一元二次方程的解法配方法

1.2.2 配方法(1)

教学目标

1、理解“配方”是一种常用的数学方法,在用配方法将一元二次方程变形的过程中,让学生进一步体会化归的思想方法。

2、会用配方法解二次项系数为1的一元二次方程。

重点难点

重点:会用配方法解二次项系数为1的一元二次方程。

难点:用配方法将一元二次方程变形成可用因式分解法或直接开平方法解的方程。 教学过程

(一)复习引入

1、a2±2ab+b2=?

2、用两种方法解方程(x+3)2-5=0。

如何解方程x2+6x+4=0呢?

(二)创设情境

如何解方程x2+6x+4=0呢?

(三)探究新知

1、利用“复习引入”中的内容引导学生思考,得知:反过来把方程x2+6x+4=0化成(x+3)2-5=0的形式,就可用前面所学的因式分解法或直接开平方法解。

2、怎样把方程x2+6x+4=0化成(x+3)2-5=0的形式呢?让学生完成课本P.10的“做一做”并引导学生归纳:当二次项系数为“1”时,只要在二次项和一次项之后加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,这种做法叫作配方.将方程一边化为0,另一边配方后就可以用因式分解法或直接开平方法解了,这样解一元二次方程的方法叫作配方法。

(四)讲解例题

例1(课本P.11,例5)

[解](1) x2+2x-3 (观察二次项系数是否为“l”)

=x2+2x+12-12-3 (在一次项和二次项之后加上一次项系数一半的平方, 再减去这个数,使它与原式相等)

=(x+1)2-4。 (使含未知数的项在一个完全平方式里)

用同样的方法讲解(2),让学生熟悉上述过程,进一步明确“配方”的意义。

例2 引导学生完成P.11~P.12例6的填空。

(五)应用新知

1、课本P.12,练习。

2、学生相互交流解题经验。

(六)课堂小结

1、怎样将二次项系数为“1”的一元二次方程配方?

2、用配方法解一元二次方程的基本步骤是什么?

(七)思考与拓展

解方程:(1) x2-6x+10=0; (2) x2+x+ =0; (3) x2-x-1=0。

说一说一元二次方程解的情况。

[解] (1) 将方程的左边配方,得(x-3)2+1=0,移项,得(x-3)2=-1,所以原方程无解。

(2) 用配方法可解得x1=x2=- 。

(3) 用配方法可解得x1= ,x2=

一元二次方程解的情况有三种:无实数解,如方程(1);有两个相等的实数解,如方程(2);有两个不相等的实数解,如方程(3)。

课后作业

课本习题

教学后记:

1.2.2 配方法(2)

教学目标

1、理解用配方法解一元二次方程的基本步骤。

2、会用配方法解二次项系数为1的一元二次方程。

3、进一步体会化归的思想方法。

重点难点

重点:会用配方法解一元二次方程.

难点:使一元二次方程中含未知数的项在一个完全平方式里。

教学过程

(一)复习引入

1、用配方法解方程x2+x-1=0,学生练习后再完成课本P.13的“做一做”.

2、用配方法解二次项系数为1的一元二次方程的基本步骤是什么?

(二)创设情境

现在我们已经会用配方法解二次项系数为1的一元二次方程,而对于二次项系数不为1的一元二次方程能不能用配方法解?

怎样解这类方程:2x2-4x-6=0

(三)探究新知

让学生议一议解方程2x2-4x-6=0的方法,然后总结得出:对于二次项系数不为1的一元二次方程,可将方程两边同除以二次项的系数,把二次项系数化为1,然后按上一节课所学的方法来解。让学生进一步体会化归的思想。

(四)讲解例题

1、展示课本P.14例8,按课本方式讲解。

2、引导学生完成课本P.14例9的填空。

3、归纳用配方法解一元二次方程的基本步骤:首先将方程化为二次项系数是1的一般形式;其次加上一次项系数的一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里;最后将配方后的一元二次方程用因式分解法或直接开平方法来解。

(五)应用新知

课本P.15,练习。

(六)课堂小结

1、用配方法解一元二次方程的基本步骤是什么?

2、配方法是一种重要的数学方法,它的重要性不仅仅表现在一元二次方程的解法中,在今后学习二次函数,高中学习二次曲线时都要经常用到。

3、配方法是解一元二次方程的通法,但是由于配方的过程要进行较繁琐的运算,在解一元二次方程时,实际运用较少。

4、按图1—l的框图小结前面所学解

一元二次方程的算法。

(七)思考与拓展

不解方程,只通过配方判定下列方程解的

情况。

(1) 4x2+4x+1=0; (2) x2-2x-5=0;

(3) –x2+2x-5=0;

[解] 把各方程分别配方得

(1) (x+ )2=0;

(2) (x-1)2=6;

(3) (x-1)2=-4

由此可得方程(1)有两个相等的实数根,方程(2)有两个不相等的实数根,方程(3)没有实数根。

点评:通过解答这三个问题,使学生能灵活运用“配方法”,并强化学生对一元二次方程解的三种情况的认识。

布置作业

1.2.2 配方法(3)

教学内容

间接即通过变形运用开平方法降次解方程.

