(注:有一个锐角是30°的直角三角形,斜边为b ,30°所对应的边为a=3。) 生:3 。
师:如何求的?
生:„„
师:你的勾股定理学得不错,但能否用三角函数求值?
生: ……
师:如图1,在Rt △ABD 中,∠D=90°,∠B=60°,AD=3,求BD 。
如图2,在Rt △ADC 中,∠D=90°,∠B=45°,AD=3,求CD 。
应该如何求解?请同学上黑板板书。
生1: 生2:
师:同学1的解法最好先交代∠D= 90°,等于这个答案的同学请举手。
(绝大部分的学生举手。)
师:同学2在第二步之间最好添个条件,你们觉得添什么好?
生:∠A= ∠C 。
师:很好!
师:大家应该已经发现,这两个图形中的AD=3,如果我们把这两个图形进行运动,那么,这两个图形合
起来又应该如何求解呢?
(教师把拼起来的图形及题目写在黑板上,已知△ABC 中,∠B=60°,∠C=45°,AD ⊥BC 于 D,BC=3 ,求 AD 。)
生:„„
师:不错!能具体一点吗?
生:设AD=x,……
师:这种做法实际上是三角函数和解方程结合起来了,很好!(在这个教学环节中,老师注意渗透学生的方程思想,并让学生认识到方程是解决问题的一种有效的工具。)
师:接着说,等于多少?
生:3。
师:请同学上黑板板书出过程。
生板书:设AD 为x ,
∴cot=60° = x ,
∵∠ADC=90°,∠C=45°,
∴∠DAC=∠C=45°,
∴DC=x,
∵BC=3+ ,
BC=BD+DC,
∴ x+x=3+ 。
(学生解题的同时,教师板书下一题。)
师:做好的学生想一想下一题如何解?
师:上面同学的解法正确吗?
生:正确!
师:如果把AD 去掉,其它已知条件和问题都不变,如何做呢?
生:先要做辅助线。
师:如果不作辅助线可以做吗?
初中数学思想方法渗透研究
研 修 报 告
摘要:在初中数学课堂教学中渗透思想方法,有利于学生地数学知识的理解的应用,培养学生的创新精神和实践能力,能促进学生在数学上的可持续发展,并且有利于促进教育教学的改革,提高教育教学质量。
关键词: 数学思想方法 渗透 研究 初中数学
正文:
数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。而数学方法是数学思想的具体化形式,是分析处理解决问题的策略。数学思想方法的自学运用会使我们运算简洁、推理机敏,是提高能力的必由之路。
一、 数学思想方法的本质
史宁中教授认为:“数学发展所依赖的思想在本质上有三个:抽象、推理、模型”。其中抽象是最核心的,相当于数学的思维方式,这一层面是数学思想的最高层面。第二层次是体现数学不同内容之间
的思想,如数形结合思想、化归思想、分类思想、方程思想、函数思想等。第三层次是具体某一内容所蕴含的思想,如图形变换思想、数据分析思想等。这三个层面思想不是互不相关的,比如:方程思想、函数思想无疑是模型思想的具体体现。而抽象是离不开直观的,数形结合无疑是建立直观的一个重要途径。另外这些思想与《课程标准》中提到数学思考目标是关系密切的。
数学课程标准(修订稿)总体目标中明确提出:“让学生获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验”。基础知识和基本技能固然重要,但是对学生的后续学习,生活和工作长期起作用的并使其终身受益的是数学思想方法。小学数学教学的根本任务是全面提高学生的素质,其中最重要的是培养学生的创新精神和思维品质。而数学思想方法既是培养学生的创新精神和学生思维品质的关键,又是数学的灵魂和精髓。在小学数学课堂教学中渗透思想方法,有利于促进数学发展,有利于促进教育教学改革,有利于培养学生的数学能力,有利于培养学生的创新精神和实践能力。
数学思想是宏观的,它更具有普遍的指导意义。而数学方法是微观的,它是解决数学问题的直接具体的手段。一般来说,前者给出了解决问题的方向,后者给出了解决问题的策略。但由于小学数学内容比较简单,知识最为基础,所以隐藏的思想和方法很难截然分开,更多的反映在联系方面,其本质往往是一致的。如常用的分类思想和
分类方法,集合思想和交集方法,在本质上都是相通的,所以小学数学通常把数学思想和方法看成一个整体概念,即小学数学思想方法。
二、常见的初中数学思想方法。
初中数学中蕴含多种的数学思想方法,但最基本的数学思想方法是数形结合的思想,分类讨论思想、转化的思想、函数的思想,突出这些基本思想方法,就相当于抓住了中学数学知识的精髓。
