相似三角形存在性问题

相似三角形存在性问题

1.如图,二次函数图象的顶点坐标为C(4,-),且在x轴上截得的线段AB的长为6. (1)求二次函数的解析式;

(2)点P在y轴上,且使得△PAC的周长最小,求:①点P的坐标;②△PAC的周长和面积; (3)在x轴上方的抛物线上,是否存在点Q,使得以Q、A、B三点为顶点的三角形与△ABC相似?

如果存在,求出点Q的坐标;如果不存在,请说明理由.

解:(1)设二次函数的解析式为y=a(x -4)2-(a≠0),且A(x1,0),B(x2,0). ∵y=a(x -4)2-3=ax 2-8ax+16a- ∴x1+x2=8,x1x2=16-∴AB 2=(x1-x2)2=(x1+x2)2-4x1x2=82-4(16-

3

(x -4)2-3. 9

. a

33)=36,∴a=. a9

∴二次函数的解析式为y=

(2)①如图1,作点A关于y轴的对称点A′,连结A′C交y轴于点P,连结PA,则点P为所求. 令y=0,得

(x -4)2-=0,解得x1=1,x2=7. 9

∴A(1,0),B(7,0).∴OA=1,∴OA′=1.

设抛物线的对称轴与x轴交于点D,则AD=3,A′D=5,DC=.

OPOPAO1

∵△A′OP∽△ADC,∴,即. ==,∴OP=

5AD5DC∴P(0,-

). 5

②∵A′C=AD2DC2=52(3)2=27 AC=AD2DC2=32(3)2=2

∴△PAC的周长=PA+PC+AC=A′C+AC=27+2.

3411

S△PAC=S△A′AC - S△A′AP=A′A(DC-OP)=×2×(3-)=.

5522

(3)存在. ∵tan∠BAC=

DC=,∴∠BAC=30°.

3AD

同理,∠ABC=30°,∴∠ACB=120°,AC=BC.

①若以AB为腰,∠BAQ1为顶角,使△ABQ1∽△CBA,则AQ1=AB=6,∠BAQ1=120°. 如图2,过点Q1作Q1H⊥x轴于H,则 Q1H=AQ1·sin60°=6×

31

=3,HA=AQ1·cos60°=6×=3. 22

HO=HA-OA=3-1=2. ∴点Q1的坐标为(-2,3). 把x=-2代入y=

3(x -4)2-3,得y=(-2-4)2-3=3. 99

∴点Q1在抛物线上.

②若以BA为腰,∠ABQ2为顶角,使△ABQ2∽△ACB,由对称性可求得点Q1的坐标为(10,3). 同样,点Q2也在抛物线上.

③若以AB为底,AQ,BQ为腰,点Q在抛物线的对称轴上,不合题意,舍去.

综上所述,在x轴上方的抛物线上存在点Q1(-2,)和Q2(10,3),使得以Q、A、B三点为顶点的三

角形与△ABC相似.

2.如图,抛物线y=ax 2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴相交于点C(0,).当x=-4和x=2时,二次函数y=ax 2+bx+c(a≠0)的函数值y相等,连结AC、BC. (1)求实数a,b,c的值;

(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;

(3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

9a3bc0

解:(1)由题意得c3

16a4bc4a2bc

解得a=-

23,b=-,c=. 33

·······

(2)由(1)知y=-解得x1=-3,x2=1. ∵A(-3,0),∴B(1,0).

又∵C(0,),∴OA=3,OB=1,OC=,∴AB=4,BC=2. ∴tan∠ACO=

OA

=3,∴∠ACO=60°,∴∠CAO=30°. OC

2222x -x+,令y=0,得-x -x+=0. 3333

同理,可求得∠CBO=60°,∠BCO=30°,∴∠ACB=90°. ∴△ABC是直角三角形.

又∵BM=BN=t,∴△BMN是等边三角形. ∴∠BNM=60°,∴∠PNM=60°,∴∠PNC=60°.

∴Rt△PNC∽Rt△ABC,∴

PNAB

. =

NCBC

t4

=. 22t

由题意知PN=BN=t,NC=BC-BN=2-t,∴

4

∴t=. ····················································· 4分

3

41

∴OM=BM-OB=-1=.

33

234

如图1,过点P作PH⊥x轴于H,则PH=PM·sin60°=×=.

233

412

MH=PM·cos60°=×=.

323

12

∴OH=OM+MH=+=1.

33

∴点P的坐标为(-1,(3)存在.

2······················································ 6分 ). ·

3

由(2)知△ABC是直角三角形,若△BNQ与△ABC相似,则△BNQ也是直角三角形. ∵二次函数y=-

322x -x+3的图象的对称轴为x=-1. 33

∴点P在对称轴上. ∵PN∥x轴,∴PN⊥对称轴. 又∵QN≥PN,PN=BN,∴QN≥BN. ∴△BNQ不存在以点Q为直角顶点的情形.