教学目标

理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题. 通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,•引入不能直接化成上面两种形式的解题步骤.

重难点关键

1.重点:用配方法解一元二次方程的步骤.

2.•难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.

学习过程

一、复习反思

直接写出下列方程的根:

(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9

二、自主学习,解读目标

针对目标自学教材31—34页内容,自学后要求能讲清问题2方程的建立过程,会用例1解

决问题的方法解一元二次方程,并通过演练34页练习题检查自己是否达到自学要求,然后在小组交流。

三、总结反思,巩固提高

总结自己学习新知情况,解决疑难问题后,强化训练,巩固提高:

巩固训练:

1.将二次三项式x2-4x+1配方后得( ).

A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-3

2.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是( ).

A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1

C.x2+8x+42=1 D.x2-4x+4=-11

3. 方程x2+4x-5=0的解是________

4. 解下列关于x的方程

(1)x2+2x-35=0 (2)2x2-4x-1=0

5.如图,在宽为20m,长为32m的矩形地面上,•修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m2,道路的宽为多少?

应用拓展 www.czsx.com.cn

x2x2

26. 代数式x1的值为0,则x的值为________.

7.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B•两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,•几秒后△PCQ•的面积为Rt△ACB面积的一半.

8.已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,求这个三角形的周长.

9.如果

x2-4x+y2+6y+

APCQwww.czsx.com.cn,求(xy)z的值.

1.2.2 配方法(1)

教学目标

1、理解“配方”是一种常用的数学方法,在用配方法将一元二次方程变形的过程中,让学生进一步体会化归的思想方法。

2、会用配方法解二次项系数为1的一元二次方程。

重点难点

重点:会用配方法解二次项系数为1的一元二次方程。

难点:用配方法将一元二次方程变形成可用因式分解法或直接开平方法解的方程。 教学过程

(一)复习引入

1、a2±2ab+b2=?

2、用两种方法解方程(x+3)2-5=0。

如何解方程x2+6x+4=0呢?

(二)创设情境

如何解方程x2+6x+4=0呢?

(三)探究新知

1、利用“复习引入”中的内容引导学生思考,得知:反过来把方程x2+6x+4=0化成(x+3)2-5=0的形式,就可用前面所学的因式分解法或直接开平方法解。

2、怎样把方程x2+6x+4=0化成(x+3)2-5=0的形式呢?让学生完成课本P.10的“做一做”并引导学生归纳:当二次项系数为“1”时,只要在二次项和一次项之后加上一次项系数一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里,这种做法叫作配方.将方程一边化为0,另一边配方后就可以用因式分解法或直接开平方法解了,这样解一元二次方程的方法叫作配方法。

(四)讲解例题

例1(课本P.11,例5)

[解](1) x2+2x-3 (观察二次项系数是否为“l”)

=x2+2x+12-12-3 (在一次项和二次项之后加上一次项系数一半的平方, 再减去这个数,使它与原式相等)

=(x+1)2-4。 (使含未知数的项在一个完全平方式里)

用同样的方法讲解(2),让学生熟悉上述过程,进一步明确“配方”的意义。

例2 引导学生完成P.11~P.12例6的填空。

(五)应用新知

1、课本P.12,练习。

2、学生相互交流解题经验。

(六)课堂小结

1、怎样将二次项系数为“1”的一元二次方程配方?

2、用配方法解一元二次方程的基本步骤是什么?

(七)思考与拓展

解方程:(1) x2-6x+10=0; (2) x2+x+ =0; (3) x2-x-1=0。

说一说一元二次方程解的情况。

[解] (1) 将方程的左边配方,得(x-3)2+1=0,移项,得(x-3)2=-1,所以原方程无解。

(2) 用配方法可解得x1=x2=- 。

(3) 用配方法可解得x1= ,x2=

一元二次方程解的情况有三种:无实数解,如方程(1);有两个相等的实数解,如方程(2);有两个不相等的实数解,如方程(3)。

课后作业

课本习题

教学后记:

1.2.2 配方法(2)

教学目标

1、理解用配方法解一元二次方程的基本步骤。

2、会用配方法解二次项系数为1的一元二次方程。

3、进一步体会化归的思想方法。

重点难点

重点:会用配方法解一元二次方程.

难点:使一元二次方程中含未知数的项在一个完全平方式里。

教学过程

(一)复习引入

1、用配方法解方程x2+x-1=0,学生练习后再完成课本P.13的“做一做”.

2、用配方法解二次项系数为1的一元二次方程的基本步骤是什么?

(二)创设情境

现在我们已经会用配方法解二次项系数为1的一元二次方程,而对于二次项系数不为1的一元二次方程能不能用配方法解?