1、数形结合的思想 数形结合是一种重要的数学思想方法,其应用广泛,灵活巧妙。”数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括 [1]。在数学教学中,许多定律、定理及公式等常可以用图形来描述。而利用图形的直观,则可以由抽象变具体,模糊变清晰,使数学问题的难度下降,从而可以从图形中找到有创意的解题思路。如代数列方程解应用题中的行程问题,往往借助几何图形,靠图形感知来”支持”抽象的思维过程,从而寻求数量之间的相依关系。例如:小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米,如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明追上小彬?此时,我们可画出如下的线路图: 依据线路图,我们可以找出其中的等量关系
S 小明=S 小彬+10
2、分类讨论的思想 分类讨论思想是根据数学对象的本质属性的相同点和不同点,将数学对象区分为不同种类的数学思想。对数
学内容进行分类,可以降低学习难度,增强学习的针对性。因此,在教学中应启发学生按不同的情况去对同一对象进行能够分类,帮助他们掌握好分类的方法原则,形成分类的思想。如当a 取何实数时,对
当a <3 a -3的值的分类讨论:当a ≥3a -3=a -3;a -=3-a 。
3、转化思想 数学问题的解决过程就是一系列转化的过程,中学数学处处都体现出转化的思想,如化繁为简、化难为易,化未知为已知,化高次为低次等,是解决问题的一种最基本的思想。因此在教学中,首先要让学生认识到常用的很多数学方法实质就是转化的方法,从而确信转化是可能的,而且是必须的;其次结合具体的教学内容进行有意识的训练,使学生掌握这一具有重大价值的思想方法。例如:当x =1, y =-1时,求2x 2y -3xy 2+4x 2y -5xy 的值。该题可以采用直接代入法,但是更简易的方法应为先化简再求值,此时原式=6x 2y -8xy 2=6⨯1⨯(-1) -8⨯1⨯1=-14。
4、函数的思想 辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。华东师大版教材把函数思想已经渗透到初一、二教材的各个内容之中。因此,教学上要有意识、有计划、有目的地培养函数的思想方法。例如:进行求代数式的值的教学时,通过强调解题的第一步“当„„时”的依据,渗透函数的思想方法--字母每取一个值,代数式就有唯一确定的值。如代数式x 2-4中 ,当x=1时,则x 2-4=-3;当x=2,则x 2-4=0„„通过引导学生对以上问题的讨论,将静态的知识模式演变为动态的讨论,这样实际上就赋予了函数的形式,在学生
的头脑中就形成了以运动的观点去领会,这就是发展函数思想的重要途径。
我们又该如何进行数学思想方法的教学呢?我认为可着重从以下几个方面入手:
三、如何在教学中进行数学思想方法的渗透。
1、在知识发生过程中渗透数学思想方法
由于初中学生数学知识比较贫乏,抽象思想能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。如华东师大版第二章《有理数》,与原来部编教材相比,它少了一节——“有理数大小的比较”,而它的要求则贯穿在整章之中。在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大”,“正数都大于0,负数都小于0,正数大于一切负数”。而两个负数比大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,既使这一章节的重点突出,难点分散;又向学生渗透了形数结合的思想,学生易于接受。
在渗透数学思想、方法的过程中,教师要精心设计、有机结合,要有意识地潜移默化地启发学生领悟蕴含于数学之中的种种数学思想方法,切忌生搬硬套,和盘托出,脱离实际等错误做法。比如,教学二次不等式解集时结合二次函数图象来理解和记忆,总结归纳出解集在“两根之间”、“两根之外”,利用形数结合方法,从而比较顺利地完成新旧知识的过渡。
2、在思维教学活动过程中,揭示数学思想方法
数学课堂教学必须充分暴露思维过程,让学生参与教学实践活动,揭示其中隐含的数学思想,才能有效地发展学生的数学思想,提高学生的数学素养,下面以“多边形内角和定理”的课堂教学为例,简要说明。
