DE=1. ·············································································································· 9分
∵DE∥CO,且DE≠CO,∴四边形DEOC为梯形.
S梯形DEOC=1(1+3)×2=4. 2
设直线CM交x轴于点F,如图.
若直线CM把梯形DEOC分成面积相等的两部分,则S△COF=2
即114CO·FO=2.∴×3FO=2,∴FO=. 223
4∴点F的坐标为(-,0). ··················································· 10分 3
∵直线CM经过点C(0,3),∴设直线CM的解析式为y=kx+3.
44把F(-,0)代入,得-k+3=0. ································································· 11分 33
9∴k=. 4
∴直线CM的解析式为y=9x+3. ······································································ 12分 4
6. (2011浙江金华)如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;
(3)是否存在点P,使ΔOPD的面积等于
明理由
. 3,若存在,请求出符合条件的点P的坐标;若不存在,请说4
6. 解:(1)作BE⊥OA,∴ΔAOB是等边三角形∴BE=OB·sin60=
B(o
∵A(0,4),设AB的解析式为ykx4,
所以42,
解得k, 3
以直线AB
的解析式为yx4 3
(2)由旋转知,AP=AD, ∠PAD=60o,
∴ΔAPD是等边三角形,
如图,作BE⊥AO,DH⊥OA,GB⊥DH,显然ΔGBD中∠GBD=30°
∴GD=1BD=2
+
,
∴
337,OH=OE+HE=OE+BG=2 222∴
D(7,) 221
x)若ΔOPD
的面积为:x(2x)2224(3)设OP=x,则由(2)可得
D(x,2
解得:x所以
7.已知,如图,抛物线y=ax 2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧,点B的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存
在,求点P的坐标;若不存在,请说明理由.
解:(1)∵对称轴x=-3a3··································································· 1分 =- ·22a
又∵OC=3OB=3,a>0
∴C(0,-3) ·················································································· 2分
方法一:把B(1,0)、C(0,-3)代入y=ax 2+3ax+c得:
3a=a+3a+c=04 解得c=-3c=-3
∴抛物线的解析式为y=x 2+439x-3 ································································· 4分
4
方法二:令ax 2+3ax+c=0,则xA+xB=-3
∵B(1,0),∴xA+1=-3,∴xA=-4
∴A(-4,0)
∴可设抛物线的解析式为y=a(x+4)(x-1),把C(0,-3)代入
得-3=a(0+4)(0-1),∴a= 4
3
43∴抛物线的解析式为y=(x+4)(x-1)
39即y=x 2+x-3 ······································································· 4分 44
(2)方法一:如图1,过点D作DN⊥x轴,垂足为N,交线段AC于点M
∵S四边形ABCD =S△ABC +S△ACD =
=11(4+1)×3+DM·4 2211AB·OC+DM·(AN+ON) 22
=15+2DM ··················································································· 5分
2
设直线AC的解析式为y=kx+b,把A(-4,0)、C(0,-3)代入
-4k+b=0
得 解得b=-3k=-34 b=-3
3
4∴直线AC的解析式为y=-x-3 ··············································· 6分
339设D(xx 2+x-3),则M(x,-x-3) 444
∴DM=-x-3-(x 2+443339x-3)=-(x+2)2+3 ········································· 7分 44
当x=-2时,DM有最大值3
此时四边形ABCD面积有最大值,最大值为:1527+2×3= ····························· 8分 22
方法二:如图2,过点D作DQ⊥y轴于Q,过点C作CC1∥x轴交抛物线于C1
3399设D(xx 2+x-3),则DQ=-x,OQ=-x 2-x+3 4444
从图象可判断当点D在CC1下方的抛物线上运动时,四边形ABCD面积才有最大值
则S四边形ABCD =S△BOC +S梯形AOQD -S△CDQ =
=111OB·OC+(AO+DQ)·OQ-DQ·CQ 222111×1×3+(4+DQ)·OQ-DQ·(OQ-3) 222
=33+2OQ+DQ ···················································· 5分 22
3393-2(x 2+x-3)-x 2424=
315=-x 2-6x+ 22
327················································ 7分 =-(x+2)2+ ·22
当x=-2时,四边形ABCD面积有最大值272
························································································ 8分
(3)如图3
①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,则四边形ACP1E1为平行四边形 ······························································································································· 9分
∵C(0,-3),令x 2+439x-3=-3 4
解得x1=0,x2=3,∴CP1=3
∴P1(-3,-3) ·································································································· 11分
②平移直线AC交x轴于点E,交x轴上方的抛物线于点P,当AC=PE时,四边形ACEP为平行四边形 ····························································································································· 12分
∵C(0,-3),∴设P(x,3) 由3
4x 2+- 3 - 3 -419x-3=3,解得x=或x= 224
∴P2(- 3 41
2,3),P3(- 3 -41
2,3) ······························································ 14分
综上所述,存在以A、C、E、P为顶点且以AC为一边的平行四边形,点P的坐标分别为:
P1(-3,-3),P2(- 3 41
2,3),P3(- 3 -41
2,3)
相似三角形存在性问题
1.如图,二次函数图象的顶点坐标为C(4,-),且在x轴上截得的线段AB的长为6. (1)求二次函数的解析式;
(2)点P在y轴上,且使得△PAC的周长最小,求:①点P的坐标;②△PAC的周长和面积; (3)在x轴上方的抛物线上,是否存在点Q,使得以Q、A、B三点为顶点的三角形与△ABC相似?