①如图2,过点N作QN⊥对称轴于Q,连结BQ,则△BNQ是以点N为直角顶点的直角三角形,

且QN>PN,∠MNQ=30°.

4

8PN3∴∠PNQ=30°,∴QN=.

==9cos30o2

823QN

∴. =9=

43BN

3

QNACAC

. =tan60°=,∴≠

BCBNBC

∴当△BNQ以点N为直角顶点时,△BNQ与△ABC不相似. ··········· 7分 ②如图3,延长NM交对称轴于点Q,连结BQ,则∠BMQ=120°. ∵∠AMP=60°,∠AMQ=∠BMN=60°,∴∠PMQ=120°. ∴∠BMQ=∠PMQ,又∵PM=BM,QM=QM.

∴△BMQ≌△PMQ,∴∠BQM=∠PQM=30°. ∵∠BNM=60°,∴∠QBN=90°. ∵∠CAO=30°,∠ACB=90°.

∴△BNQ∽△ABC. ·············································· 8分

∴当△BNQ以点B为直角顶点时,△BNQ∽△ABC. 设对称轴与x轴的交点为D.

∵∠DMQ=∠DMP=60°,DM=DM,∴Rt△DMQ≌Rt△DMP. ∴DQ=PD,∴点Q与点P关于x轴对称. ∴点Q的坐标为(-1,-

2··········································································· 9分 ). ·

3

2),使得以B,N,Q为顶点的三角形与△ABC相似.3

综合①②得,在抛物线的对称轴上存在点Q(-1,-

····························································································································· 10分

3.如图,抛物线y=a(x+3)(x-1)与x轴相交于A、B两点(点A在点B右侧),过点A的直线交抛物线于另一点C,点C的坐标为(-2,6). (1)求a的值及直线AC的函数关系式;

(2)P是线段AC上一动点,过点P作y轴的平行线,交抛物线于点M,交x轴于点N.

①求线段PM长度的最大值;

②在抛物线上是否存在这样的点M,使得△CMP与△APN相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由.

解:(1)由题意得6=a(-2+3)(-2-1),∴a=-2 ······································ 1分 ∴抛物线的解析式为y=-2(x+3)(x-1),即y=-2x 2-4x+6 令-2(x+3)(x-1)=0,得x1=-3,x2=1

∵点A在点B右侧,∴A(1,0),B(-3,0)

设直线AC的函数关系式为y=kx+b,把A(1,0)、C(-2,6)代入,得

k+b = 0k = -2

解得 

-2k+b = 6b = 2

∴直线AC的函数关系式为y=-2x+2 ·········································· 3分 (2)①设P点的横坐标为m(-2≤ m ≤1),

则P(m,-2m+2),M(m,-2m 2-4m+6) ·································· 4分 ∴PM=-2m 2-4m+6-(-2m+2)

=-2m 2-2m+4

19

=-2(m+)2+

22

19

∴当m=-时,线段PM长度的最大值为 ······························· 6分

22

②存在

M1(0,6) ············································································································ 7分

155

M2(-) ····································································································· 9分

48

点M的坐标的求解过程如下(原题不作要求,本人添加,仅供参考) ⅰ)如图1,当M为直角顶点时,连结CM,则CM⊥PM,△CMP∽△

ANP

∵点C(-2,6),∴点M的纵坐标为6,代入y=-2x 2-4x+6 得-2x 2-4x+6=6,∴x=-2(舍去)或x=0 ∴M1(0,6)

(此时点M在y轴上,即抛物线与y轴的交点,此时直线MN与y轴 重合,点N与原点O重合)

ⅱ)如图2,当C为直角顶点时,设M(m,-2m 2-4m+6)(-2≤ m ≤1) 过C作CH⊥MN于H,连结CM,设直线AC与y轴相交于点D 则△CMP∽△NAP

又∵△HMC∽△CMP,△NAP∽△OAD,∴△HMC∽△OAD ∴

CHMH

ODOA

∵C(-2,6),∴CH=m+2,MH=-2m 2-4m+6-6=-2m 2-4m 在y=-2x+2中,令x=0,得y=2 ∴D(0,2),∴OD=2

2m24mm2∴ =

12

1

整理得4m 2+9m+2=0,解得m=-2(舍去)或m=-

411155

当m=-时,-2m 2-4m+6=(-)2-4×(-)+6=

4448

155

∴M2(-)

48

4.已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1). (1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.

(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.

①当△BDE是等腰三角形时,直接写出此时点E的坐标. ....

②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.

解:(1)由题意知Rt△△AOC∽Rt△COB,∴

OAOC

. =

OCOB

∴OC 2=OA·OB=OA(AB-OA),即22=OA(5-OA).

∴OA 2-5OA+4=0,∵OA<OB,∴OA=1,OB=4. ··················· 2分 ∴A(-1,0),B(4,0),C(0,2).

∴可设所求抛物线的关系式为y=a(x+1)(x-4). ························ 3分

1

将点C(0,2)代入,得2=a(0+1)(0-4),∴a=-.