教学目标:增强运用化归思想处理多边形问题的一般策略;掌握运用类比、归纳、猜想思想指导思维,发现多边形内角和定理的结论;学会用化归思想指导探索论证途径,掌握化归方法;加强数形结合思想的应用意识。
教学过程:( 1)创设问题情境,激发探索欲望,蕴涵类比化归思想。教师:三角形和四边形的内角和分别为多少?四边形内角和是如何探求的?(转化为三角形)那么,五边形内角和你会探索求吗?六边形、七边形„„ n 边形内角和又是多少呢?( 2 )鼓励大胆猜想,指导发现方法,渗透类比、归纳、猜想思想。教师:从四边形内角和的探求方法,能给你什么启发呢?五边形如何化归为三角形?数目是多少?六边形„„ n 边形呢?你能否用列表的方式给出多边形
内角和与它们边数、化归为三角形的个数之间的关系?从中你能发现什么规律?猜一猜 n 边形内角和有何结论?类比、归纳、猜想的含义和作用,你能理解和认识吗?( 3 )暴露思维过程、探索论证方法,揭示化归思想、分类方法。我们如何验证或推断上面猜想的结论呢?既然多边形内角和可化归为三角形来处理,那么化归方法是否唯一的呢?一点与多边形的位置关系怎样?(分类思想指导化归方法的探索)哪一种对获取证明最简洁?(至此,教材中在多边形内任取一点 O ,连结点O 与多边形的每一个顶点,可得几个三角形的思维过程得以充分自然地暴露)( 4 )反思探索过程,优化思维方法,激活化归思想。教师:从上面的探索过程中,我们发现化归思想有很大作用,但是,又是什么启发我们用这种思想指导解决问题呢?原来,我们是选择考察几个具体的多边形,如四边形、五边形等,发现特殊情形下的解决方法,再把它运用到一种特殊化思想当中。我们再来考察一下式子: n 边形内角和 =n×180°-360°,你能设计一个几何图形来解释吗?对于 n 边形内角和=(n-1)180°-180°,又能作怎样的几何解释呢?(至此,我们又可探索出另一种思维方法,即”在多边形某一边上任取一点 O ,连结点O 与多边形的每一个顶点来分割三角形)
让学生亲自参加与探索定理的结论及证明过程,大大激发了学生的求知兴趣,同时,他们也体验到“创造发明”的愉悦,数学思想在这一过程中得到了有效的发展。
3、在问题解决过程中强化数学思想方法
在数学教学活动中,常常出现这样的现象:学生在课堂听懂了,但课后解题,特别是遇到新题型便无所适从。究其原因就在于教师在教学中仅仅是就题论题,殊不知授之以“渔”比授之以“鱼”更为重要。因此,在数学问题的探索的教学中重要的是让学生真正领悟隐含于数学问题探索中的数学思想方法。针对这种现象,教师应全面展示知识发生发展过程,并发挥学生的主体作用,充分调动学生参与数学的全过程,让全体学生能在躬行的探索中理解知识,掌握方法,感悟数学思想[2]。例如:求下图中∠BCA 的度数。
方法1:先求出∠BAC=600,后利用三角形内角和即可得∠BCA=1800-600-350=850
方法2:直接利用三角形外角性质,求得∠BCA=1200-350=850 显然上述的问题解决过程中,学生通过比较不同的方法,体会到了数学思想在解题中的重要作用,激发学生的求知兴趣,从而加强了对数学思想的认识。
4、及时总结以逐步内化数学思想方法
数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想做出归纳、概括是十分必要的。概括数学思想方法要纳入教学计划,应有目的、有步骤地引导学生参与数学思想的提炼概括过程,尤其是在章节结束或单元复习中对知识复习的同时,将统摄知识的数学思想方法概括出来,可以加紧学生对数学思想
方法的运用意识,也使其对运用数学思想解决问题的具体操作方式有更深刻的了解,有利于活化所学知识,形成独立分析、解决问题的能力。
概括数学思想一般可分两步进行:一是揭示数学思想的内容、规律,即将数学对象共同具有属性或关系抽取出来;二是明确数学思想方法与知识的联系,即将抽取出来的共性推广到同类的全部对象上去,从而实现从个别性认识上升为一般性认识。比如,通过解方程( x-2 )2 +(x-2)-2=0,发现也可用换元法来求解。在此基础上推广也可用换元法求解。由此概括出换元法可以将复杂方程转化为简单方程,从而认识到化归思想是对换元法的高度概括,还可进一步认识到数学思想是数学的灵魂,它是对数学知识的高度概括。