如果存在,求出点Q的坐标;如果不存在,请说明理由.
解:(1)设二次函数的解析式为y=a(x -4)2-(a≠0),且A(x1,0),B(x2,0). ∵y=a(x -4)2-3=ax 2-8ax+16a- ∴x1+x2=8,x1x2=16-∴AB 2=(x1-x2)2=(x1+x2)2-4x1x2=82-4(16-
3
(x -4)2-3. 9
. a
33)=36,∴a=. a9
∴二次函数的解析式为y=
(2)①如图1,作点A关于y轴的对称点A′,连结A′C交y轴于点P,连结PA,则点P为所求. 令y=0,得
(x -4)2-=0,解得x1=1,x2=7. 9
∴A(1,0),B(7,0).∴OA=1,∴OA′=1.
设抛物线的对称轴与x轴交于点D,则AD=3,A′D=5,DC=.
OPOPAO1
∵△A′OP∽△ADC,∴,即. ==,∴OP=
5AD5DC∴P(0,-
). 5
②∵A′C=AD2DC2=52(3)2=27 AC=AD2DC2=32(3)2=2
∴△PAC的周长=PA+PC+AC=A′C+AC=27+2.
3411
S△PAC=S△A′AC - S△A′AP=A′A(DC-OP)=×2×(3-)=.
5522
(3)存在. ∵tan∠BAC=
DC=,∴∠BAC=30°.
3AD
同理,∠ABC=30°,∴∠ACB=120°,AC=BC.
①若以AB为腰,∠BAQ1为顶角,使△ABQ1∽△CBA,则AQ1=AB=6,∠BAQ1=120°. 如图2,过点Q1作Q1H⊥x轴于H,则 Q1H=AQ1·sin60°=6×
31
=3,HA=AQ1·cos60°=6×=3. 22
HO=HA-OA=3-1=2. ∴点Q1的坐标为(-2,3). 把x=-2代入y=
3(x -4)2-3,得y=(-2-4)2-3=3. 99
∴点Q1在抛物线上.
②若以BA为腰,∠ABQ2为顶角,使△ABQ2∽△ACB,由对称性可求得点Q1的坐标为(10,3). 同样,点Q2也在抛物线上.
③若以AB为底,AQ,BQ为腰,点Q在抛物线的对称轴上,不合题意,舍去.
综上所述,在x轴上方的抛物线上存在点Q1(-2,)和Q2(10,3),使得以Q、A、B三点为顶点的三
角形与△ABC相似.
2.如图,抛物线y=ax 2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴相交于点C(0,).当x=-4和x=2时,二次函数y=ax 2+bx+c(a≠0)的函数值y相等,连结AC、BC. (1)求实数a,b,c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
9a3bc0
解:(1)由题意得c3
16a4bc4a2bc
解得a=-
23,b=-,c=. 33
·······
(2)由(1)知y=-解得x1=-3,x2=1. ∵A(-3,0),∴B(1,0).
又∵C(0,),∴OA=3,OB=1,OC=,∴AB=4,BC=2. ∴tan∠ACO=
OA
=3,∴∠ACO=60°,∴∠CAO=30°. OC
2222x -x+,令y=0,得-x -x+=0. 3333
同理,可求得∠CBO=60°,∠BCO=30°,∴∠ACB=90°. ∴△ABC是直角三角形.
又∵BM=BN=t,∴△BMN是等边三角形. ∴∠BNM=60°,∴∠PNM=60°,∴∠PNC=60°.
∴Rt△PNC∽Rt△ABC,∴
PNAB
. =
NCBC
t4
=. 22t
由题意知PN=BN=t,NC=BC-BN=2-t,∴
4
∴t=. ····················································· 4分
3
41
∴OM=BM-OB=-1=.