2

1

∴经过点A、B、C的抛物线的关系式为y=-(x+1)(x-4).···· 4分

213

即y=-x 2+x+2.

22

14842

(2)①E1(3,),E2(,),E3(4······················· 7分 5). ·

25555

关于点E的坐标求解过程如下(原题不作要求,本人添加,仅供参考):

设直线BC的解析式为y=kx+b.

1

4kb0k则 解得2

b2b2

1

∴直线BC的解析式为y=-x+2.

21

∵点E在直线BC上,∴E(x,-x+2).

2

1

若ED=EB,过点E作EH⊥x轴于H,如图2,则DH=DB=1.

2

∴OH=OD+DH=2+1=3.

∴点E的横坐标为3,代入直线BC的解析式,得y=-

1

∴E1(3,).

2

11×3+2=. 22

若DE=DB,则(x-2)2+(-

1

x+2)2=22. 2

整理得5x 2-24x+16=0,解得x1=4(舍去),x2=

14848

∴y=-×+2=,∴E2(,).

255551

若BE=BD,则(x-4)2+(-x+2)2=22.

2

4. 5

整理得5x 2-24x+16=0,解得x1=4

44

(此时点P在第四象限,舍去),x2=4.

55

14242

∴y=-×(4)+2=5,∴E3(4).

25555

②△CDP有最大面积. ··································································· 8分 过点D作x轴的垂线,交PC于点M,如图3.

设直线PC的解析式为y=px+q,将C(0,2),P(m,n)代入,

n2q2p得 解得m

mpqnq2

∴直线PC的解析式为y=

n22n4

x+2,∴M(2+2).

mm

S△CDP=S△CDM+S△PDM=

1

xP·yM 2

12n4

+2) =m(

2m

=m+n-2

13

=m+(-m2+m+2)-2

2215

=-m2+m

221525=-(m-)2+

228

525

∴当m=时,△CDP有最大面积,最大面积为. ··················· 9分

28153521

此时n=-×()2+×+2=

22228

521

∴此时点P的坐标为(,). ················································· 10分

28

5.如图,已知抛物线y=x 2+4x+3交x轴于A、B两点,交y轴于点C,•抛物线的对称轴交x轴于点E,点

B的坐标为(-1,0).

(1)求抛物线的对称轴及点A的坐标;

(2)在平面直角坐标系xOy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;

(3)连结CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.

解:(1)对称轴为直线x=-4············································· 2分 =-2,即x=-2; ·2

令y=0,得x 2+4x+3=0,解得x1=-1,x2=-3.

∵点B的坐标为(-1,0),∴点A的坐标为(-3,0). ········································· 4分

(2)存在,点P的坐标为(-2,3),(2,3)和(-4,-3). ································ 7分

(3)存在. ··········································································································· 8分

当x=0时,y=x 2+4x+3=3,∴点C的坐标为(0,3).

AO=3,EO=2,AE=1,CO=3.

∵DE∥CO,

∴△AED∽△AOC.∴AEDE1DE,即=. =AOCO33

∴DE=1. ·············································································································· 9分

∵DE∥CO,且DE≠CO,∴四边形DEOC为梯形.

S梯形DEOC=1(1+3)×2=4. 2

设直线CM交x轴于点F,如图.

若直线CM把梯形DEOC分成面积相等的两部分,则S△COF=2

即114CO·FO=2.∴×3FO=2,∴FO=. 223

4∴点F的坐标为(-,0). ··················································· 10分 3

∵直线CM经过点C(0,3),∴设直线CM的解析式为y=kx+3.

44把F(-,0)代入,得-k+3=0. ································································· 11分 33

9∴k=. 4

∴直线CM的解析式为y=9x+3. ······································································ 12分 4

6. (2011浙江金华)如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;

(3)是否存在点P,使ΔOPD的面积等于

明理由

. 3,若存在,请求出符合条件的点P的坐标;若不存在,请说4

6. 解:(1)作BE⊥OA,∴ΔAOB是等边三角形∴BE=OB·sin60=

B(o

∵A(0,4),设AB的解析式为ykx4,

所以42,

解得k, 3

以直线AB

的解析式为yx4 3

(2)由旋转知,AP=AD, ∠PAD=60o,

∴ΔAPD是等边三角形,

如图,作BE⊥AO,DH⊥OA,GB⊥DH,显然ΔGBD中∠GBD=30°

∴GD=1BD=2

+

,

337,OH=OE+HE=OE+BG=2 222∴

D(7,) 221

x)若ΔOPD

的面积为:x(2x)2224(3)设OP=x,则由(2)可得

D(x,2

解得:x所以

7.已知,如图,抛物线y=ax 2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧,点B的坐标为(1,0),OC=3OB.

(1)求抛物线的解析式;

(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;

(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存

在,求点P的坐标;若不存在,请说明理由.