由于同一数学知识可表现出不同的数学思想方法,而同一数学思想方法又常常分布在许多不同的知识点里,所以通过课堂小结、单元总结或总复习,甚至是某个概念、定理公式、问题数学都可以在纵横两方面归纳概括出数学思想方法。
四、数学思想方法教学的心理学意义。
美国心理学家布鲁纳认为,“不论我们选教什么学科,务必使学生理解该学科的基本结构。”所谓基本结构就是指“基本的、统一的观点,或者是一般的、基本的原理。”“学习结构就是学习事物是怎样相互关联的。”数学思想与方法为数学学科的一般原理的重要组成部分。下面从布鲁纳的基本结构学说中来看数学思想、方法教学所具有的重要意义。
第一,“懂得基本原理使得学科更容易理解”。心理学认为“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习。”当学生掌握了一些数学思想、方法,再去学习相关的数学知识,就属于下位学习了。下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义,”即使新知识能够较顺利地纳入到学生已有的认知结构中去。学生学习了数学思想、方法就能够更好地理解和掌握数学内容。
第二,有利于记忆。布鲁纳认为,“除非把一件件事情放进构造得好的模型里面,否则很快就会忘记。”“学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来。高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具。”由此可见,数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的。无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生。”
第三,学习基本原理有利于“原理和态度的迁移”。布鲁纳认为,“这种类型的迁移应该是教育过程的核心——用基本的和一般的观念来不断扩大和加深知识。”曹才翰教授也认为,“如果学生认知结构中具有较高抽象、概括水平的观念,对于新学习是有利的,”“只有概括的、巩固的和清晰的知识才能实现迁移。”美国心理学家贾德通过
实验证明,“学习迁移的发生应有一个先决条件,就是学生需先掌握原理,形成类比,才能迁移到具体的类似学习中。”学生学习数学思想、方法有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力。
诚然,要使学生真正具备了有个性化的数学思想方法,并不是通过几堂课就能达到,但是只要我们在教学中大胆实践,持之以恒,寓数学思想方法于平时的教学中,学生对数学思想方法的认识就一定会日趋成熟。
(注:有一个锐角是30°的直角三角形,斜边为b ,30°所对应的边为a=3。) 生:3 。
师:如何求的?
生:„„
师:你的勾股定理学得不错,但能否用三角函数求值?
生: ……
师:如图1,在Rt △ABD 中,∠D=90°,∠B=60°,AD=3,求BD 。
如图2,在Rt △ADC 中,∠D=90°,∠B=45°,AD=3,求CD 。
应该如何求解?请同学上黑板板书。
生1: 生2:
师:同学1的解法最好先交代∠D= 90°,等于这个答案的同学请举手。
(绝大部分的学生举手。)
师:同学2在第二步之间最好添个条件,你们觉得添什么好?
生:∠A= ∠C 。
师:很好!
师:大家应该已经发现,这两个图形中的AD=3,如果我们把这两个图形进行运动,那么,这两个图形合
起来又应该如何求解呢?
(教师把拼起来的图形及题目写在黑板上,已知△ABC 中,∠B=60°,∠C=45°,AD ⊥BC 于 D,BC=3 ,求 AD 。)
生:„„
师:不错!能具体一点吗?
生:设AD=x,……
师:这种做法实际上是三角函数和解方程结合起来了,很好!(在这个教学环节中,老师注意渗透学生的方程思想,并让学生认识到方程是解决问题的一种有效的工具。)
师:接着说,等于多少?
生:3。
师:请同学上黑板板书出过程。
生板书:设AD 为x ,
∴cot=60° = x ,
∵∠ADC=90°,∠C=45°,
∴∠DAC=∠C=45°,
∴DC=x,
∵BC=3+ ,
BC=BD+DC,
∴ x+x=3+ 。
(学生解题的同时,教师板书下一题。)
师:做好的学生想一想下一题如何解?
师:上面同学的解法正确吗?
生:正确!
师:如果把AD 去掉,其它已知条件和问题都不变,如何做呢?
生:先要做辅助线。
师:如果不作辅助线可以做吗?