33
234
如图1,过点P作PH⊥x轴于H,则PH=PM·sin60°=×=.
233
412
MH=PM·cos60°=×=.
323
12
∴OH=OM+MH=+=1.
33
∴点P的坐标为(-1,(3)存在.
2······················································ 6分 ). ·
3
由(2)知△ABC是直角三角形,若△BNQ与△ABC相似,则△BNQ也是直角三角形. ∵二次函数y=-
322x -x+3的图象的对称轴为x=-1. 33
∴点P在对称轴上. ∵PN∥x轴,∴PN⊥对称轴. 又∵QN≥PN,PN=BN,∴QN≥BN. ∴△BNQ不存在以点Q为直角顶点的情形.
①如图2,过点N作QN⊥对称轴于Q,连结BQ,则△BNQ是以点N为直角顶点的直角三角形,
且QN>PN,∠MNQ=30°.
4
8PN3∴∠PNQ=30°,∴QN=.
==9cos30o2
823QN
∴. =9=
43BN
3
∵
QNACAC
. =tan60°=,∴≠
BCBNBC
∴当△BNQ以点N为直角顶点时,△BNQ与△ABC不相似. ··········· 7分 ②如图3,延长NM交对称轴于点Q,连结BQ,则∠BMQ=120°. ∵∠AMP=60°,∠AMQ=∠BMN=60°,∴∠PMQ=120°. ∴∠BMQ=∠PMQ,又∵PM=BM,QM=QM.
∴△BMQ≌△PMQ,∴∠BQM=∠PQM=30°. ∵∠BNM=60°,∴∠QBN=90°. ∵∠CAO=30°,∠ACB=90°.
∴△BNQ∽△ABC. ·············································· 8分
∴当△BNQ以点B为直角顶点时,△BNQ∽△ABC. 设对称轴与x轴的交点为D.
∵∠DMQ=∠DMP=60°,DM=DM,∴Rt△DMQ≌Rt△DMP. ∴DQ=PD,∴点Q与点P关于x轴对称. ∴点Q的坐标为(-1,-
2··········································································· 9分 ). ·
3
2),使得以B,N,Q为顶点的三角形与△ABC相似.3
综合①②得,在抛物线的对称轴上存在点Q(-1,-
····························································································································· 10分
3.如图,抛物线y=a(x+3)(x-1)与x轴相交于A、B两点(点A在点B右侧),过点A的直线交抛物线于另一点C,点C的坐标为(-2,6). (1)求a的值及直线AC的函数关系式;
(2)P是线段AC上一动点,过点P作y轴的平行线,交抛物线于点M,交x轴于点N.
①求线段PM长度的最大值;
②在抛物线上是否存在这样的点M,使得△CMP与△APN相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由.
解:(1)由题意得6=a(-2+3)(-2-1),∴a=-2 ······································ 1分 ∴抛物线的解析式为y=-2(x+3)(x-1),即y=-2x 2-4x+6 令-2(x+3)(x-1)=0,得x1=-3,x2=1
∵点A在点B右侧,∴A(1,0),B(-3,0)
设直线AC的函数关系式为y=kx+b,把A(1,0)、C(-2,6)代入,得
k+b = 0k = -2
解得
-2k+b = 6b = 2
∴直线AC的函数关系式为y=-2x+2 ·········································· 3分 (2)①设P点的横坐标为m(-2≤ m ≤1),
则P(m,-2m+2),M(m,-2m 2-4m+6) ·································· 4分 ∴PM=-2m 2-4m+6-(-2m+2)
=-2m 2-2m+4
19
=-2(m+)2+
22
19
∴当m=-时,线段PM长度的最大值为 ······························· 6分
22
②存在
M1(0,6) ············································································································ 7分
155
M2(-) ····································································································· 9分
48
点M的坐标的求解过程如下(原题不作要求,本人添加,仅供参考) ⅰ)如图1,当M为直角顶点时,连结CM,则CM⊥PM,△CMP∽△
ANP
∵点C(-2,6),∴点M的纵坐标为6,代入y=-2x 2-4x+6 得-2x 2-4x+6=6,∴x=-2(舍去)或x=0 ∴M1(0,6)
(此时点M在y轴上,即抛物线与y轴的交点,此时直线MN与y轴 重合,点N与原点O重合)
ⅱ)如图2,当C为直角顶点时,设M(m,-2m 2-4m+6)(-2≤ m ≤1) 过C作CH⊥MN于H,连结CM,设直线AC与y轴相交于点D 则△CMP∽△NAP
又∵△HMC∽△CMP,△NAP∽△OAD,∴△HMC∽△OAD ∴
CHMH
=
ODOA
∵C(-2,6),∴CH=m+2,MH=-2m 2-4m+6-6=-2m 2-4m 在y=-2x+2中,令x=0,得y=2 ∴D(0,2),∴OD=2
2m24mm2∴ =
12
1
整理得4m 2+9m+2=0,解得m=-2(舍去)或m=-
411155
当m=-时,-2m 2-4m+6=(-)2-4×(-)+6=
4448
155
∴M2(-)
48
4.已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1). (1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.