解:(1)∵对称轴x=-3a3··································································· 1分 =- ·22a

又∵OC=3OB=3,a>0

∴C(0,-3) ·················································································· 2分

方法一:把B(1,0)、C(0,-3)代入y=ax 2+3ax+c得:

3a=a+3a+c=04  解得c=-3c=-3

∴抛物线的解析式为y=x 2+439x-3 ································································· 4分

4

方法二:令ax 2+3ax+c=0,则xA+xB=-3

∵B(1,0),∴xA+1=-3,∴xA=-4

∴A(-4,0)

∴可设抛物线的解析式为y=a(x+4)(x-1),把C(0,-3)代入

得-3=a(0+4)(0-1),∴a= 4

3

43∴抛物线的解析式为y=(x+4)(x-1)

39即y=x 2+x-3 ······································································· 4分 44

(2)方法一:如图1,过点D作DN⊥x轴,垂足为N,交线段AC于点M

∵S四边形ABCD =S△ABC +S△ACD =

=11(4+1)×3+DM·4 2211AB·OC+DM·(AN+ON) 22

=15+2DM ··················································································· 5分

2

设直线AC的解析式为y=kx+b,把A(-4,0)、C(0,-3)代入

-4k+b=0

得 解得b=-3k=-34 b=-3

3

4∴直线AC的解析式为y=-x-3 ··············································· 6分

339设D(xx 2+x-3),则M(x,-x-3) 444

∴DM=-x-3-(x 2+443339x-3)=-(x+2)2+3 ········································· 7分 44

当x=-2时,DM有最大值3

此时四边形ABCD面积有最大值,最大值为:1527+2×3= ····························· 8分 22

方法二:如图2,过点D作DQ⊥y轴于Q,过点C作CC1∥x轴交抛物线于C1

3399设D(xx 2+x-3),则DQ=-x,OQ=-x 2-x+3 4444

从图象可判断当点D在CC1下方的抛物线上运动时,四边形ABCD面积才有最大值

则S四边形ABCD =S△BOC +S梯形AOQD -S△CDQ =

=111OB·OC+(AO+DQ)·OQ-DQ·CQ 222111×1×3+(4+DQ)·OQ-DQ·(OQ-3) 222

=33+2OQ+DQ ···················································· 5分 22

3393-2(x 2+x-3)-x 2424=

315=-x 2-6x+ 22

327················································ 7分 =-(x+2)2+ ·22

当x=-2时,四边形ABCD面积有最大值272

························································································ 8分

(3)如图3

①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,则四边形ACP1E1为平行四边形 ······························································································································· 9分

∵C(0,-3),令x 2+439x-3=-3 4

解得x1=0,x2=3,∴CP1=3

∴P1(-3,-3) ·································································································· 11分

②平移直线AC交x轴于点E,交x轴上方的抛物线于点P,当AC=PE时,四边形ACEP为平行四边形 ····························································································································· 12分

∵C(0,-3),∴设P(x,3) 由3

4x 2+- 3 - 3 -419x-3=3,解得x=或x= 224

∴P2(- 3 41

2,3),P3(- 3 -41

2,3) ······························································ 14分

综上所述,存在以A、C、E、P为顶点且以AC为一边的平行四边形,点P的坐标分别为:

P1(-3,-3),P2(- 3 41

2,3),P3(- 3 -41

2,3)

相似三角形存在性问题

1.如图,二次函数图象的顶点坐标为C(4,-),且在x轴上截得的线段AB的长为6. (1)求二次函数的解析式;

(2)点P在y轴上,且使得△PAC的周长最小,求:①点P的坐标;②△PAC的周长和面积; (3)在x轴上方的抛物线上,是否存在点Q,使得以Q、A、B三点为顶点的三角形与△ABC相似?

如果存在,求出点Q的坐标;如果不存在,请说明理由.

解:(1)设二次函数的解析式为y=a(x -4)2-(a≠0),且A(x1,0),B(x2,0). ∵y=a(x -4)2-3=ax 2-8ax+16a- ∴x1+x2=8,x1x2=16-∴AB 2=(x1-x2)2=(x1+x2)2-4x1x2=82-4(16-

3

(x -4)2-3. 9

. a

33)=36,∴a=. a9

∴二次函数的解析式为y=

(2)①如图1,作点A关于y轴的对称点A′,连结A′C交y轴于点P,连结PA,则点P为所求. 令y=0,得

(x -4)2-=0,解得x1=1,x2=7. 9

∴A(1,0),B(7,0).∴OA=1,∴OA′=1.

设抛物线的对称轴与x轴交于点D,则AD=3,A′D=5,DC=.

OPOPAO1

∵△A′OP∽△ADC,∴,即. ==,∴OP=

5AD5DC∴P(0,-

). 5

②∵A′C=AD2DC2=52(3)2=27 AC=AD2DC2=32(3)2=2

∴△PAC的周长=PA+PC+AC=A′C+AC=27+2.