初中数学思想方法渗透研究
研 修 报 告
摘要:在初中数学课堂教学中渗透思想方法,有利于学生地数学知识的理解的应用,培养学生的创新精神和实践能力,能促进学生在数学上的可持续发展,并且有利于促进教育教学的改革,提高教育教学质量。
关键词: 数学思想方法 渗透 研究 初中数学
正文:
数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。通过数学思想的培养,数学的能力才会有一个大幅度的提高。掌握数学思想,就是掌握数学的精髓。而数学方法是数学思想的具体化形式,是分析处理解决问题的策略。数学思想方法的自学运用会使我们运算简洁、推理机敏,是提高能力的必由之路。
一、 数学思想方法的本质
史宁中教授认为:“数学发展所依赖的思想在本质上有三个:抽象、推理、模型”。其中抽象是最核心的,相当于数学的思维方式,这一层面是数学思想的最高层面。第二层次是体现数学不同内容之间
的思想,如数形结合思想、化归思想、分类思想、方程思想、函数思想等。第三层次是具体某一内容所蕴含的思想,如图形变换思想、数据分析思想等。这三个层面思想不是互不相关的,比如:方程思想、函数思想无疑是模型思想的具体体现。而抽象是离不开直观的,数形结合无疑是建立直观的一个重要途径。另外这些思想与《课程标准》中提到数学思考目标是关系密切的。
数学课程标准(修订稿)总体目标中明确提出:“让学生获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验”。基础知识和基本技能固然重要,但是对学生的后续学习,生活和工作长期起作用的并使其终身受益的是数学思想方法。小学数学教学的根本任务是全面提高学生的素质,其中最重要的是培养学生的创新精神和思维品质。而数学思想方法既是培养学生的创新精神和学生思维品质的关键,又是数学的灵魂和精髓。在小学数学课堂教学中渗透思想方法,有利于促进数学发展,有利于促进教育教学改革,有利于培养学生的数学能力,有利于培养学生的创新精神和实践能力。
数学思想是宏观的,它更具有普遍的指导意义。而数学方法是微观的,它是解决数学问题的直接具体的手段。一般来说,前者给出了解决问题的方向,后者给出了解决问题的策略。但由于小学数学内容比较简单,知识最为基础,所以隐藏的思想和方法很难截然分开,更多的反映在联系方面,其本质往往是一致的。如常用的分类思想和
分类方法,集合思想和交集方法,在本质上都是相通的,所以小学数学通常把数学思想和方法看成一个整体概念,即小学数学思想方法。
二、常见的初中数学思想方法。
初中数学中蕴含多种的数学思想方法,但最基本的数学思想方法是数形结合的思想,分类讨论思想、转化的思想、函数的思想,突出这些基本思想方法,就相当于抓住了中学数学知识的精髓。
1、数形结合的思想 数形结合是一种重要的数学思想方法,其应用广泛,灵活巧妙。”数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括 [1]。在数学教学中,许多定律、定理及公式等常可以用图形来描述。而利用图形的直观,则可以由抽象变具体,模糊变清晰,使数学问题的难度下降,从而可以从图形中找到有创意的解题思路。如代数列方程解应用题中的行程问题,往往借助几何图形,靠图形感知来”支持”抽象的思维过程,从而寻求数量之间的相依关系。例如:小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米,如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明追上小彬?此时,我们可画出如下的线路图: 依据线路图,我们可以找出其中的等量关系
S 小明=S 小彬+10
2、分类讨论的思想 分类讨论思想是根据数学对象的本质属性的相同点和不同点,将数学对象区分为不同种类的数学思想。对数
学内容进行分类,可以降低学习难度,增强学习的针对性。因此,在教学中应启发学生按不同的情况去对同一对象进行能够分类,帮助他们掌握好分类的方法原则,形成分类的思想。如当a 取何实数时,对
当a <3 a -3的值的分类讨论:当a ≥3a -3=a -3;a -=3-a 。
3、转化思想 数学问题的解决过程就是一系列转化的过程,中学数学处处都体现出转化的思想,如化繁为简、化难为易,化未知为已知,化高次为低次等,是解决问题的一种最基本的思想。因此在教学中,首先要让学生认识到常用的很多数学方法实质就是转化的方法,从而确信转化是可能的,而且是必须的;其次结合具体的教学内容进行有意识的训练,使学生掌握这一具有重大价值的思想方法。例如:当x =1, y =-1时,求2x 2y -3xy 2+4x 2y -5xy 的值。该题可以采用直接代入法,但是更简易的方法应为先化简再求值,此时原式=6x 2y -8xy 2=6⨯1⨯(-1) -8⨯1⨯1=-14。