(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.
①当△BDE是等腰三角形时,直接写出此时点E的坐标. ....
②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.
解:(1)由题意知Rt△△AOC∽Rt△COB,∴
OAOC
. =
OCOB
∴OC 2=OA·OB=OA(AB-OA),即22=OA(5-OA).
∴OA 2-5OA+4=0,∵OA<OB,∴OA=1,OB=4. ··················· 2分 ∴A(-1,0),B(4,0),C(0,2).
∴可设所求抛物线的关系式为y=a(x+1)(x-4). ························ 3分
1
将点C(0,2)代入,得2=a(0+1)(0-4),∴a=-.
2
1
∴经过点A、B、C的抛物线的关系式为y=-(x+1)(x-4).···· 4分
213
即y=-x 2+x+2.
22
14842
(2)①E1(3,),E2(,),E3(4······················· 7分 5). ·
25555
关于点E的坐标求解过程如下(原题不作要求,本人添加,仅供参考):
设直线BC的解析式为y=kx+b.
1
4kb0k则 解得2
b2b2
1
∴直线BC的解析式为y=-x+2.
21
∵点E在直线BC上,∴E(x,-x+2).
2
1
若ED=EB,过点E作EH⊥x轴于H,如图2,则DH=DB=1.
2
∴OH=OD+DH=2+1=3.
∴点E的横坐标为3,代入直线BC的解析式,得y=-
1
∴E1(3,).
2
11×3+2=. 22
若DE=DB,则(x-2)2+(-
1
x+2)2=22. 2
整理得5x 2-24x+16=0,解得x1=4(舍去),x2=
14848
∴y=-×+2=,∴E2(,).
255551
若BE=BD,则(x-4)2+(-x+2)2=22.
2
4. 5
整理得5x 2-24x+16=0,解得x1=4
44
(此时点P在第四象限,舍去),x2=4.
55
14242
∴y=-×(4)+2=5,∴E3(4).
25555
②△CDP有最大面积. ··································································· 8分 过点D作x轴的垂线,交PC于点M,如图3.
设直线PC的解析式为y=px+q,将C(0,2),P(m,n)代入,
n2q2p得 解得m
mpqnq2
∴直线PC的解析式为y=
n22n4
x+2,∴M(2+2).
mm
S△CDP=S△CDM+S△PDM=
1
xP·yM 2
12n4
+2) =m(
2m
=m+n-2
13
=m+(-m2+m+2)-2
2215
=-m2+m
221525=-(m-)2+
228
525
∴当m=时,△CDP有最大面积,最大面积为. ··················· 9分
28153521
此时n=-×()2+×+2=
22228
521
∴此时点P的坐标为(,). ················································· 10分
28
5.如图,已知抛物线y=x 2+4x+3交x轴于A、B两点,交y轴于点C,•抛物线的对称轴交x轴于点E,点
B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)在平面直角坐标系xOy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;
(3)连结CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.
解:(1)对称轴为直线x=-4············································· 2分 =-2,即x=-2; ·2
令y=0,得x 2+4x+3=0,解得x1=-1,x2=-3.
∵点B的坐标为(-1,0),∴点A的坐标为(-3,0). ········································· 4分
(2)存在,点P的坐标为(-2,3),(2,3)和(-4,-3). ································ 7分
(3)存在. ··········································································································· 8分
当x=0时,y=x 2+4x+3=3,∴点C的坐标为(0,3).
AO=3,EO=2,AE=1,CO=3.
∵DE∥CO,
∴△AED∽△AOC.∴AEDE1DE,即=. =AOCO33
∴DE=1. ·············································································································· 9分
∵DE∥CO,且DE≠CO,∴四边形DEOC为梯形.
S梯形DEOC=1(1+3)×2=4. 2
设直线CM交x轴于点F,如图.
若直线CM把梯形DEOC分成面积相等的两部分,则S△COF=2
即114CO·FO=2.∴×3FO=2,∴FO=. 223
4∴点F的坐标为(-,0). ··················································· 10分 3
∵直线CM经过点C(0,3),∴设直线CM的解析式为y=kx+3.