3411

S△PAC=S△A′AC - S△A′AP=A′A(DC-OP)=×2×(3-)=.

5522

(3)存在. ∵tan∠BAC=

DC=,∴∠BAC=30°.

3AD

同理,∠ABC=30°,∴∠ACB=120°,AC=BC.

①若以AB为腰,∠BAQ1为顶角,使△ABQ1∽△CBA,则AQ1=AB=6,∠BAQ1=120°. 如图2,过点Q1作Q1H⊥x轴于H,则 Q1H=AQ1·sin60°=6×

31

=3,HA=AQ1·cos60°=6×=3. 22

HO=HA-OA=3-1=2. ∴点Q1的坐标为(-2,3). 把x=-2代入y=

3(x -4)2-3,得y=(-2-4)2-3=3. 99

∴点Q1在抛物线上.

②若以BA为腰,∠ABQ2为顶角,使△ABQ2∽△ACB,由对称性可求得点Q1的坐标为(10,3). 同样,点Q2也在抛物线上.

③若以AB为底,AQ,BQ为腰,点Q在抛物线的对称轴上,不合题意,舍去.

综上所述,在x轴上方的抛物线上存在点Q1(-2,)和Q2(10,3),使得以Q、A、B三点为顶点的三

角形与△ABC相似.

2.如图,抛物线y=ax 2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴相交于点C(0,).当x=-4和x=2时,二次函数y=ax 2+bx+c(a≠0)的函数值y相等,连结AC、BC. (1)求实数a,b,c的值;

(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连结MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;

(3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

9a3bc0

解:(1)由题意得c3

16a4bc4a2bc

解得a=-

23,b=-,c=. 33

·······

(2)由(1)知y=-解得x1=-3,x2=1. ∵A(-3,0),∴B(1,0).

又∵C(0,),∴OA=3,OB=1,OC=,∴AB=4,BC=2. ∴tan∠ACO=

OA

=3,∴∠ACO=60°,∴∠CAO=30°. OC

2222x -x+,令y=0,得-x -x+=0. 3333

同理,可求得∠CBO=60°,∠BCO=30°,∴∠ACB=90°. ∴△ABC是直角三角形.

又∵BM=BN=t,∴△BMN是等边三角形. ∴∠BNM=60°,∴∠PNM=60°,∴∠PNC=60°.

∴Rt△PNC∽Rt△ABC,∴

PNAB

. =

NCBC

t4

=. 22t

由题意知PN=BN=t,NC=BC-BN=2-t,∴

4

∴t=. ····················································· 4分

3

41

∴OM=BM-OB=-1=.

33

234

如图1,过点P作PH⊥x轴于H,则PH=PM·sin60°=×=.

233

412

MH=PM·cos60°=×=.

323

12

∴OH=OM+MH=+=1.

33

∴点P的坐标为(-1,(3)存在.

2······················································ 6分 ). ·

3

由(2)知△ABC是直角三角形,若△BNQ与△ABC相似,则△BNQ也是直角三角形. ∵二次函数y=-

322x -x+3的图象的对称轴为x=-1. 33

∴点P在对称轴上. ∵PN∥x轴,∴PN⊥对称轴. 又∵QN≥PN,PN=BN,∴QN≥BN. ∴△BNQ不存在以点Q为直角顶点的情形.

①如图2,过点N作QN⊥对称轴于Q,连结BQ,则△BNQ是以点N为直角顶点的直角三角形,

且QN>PN,∠MNQ=30°.

4

8PN3∴∠PNQ=30°,∴QN=.

==9cos30o2

823QN

∴. =9=

43BN

3

QNACAC

. =tan60°=,∴≠

BCBNBC

∴当△BNQ以点N为直角顶点时,△BNQ与△ABC不相似. ··········· 7分 ②如图3,延长NM交对称轴于点Q,连结BQ,则∠BMQ=120°. ∵∠AMP=60°,∠AMQ=∠BMN=60°,∴∠PMQ=120°. ∴∠BMQ=∠PMQ,又∵PM=BM,QM=QM.

∴△BMQ≌△PMQ,∴∠BQM=∠PQM=30°. ∵∠BNM=60°,∴∠QBN=90°. ∵∠CAO=30°,∠ACB=90°.

∴△BNQ∽△ABC. ·············································· 8分

∴当△BNQ以点B为直角顶点时,△BNQ∽△ABC. 设对称轴与x轴的交点为D.

∵∠DMQ=∠DMP=60°,DM=DM,∴Rt△DMQ≌Rt△DMP. ∴DQ=PD,∴点Q与点P关于x轴对称. ∴点Q的坐标为(-1,-

2··········································································· 9分 ). ·

3

2),使得以B,N,Q为顶点的三角形与△ABC相似.3

综合①②得,在抛物线的对称轴上存在点Q(-1,-

····························································································································· 10分

3.如图,抛物线y=a(x+3)(x-1)与x轴相交于A、B两点(点A在点B右侧),过点A的直线交抛物线于另一点C,点C的坐标为(-2,6). (1)求a的值及直线AC的函数关系式;

(2)P是线段AC上一动点,过点P作y轴的平行线,交抛物线于点M,交x轴于点N.