4、函数的思想 辩证唯物主义认为,世界上一切事物都是处在运动、变化和发展的过程中,这就要求我们教学中重视函数的思想方法的教学。华东师大版教材把函数思想已经渗透到初一、二教材的各个内容之中。因此,教学上要有意识、有计划、有目的地培养函数的思想方法。例如:进行求代数式的值的教学时,通过强调解题的第一步“当„„时”的依据,渗透函数的思想方法--字母每取一个值,代数式就有唯一确定的值。如代数式x 2-4中 ,当x=1时,则x 2-4=-3;当x=2,则x 2-4=0„„通过引导学生对以上问题的讨论,将静态的知识模式演变为动态的讨论,这样实际上就赋予了函数的形式,在学生
的头脑中就形成了以运动的观点去领会,这就是发展函数思想的重要途径。
我们又该如何进行数学思想方法的教学呢?我认为可着重从以下几个方面入手:
三、如何在教学中进行数学思想方法的渗透。
1、在知识发生过程中渗透数学思想方法
由于初中学生数学知识比较贫乏,抽象思想能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。如华东师大版第二章《有理数》,与原来部编教材相比,它少了一节——“有理数大小的比较”,而它的要求则贯穿在整章之中。在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大”,“正数都大于0,负数都小于0,正数大于一切负数”。而两个负数比大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,既使这一章节的重点突出,难点分散;又向学生渗透了形数结合的思想,学生易于接受。
在渗透数学思想、方法的过程中,教师要精心设计、有机结合,要有意识地潜移默化地启发学生领悟蕴含于数学之中的种种数学思想方法,切忌生搬硬套,和盘托出,脱离实际等错误做法。比如,教学二次不等式解集时结合二次函数图象来理解和记忆,总结归纳出解集在“两根之间”、“两根之外”,利用形数结合方法,从而比较顺利地完成新旧知识的过渡。
2、在思维教学活动过程中,揭示数学思想方法
数学课堂教学必须充分暴露思维过程,让学生参与教学实践活动,揭示其中隐含的数学思想,才能有效地发展学生的数学思想,提高学生的数学素养,下面以“多边形内角和定理”的课堂教学为例,简要说明。
教学目标:增强运用化归思想处理多边形问题的一般策略;掌握运用类比、归纳、猜想思想指导思维,发现多边形内角和定理的结论;学会用化归思想指导探索论证途径,掌握化归方法;加强数形结合思想的应用意识。
教学过程:( 1)创设问题情境,激发探索欲望,蕴涵类比化归思想。教师:三角形和四边形的内角和分别为多少?四边形内角和是如何探求的?(转化为三角形)那么,五边形内角和你会探索求吗?六边形、七边形„„ n 边形内角和又是多少呢?( 2 )鼓励大胆猜想,指导发现方法,渗透类比、归纳、猜想思想。教师:从四边形内角和的探求方法,能给你什么启发呢?五边形如何化归为三角形?数目是多少?六边形„„ n 边形呢?你能否用列表的方式给出多边形
内角和与它们边数、化归为三角形的个数之间的关系?从中你能发现什么规律?猜一猜 n 边形内角和有何结论?类比、归纳、猜想的含义和作用,你能理解和认识吗?( 3 )暴露思维过程、探索论证方法,揭示化归思想、分类方法。我们如何验证或推断上面猜想的结论呢?既然多边形内角和可化归为三角形来处理,那么化归方法是否唯一的呢?一点与多边形的位置关系怎样?(分类思想指导化归方法的探索)哪一种对获取证明最简洁?(至此,教材中在多边形内任取一点 O ,连结点O 与多边形的每一个顶点,可得几个三角形的思维过程得以充分自然地暴露)( 4 )反思探索过程,优化思维方法,激活化归思想。教师:从上面的探索过程中,我们发现化归思想有很大作用,但是,又是什么启发我们用这种思想指导解决问题呢?原来,我们是选择考察几个具体的多边形,如四边形、五边形等,发现特殊情形下的解决方法,再把它运用到一种特殊化思想当中。我们再来考察一下式子: n 边形内角和 =n×180°-360°,你能设计一个几何图形来解释吗?对于 n 边形内角和=(n-1)180°-180°,又能作怎样的几何解释呢?(至此,我们又可探索出另一种思维方法,即”在多边形某一边上任取一点 O ,连结点O 与多边形的每一个顶点来分割三角形)
让学生亲自参加与探索定理的结论及证明过程,大大激发了学生的求知兴趣,同时,他们也体验到“创造发明”的愉悦,数学思想在这一过程中得到了有效的发展。
3、在问题解决过程中强化数学思想方法