44把F(-,0)代入,得-k+3=0. ································································· 11分 33
9∴k=. 4
∴直线CM的解析式为y=9x+3. ······································································ 12分 4
6. (2011浙江金华)如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;
(3)是否存在点P,使ΔOPD的面积等于
明理由
. 3,若存在,请求出符合条件的点P的坐标;若不存在,请说4
6. 解:(1)作BE⊥OA,∴ΔAOB是等边三角形∴BE=OB·sin60=
B(o
∵A(0,4),设AB的解析式为ykx4,
所以42,
解得k, 3
以直线AB
的解析式为yx4 3
(2)由旋转知,AP=AD, ∠PAD=60o,
∴ΔAPD是等边三角形,
如图,作BE⊥AO,DH⊥OA,GB⊥DH,显然ΔGBD中∠GBD=30°
∴GD=1BD=2
+
,
∴
337,OH=OE+HE=OE+BG=2 222∴
D(7,) 221
x)若ΔOPD
的面积为:x(2x)2224(3)设OP=x,则由(2)可得
D(x,2
解得:x所以
7.已知,如图,抛物线y=ax 2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧,点B的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;
(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存
在,求点P的坐标;若不存在,请说明理由.
解:(1)∵对称轴x=-3a3··································································· 1分 =- ·22a
又∵OC=3OB=3,a>0
∴C(0,-3) ·················································································· 2分
方法一:把B(1,0)、C(0,-3)代入y=ax 2+3ax+c得:
3a=a+3a+c=04 解得c=-3c=-3
∴抛物线的解析式为y=x 2+439x-3 ································································· 4分
4
方法二:令ax 2+3ax+c=0,则xA+xB=-3
∵B(1,0),∴xA+1=-3,∴xA=-4
∴A(-4,0)
∴可设抛物线的解析式为y=a(x+4)(x-1),把C(0,-3)代入
得-3=a(0+4)(0-1),∴a= 4
3
43∴抛物线的解析式为y=(x+4)(x-1)
39即y=x 2+x-3 ······································································· 4分 44
(2)方法一:如图1,过点D作DN⊥x轴,垂足为N,交线段AC于点M
∵S四边形ABCD =S△ABC +S△ACD =
=11(4+1)×3+DM·4 2211AB·OC+DM·(AN+ON) 22
=15+2DM ··················································································· 5分
2
设直线AC的解析式为y=kx+b,把A(-4,0)、C(0,-3)代入
-4k+b=0
得 解得b=-3k=-34 b=-3
3
4∴直线AC的解析式为y=-x-3 ··············································· 6分
339设D(xx 2+x-3),则M(x,-x-3) 444
∴DM=-x-3-(x 2+443339x-3)=-(x+2)2+3 ········································· 7分 44
当x=-2时,DM有最大值3
此时四边形ABCD面积有最大值,最大值为:1527+2×3= ····························· 8分 22
方法二:如图2,过点D作DQ⊥y轴于Q,过点C作CC1∥x轴交抛物线于C1
3399设D(xx 2+x-3),则DQ=-x,OQ=-x 2-x+3 4444
从图象可判断当点D在CC1下方的抛物线上运动时,四边形ABCD面积才有最大值
则S四边形ABCD =S△BOC +S梯形AOQD -S△CDQ =
=111OB·OC+(AO+DQ)·OQ-DQ·CQ 222111×1×3+(4+DQ)·OQ-DQ·(OQ-3) 222
=33+2OQ+DQ ···················································· 5分 22
3393-2(x 2+x-3)-x 2424=
315=-x 2-6x+ 22
327················································ 7分 =-(x+2)2+ ·22
当x=-2时,四边形ABCD面积有最大值272
························································································ 8分
(3)如图3
①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,则四边形ACP1E1为平行四边形 ······························································································································· 9分
∵C(0,-3),令x 2+439x-3=-3 4
解得x1=0,x2=3,∴CP1=3
∴P1(-3,-3) ·································································································· 11分
②平移直线AC交x轴于点E,交x轴上方的抛物线于点P,当AC=PE时,四边形ACEP为平行四边形 ····························································································································· 12分
∵C(0,-3),∴设P(x,3) 由3
4x 2+- 3 - 3 -419x-3=3,解得x=或x= 224
∴P2(- 3 41
2,3),P3(- 3 -41
2,3) ······························································ 14分
综上所述,存在以A、C、E、P为顶点且以AC为一边的平行四边形,点P的坐标分别为:
P1(-3,-3),P2(- 3 41
2,3),P3(- 3 -41
2,3)