①求线段PM长度的最大值;

②在抛物线上是否存在这样的点M,使得△CMP与△APN相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由.

解:(1)由题意得6=a(-2+3)(-2-1),∴a=-2 ······································ 1分 ∴抛物线的解析式为y=-2(x+3)(x-1),即y=-2x 2-4x+6 令-2(x+3)(x-1)=0,得x1=-3,x2=1

∵点A在点B右侧,∴A(1,0),B(-3,0)

设直线AC的函数关系式为y=kx+b,把A(1,0)、C(-2,6)代入,得

k+b = 0k = -2

解得 

-2k+b = 6b = 2

∴直线AC的函数关系式为y=-2x+2 ·········································· 3分 (2)①设P点的横坐标为m(-2≤ m ≤1),

则P(m,-2m+2),M(m,-2m 2-4m+6) ·································· 4分 ∴PM=-2m 2-4m+6-(-2m+2)

=-2m 2-2m+4

19

=-2(m+)2+

22

19

∴当m=-时,线段PM长度的最大值为 ······························· 6分

22

②存在

M1(0,6) ············································································································ 7分

155

M2(-) ····································································································· 9分

48

点M的坐标的求解过程如下(原题不作要求,本人添加,仅供参考) ⅰ)如图1,当M为直角顶点时,连结CM,则CM⊥PM,△CMP∽△

ANP

∵点C(-2,6),∴点M的纵坐标为6,代入y=-2x 2-4x+6 得-2x 2-4x+6=6,∴x=-2(舍去)或x=0 ∴M1(0,6)

(此时点M在y轴上,即抛物线与y轴的交点,此时直线MN与y轴 重合,点N与原点O重合)

ⅱ)如图2,当C为直角顶点时,设M(m,-2m 2-4m+6)(-2≤ m ≤1) 过C作CH⊥MN于H,连结CM,设直线AC与y轴相交于点D 则△CMP∽△NAP

又∵△HMC∽△CMP,△NAP∽△OAD,∴△HMC∽△OAD ∴

CHMH

ODOA

∵C(-2,6),∴CH=m+2,MH=-2m 2-4m+6-6=-2m 2-4m 在y=-2x+2中,令x=0,得y=2 ∴D(0,2),∴OD=2

2m24mm2∴ =

12

1

整理得4m 2+9m+2=0,解得m=-2(舍去)或m=-

411155

当m=-时,-2m 2-4m+6=(-)2-4×(-)+6=

4448

155

∴M2(-)

48

4.已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1). (1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.

(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E.

①当△BDE是等腰三角形时,直接写出此时点E的坐标. ....

②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.

解:(1)由题意知Rt△△AOC∽Rt△COB,∴

OAOC

. =

OCOB

∴OC 2=OA·OB=OA(AB-OA),即22=OA(5-OA).

∴OA 2-5OA+4=0,∵OA<OB,∴OA=1,OB=4. ··················· 2分 ∴A(-1,0),B(4,0),C(0,2).

∴可设所求抛物线的关系式为y=a(x+1)(x-4). ························ 3分

1

将点C(0,2)代入,得2=a(0+1)(0-4),∴a=-.

2

1

∴经过点A、B、C的抛物线的关系式为y=-(x+1)(x-4).···· 4分

213

即y=-x 2+x+2.

22

14842

(2)①E1(3,),E2(,),E3(4······················· 7分 5). ·

25555

关于点E的坐标求解过程如下(原题不作要求,本人添加,仅供参考):

设直线BC的解析式为y=kx+b.

1

4kb0k则 解得2

b2b2

1

∴直线BC的解析式为y=-x+2.

21

∵点E在直线BC上,∴E(x,-x+2).

2

1

若ED=EB,过点E作EH⊥x轴于H,如图2,则DH=DB=1.

2

∴OH=OD+DH=2+1=3.

∴点E的横坐标为3,代入直线BC的解析式,得y=-

1

∴E1(3,).

2

11×3+2=. 22

若DE=DB,则(x-2)2+(-

1

x+2)2=22. 2

整理得5x 2-24x+16=0,解得x1=4(舍去),x2=

14848

∴y=-×+2=,∴E2(,).

255551

若BE=BD,则(x-4)2+(-x+2)2=22.

2

4. 5

整理得5x 2-24x+16=0,解得x1=4

44

(此时点P在第四象限,舍去),x2=4.

55

14242

∴y=-×(4)+2=5,∴E3(4).

25555

②△CDP有最大面积. ··································································· 8分 过点D作x轴的垂线,交PC于点M,如图3.