在数学教学活动中,常常出现这样的现象:学生在课堂听懂了,但课后解题,特别是遇到新题型便无所适从。究其原因就在于教师在教学中仅仅是就题论题,殊不知授之以“渔”比授之以“鱼”更为重要。因此,在数学问题的探索的教学中重要的是让学生真正领悟隐含于数学问题探索中的数学思想方法。针对这种现象,教师应全面展示知识发生发展过程,并发挥学生的主体作用,充分调动学生参与数学的全过程,让全体学生能在躬行的探索中理解知识,掌握方法,感悟数学思想[2]。例如:求下图中∠BCA 的度数。
方法1:先求出∠BAC=600,后利用三角形内角和即可得∠BCA=1800-600-350=850
方法2:直接利用三角形外角性质,求得∠BCA=1200-350=850 显然上述的问题解决过程中,学生通过比较不同的方法,体会到了数学思想在解题中的重要作用,激发学生的求知兴趣,从而加强了对数学思想的认识。
4、及时总结以逐步内化数学思想方法
数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想做出归纳、概括是十分必要的。概括数学思想方法要纳入教学计划,应有目的、有步骤地引导学生参与数学思想的提炼概括过程,尤其是在章节结束或单元复习中对知识复习的同时,将统摄知识的数学思想方法概括出来,可以加紧学生对数学思想
方法的运用意识,也使其对运用数学思想解决问题的具体操作方式有更深刻的了解,有利于活化所学知识,形成独立分析、解决问题的能力。
概括数学思想一般可分两步进行:一是揭示数学思想的内容、规律,即将数学对象共同具有属性或关系抽取出来;二是明确数学思想方法与知识的联系,即将抽取出来的共性推广到同类的全部对象上去,从而实现从个别性认识上升为一般性认识。比如,通过解方程( x-2 )2 +(x-2)-2=0,发现也可用换元法来求解。在此基础上推广也可用换元法求解。由此概括出换元法可以将复杂方程转化为简单方程,从而认识到化归思想是对换元法的高度概括,还可进一步认识到数学思想是数学的灵魂,它是对数学知识的高度概括。
由于同一数学知识可表现出不同的数学思想方法,而同一数学思想方法又常常分布在许多不同的知识点里,所以通过课堂小结、单元总结或总复习,甚至是某个概念、定理公式、问题数学都可以在纵横两方面归纳概括出数学思想方法。
四、数学思想方法教学的心理学意义。
美国心理学家布鲁纳认为,“不论我们选教什么学科,务必使学生理解该学科的基本结构。”所谓基本结构就是指“基本的、统一的观点,或者是一般的、基本的原理。”“学习结构就是学习事物是怎样相互关联的。”数学思想与方法为数学学科的一般原理的重要组成部分。下面从布鲁纳的基本结构学说中来看数学思想、方法教学所具有的重要意义。
第一,“懂得基本原理使得学科更容易理解”。心理学认为“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习。”当学生掌握了一些数学思想、方法,再去学习相关的数学知识,就属于下位学习了。下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义,”即使新知识能够较顺利地纳入到学生已有的认知结构中去。学生学习了数学思想、方法就能够更好地理解和掌握数学内容。
第二,有利于记忆。布鲁纳认为,“除非把一件件事情放进构造得好的模型里面,否则很快就会忘记。”“学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来。高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具。”由此可见,数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的。无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生。”
第三,学习基本原理有利于“原理和态度的迁移”。布鲁纳认为,“这种类型的迁移应该是教育过程的核心——用基本的和一般的观念来不断扩大和加深知识。”曹才翰教授也认为,“如果学生认知结构中具有较高抽象、概括水平的观念,对于新学习是有利的,”“只有概括的、巩固的和清晰的知识才能实现迁移。”美国心理学家贾德通过
实验证明,“学习迁移的发生应有一个先决条件,就是学生需先掌握原理,形成类比,才能迁移到具体的类似学习中。”学生学习数学思想、方法有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力。
诚然,要使学生真正具备了有个性化的数学思想方法,并不是通过几堂课就能达到,但是只要我们在教学中大胆实践,持之以恒,寓数学思想方法于平时的教学中,学生对数学思想方法的认识就一定会日趋成熟。