设直线PC的解析式为y=px+q,将C(0,2),P(m,n)代入,

n2q2p得 解得m

mpqnq2

∴直线PC的解析式为y=

n22n4

x+2,∴M(2+2).

mm

S△CDP=S△CDM+S△PDM=

1

xP·yM 2

12n4

+2) =m(

2m

=m+n-2

13

=m+(-m2+m+2)-2

2215

=-m2+m

221525=-(m-)2+

228

525

∴当m=时,△CDP有最大面积,最大面积为. ··················· 9分

28153521

此时n=-×()2+×+2=

22228

521

∴此时点P的坐标为(,). ················································· 10分

28

5.如图,已知抛物线y=x 2+4x+3交x轴于A、B两点,交y轴于点C,•抛物线的对称轴交x轴于点E,点

B的坐标为(-1,0).

(1)求抛物线的对称轴及点A的坐标;

(2)在平面直角坐标系xOy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;

(3)连结CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.

解:(1)对称轴为直线x=-4············································· 2分 =-2,即x=-2; ·2

令y=0,得x 2+4x+3=0,解得x1=-1,x2=-3.

∵点B的坐标为(-1,0),∴点A的坐标为(-3,0). ········································· 4分

(2)存在,点P的坐标为(-2,3),(2,3)和(-4,-3). ································ 7分

(3)存在. ··········································································································· 8分

当x=0时,y=x 2+4x+3=3,∴点C的坐标为(0,3).

AO=3,EO=2,AE=1,CO=3.

∵DE∥CO,

∴△AED∽△AOC.∴AEDE1DE,即=. =AOCO33

∴DE=1. ·············································································································· 9分

∵DE∥CO,且DE≠CO,∴四边形DEOC为梯形.

S梯形DEOC=1(1+3)×2=4. 2

设直线CM交x轴于点F,如图.

若直线CM把梯形DEOC分成面积相等的两部分,则S△COF=2

即114CO·FO=2.∴×3FO=2,∴FO=. 223

4∴点F的坐标为(-,0). ··················································· 10分 3

∵直线CM经过点C(0,3),∴设直线CM的解析式为y=kx+3.

44把F(-,0)代入,得-k+3=0. ································································· 11分 33

9∴k=. 4

∴直线CM的解析式为y=9x+3. ······································································ 12分 4

6. (2011浙江金华)如图1,在平面直角坐标系中,己知ΔAOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连结AP,并把ΔAOP绕着点A按逆时针方向旋转.使边AO与AB重合.得到ΔABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;

(3)是否存在点P,使ΔOPD的面积等于

明理由

. 3,若存在,请求出符合条件的点P的坐标;若不存在,请说4

6. 解:(1)作BE⊥OA,∴ΔAOB是等边三角形∴BE=OB·sin60=

B(o

∵A(0,4),设AB的解析式为ykx4,

所以42,

解得k, 3

以直线AB

的解析式为yx4 3

(2)由旋转知,AP=AD, ∠PAD=60o,

∴ΔAPD是等边三角形,

如图,作BE⊥AO,DH⊥OA,GB⊥DH,显然ΔGBD中∠GBD=30°

∴GD=1BD=2

+

,

337,OH=OE+HE=OE+BG=2 222∴

D(7,) 221

x)若ΔOPD

的面积为:x(2x)2224(3)设OP=x,则由(2)可得

D(x,2

解得:x所以

7.已知,如图,抛物线y=ax 2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧,点B的坐标为(1,0),OC=3OB.

(1)求抛物线的解析式;

(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;

(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存

在,求点P的坐标;若不存在,请说明理由.

解:(1)∵对称轴x=-3a3··································································· 1分 =- ·22a

又∵OC=3OB=3,a>0

∴C(0,-3) ·················································································· 2分

方法一:把B(1,0)、C(0,-3)代入y=ax 2+3ax+c得:

3a=a+3a+c=04  解得c=-3c=-3

∴抛物线的解析式为y=x 2+439x-3 ································································· 4分

4

方法二:令ax 2+3ax+c=0,则xA+xB=-3

∵B(1,0),∴xA+1=-3,∴xA=-4

∴A(-4,0)

∴可设抛物线的解析式为y=a(x+4)(x-1),把C(0,-3)代入

得-3=a(0+4)(0-1),∴a= 4

3

43∴抛物线的解析式为y=(x+4)(x-1)

39即y=x 2+x-3 ······································································· 4分 44

(2)方法一:如图1,过点D作DN⊥x轴,垂足为N,交线段AC于点M

∵S四边形ABCD =S△ABC +S△ACD =

=11(4+1)×3+DM·4 2211AB·OC+DM·(AN+ON) 22

=15+2DM ··················································································· 5分

2

设直线AC的解析式为y=kx+b,把A(-4,0)、C(0,-3)代入

-4k+b=0

得 解得b=-3k=-34 b=-3

3

4∴直线AC的解析式为y=-x-3 ··············································· 6分

339设D(xx 2+x-3),则M(x,-x-3) 444

∴DM=-x-3-(x 2+443339x-3)=-(x+2)2+3 ········································· 7分 44

当x=-2时,DM有最大值3

此时四边形ABCD面积有最大值,最大值为:1527+2×3= ····························· 8分 22

方法二:如图2,过点D作DQ⊥y轴于Q,过点C作CC1∥x轴交抛物线于C1

3399设D(xx 2+x-3),则DQ=-x,OQ=-x 2-x+3 4444

从图象可判断当点D在CC1下方的抛物线上运动时,四边形ABCD面积才有最大值

则S四边形ABCD =S△BOC +S梯形AOQD -S△CDQ =

=111OB·OC+(AO+DQ)·OQ-DQ·CQ 222111×1×3+(4+DQ)·OQ-DQ·(OQ-3) 222

=33+2OQ+DQ ···················································· 5分 22

3393-2(x 2+x-3)-x 2424=

315=-x 2-6x+ 22

327················································ 7分 =-(x+2)2+ ·22

当x=-2时,四边形ABCD面积有最大值272

························································································ 8分

(3)如图3

①过点C作CP1∥x轴交抛物线于点P1,过点P1作P1E1∥AC交x轴于点E1,则四边形ACP1E1为平行四边形 ······························································································································· 9分

∵C(0,-3),令x 2+439x-3=-3 4

解得x1=0,x2=3,∴CP1=3

∴P1(-3,-3) ·································································································· 11分

②平移直线AC交x轴于点E,交x轴上方的抛物线于点P,当AC=PE时,四边形ACEP为平行四边形 ····························································································································· 12分

∵C(0,-3),∴设P(x,3) 由3

4x 2+- 3 - 3 -419x-3=3,解得x=或x= 224

∴P2(- 3 41

2,3),P3(- 3 -41

2,3) ······························································ 14分

综上所述,存在以A、C、E、P为顶点且以AC为一边的平行四边形,点P的坐标分别为:

P1(-3,-3),P2(- 3 41

2,3),P3(- 3 -41

2,3)


相关文章

  • 相似三角形中动点问题
  • 相似三角形中动点问题 例1: 如图正方形ABCD的边长为2,AE=EB,线段MN的两端点分别在CB.CD上滑动,且MN=1,当CM为何值时△AED与以M.N.C为顶点的三角形相似? N B C 变式练习:如图,在△ABC中,AB=8,BC= ...查看


  • 存在性问题
  • 存在性问题--等腰三角形 ☆ 给予几点提示: ①肯定会有一到二解会是很简单,一眼就能看出来. ②等腰三角形的轴对称性. ③等腰三角形的"三线合一",添垂线(该情况下,等腰三角形的高),注意寻找相似三角形的模型. 以及要重 ...查看


  • 相似三角形的应用教案设计
  • 相似三角形的应用教案设计 数学与应用数学 [1**********] 郭晓萍 在数学教学中,几何教学是一个重要的领域,从生活到教室,从历史到课堂,几何都给师生带来许多有趣而富有挑战的课程.而图形相似是初中数学的重要内容之一,也是平面几何的核 ...查看


  • 2017中考数学相似三角形教案.doc
  • 初三数学复习教案 课 题:相似三角形(2) 教学目的:综合运用相似三角形的性质,判定定理探究一些以相似为背景的综合性考题. 教学重点:注意数形结合.分类讨论以及转化的思考方法. 教学过程:例题分析 例1.如图,将两块完全相同的等腰直角三角形 ...查看


  • 初三数学讲义
  • 第一讲 相似图形 一.图形的相似 1.相似图形.相似多边形的定义:形状相同的图形叫做相似图形(本质特征---形状相同.图形的相似可以看成一个图形的放大或缩小.) 2.比例的基本性质 若a c =,则ad=bc.(黄金分割点:把一条线段分割成 ...查看


  • 数学问答64--二次函数与相似三角形
  • 中考类型--二次函数与相似三角形综合 [问题] 在平面直角坐标系xoy中,抛物线: y =x2/8+6n x +72 n2-2 n 与y轴交于点A(x1 ,0),B(x 2 ,0) (x1<x2)两点,与yY轴交于点c. (1)求n的 ...查看


  • 说[相似三角形判定定理二]教学设计
  • <相似三角形的判定定理二>这一内容选自人教版实验教材数学九年级下第二十七章.我将从教材分析.教学理念.教学策略.教法学法.教学过程.课件制作.板书设计等方面进行说课. 一.说教材 1.教材的地位和作用 在前面,学生已经学过了图形 ...查看


  • 初中数学动点问题归纳
  • 动点问题 题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系:分析过程中,特别要关注图形的特性(特殊角.特殊图形的性质.图形的特殊位置.) 动点问题一直是中考热点,近几年考查探究运动中的 ...查看


  • 初中数学[相似三角形]教案
  • 相似三角形 一.知识概述 (一)相似三角形 1.对应角相等,对应边成比例的两个三角形,叫做相似三角形. 温馨提示: ①当且仅当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似 ...查看


热门内容