怎样解这类方程:2x2-4x-6=0

(三)探究新知

让学生议一议解方程2x2-4x-6=0的方法,然后总结得出:对于二次项系数不为1的一元二次方程,可将方程两边同除以二次项的系数,把二次项系数化为1,然后按上一节课所学的方法来解。让学生进一步体会化归的思想。

(四)讲解例题

1、展示课本P.14例8,按课本方式讲解。

2、引导学生完成课本P.14例9的填空。

3、归纳用配方法解一元二次方程的基本步骤:首先将方程化为二次项系数是1的一般形式;其次加上一次项系数的一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里;最后将配方后的一元二次方程用因式分解法或直接开平方法来解。

(五)应用新知

课本P.15,练习。

(六)课堂小结

1、用配方法解一元二次方程的基本步骤是什么?

2、配方法是一种重要的数学方法,它的重要性不仅仅表现在一元二次方程的解法中,在今后学习二次函数,高中学习二次曲线时都要经常用到。

3、配方法是解一元二次方程的通法,但是由于配方的过程要进行较繁琐的运算,在解一元二次方程时,实际运用较少。

4、按图1—l的框图小结前面所学解

一元二次方程的算法。

(七)思考与拓展

不解方程,只通过配方判定下列方程解的

情况。

(1) 4x2+4x+1=0; (2) x2-2x-5=0;

(3) –x2+2x-5=0;

[解] 把各方程分别配方得

(1) (x+ )2=0;

(2) (x-1)2=6;

(3) (x-1)2=-4

由此可得方程(1)有两个相等的实数根,方程(2)有两个不相等的实数根,方程(3)没有实数根。

点评:通过解答这三个问题,使学生能灵活运用“配方法”,并强化学生对一元二次方程解的三种情况的认识。

布置作业

1.2.2 配方法(3)

教学内容

间接即通过变形运用开平方法降次解方程.

教学目标

理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题. 通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,•引入不能直接化成上面两种形式的解题步骤.

重难点关键

1.重点:用配方法解一元二次方程的步骤.

2.•难点与关键:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.

学习过程

一、复习反思

直接写出下列方程的根:

(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9

二、自主学习,解读目标

针对目标自学教材31—34页内容,自学后要求能讲清问题2方程的建立过程,会用例1解

决问题的方法解一元二次方程,并通过演练34页练习题检查自己是否达到自学要求,然后在小组交流。

三、总结反思,巩固提高

总结自己学习新知情况,解决疑难问题后,强化训练,巩固提高:

巩固训练:

1.将二次三项式x2-4x+1配方后得( ).

A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-3

2.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是( ).

A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1

C.x2+8x+42=1 D.x2-4x+4=-11

3. 方程x2+4x-5=0的解是________

4. 解下列关于x的方程

(1)x2+2x-35=0 (2)2x2-4x-1=0

5.如图,在宽为20m,长为32m的矩形地面上,•修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m2,道路的宽为多少?

应用拓展 www.czsx.com.cn

x2x2

26. 代数式x1的值为0,则x的值为________.

7.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B•两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,•几秒后△PCQ•的面积为Rt△ACB面积的一半.

8.已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,求这个三角形的周长.

9.如果

x2-4x+y2+6y+

APCQwww.czsx.com.cn,求(xy)z的值.


相关文章

  • 常微分方程
  • < 常微分方程 >课程教学大纲 一.课程基本信息 课程代码:110044 课程名称:常微分方程 英文名称:Ordinary Differential Equation 课程类别:专业必修课 学 时:45 学 分:2.5 适用对象 ...查看


  • [一阶微分方程的解法探讨]文献综述
  • 一阶微分方程的解法探讨的文献综述 陈棋 (数学与应用数学系 指导教师:柳志千) 一.研究背景及动态 微分方程是一门十分活跃的数学分支. 利用数学手段研究自然现象和社会现象,或解决工程技术问题,往往需要借助微分方程的知识,它是人们解决各种实际 ...查看


  • 论"增根"在数学中存在的价值
  • 论"增根"在数学中存在的价值 摘要:懂得一些数学常识的人都知道,"根"在数学上,意思是指能使一元方程左右两边的值相等的未知数的取值.也可以这样讲,方程的"根"与"解&qu ...查看


  • 分式方程的解法导学案
  • (包括导学更新.问题更新.+导学设计: 分式方程(2课时) 个性化导学设计: 目标导航: 第一课时 分式方程的解法 习题更新) 学习重点:分式方程的解法编号:010 主备人:李小玲 时间: 班级: 姓名: 学号: 学习难点:解分式方程要验 ...查看


  • "消元──二元一次方程组的解法"教学设计
  • 摘 要:明确概念的核心,以"使学生体会概念.方法的生成过程"为主导思想,设计教学过程.学生自主的运用所学过的等式性质,把没学过的方程组问题转化为学过的一元一次方程来解决,体会消元思想.转化思想.学生经历观察→发现问题.类 ...查看


  • 一阶微分方程的几种解法
  • 目 录 摘要--------------------------------1 关键词-------------------------------1 Abstr act ------------------------------1 K ...查看


  • 一类常系数非齐次线性微分方程组的几种解法
  • 一类常系数非齐次线性微分方程组的几种解法 [摘要] 微分方程的解法是学习微分方程最基本的问题,但是它的解法种类繁多,求解过程复杂,一般教材只是介绍常数变易法和可积组合法.本文归纳了解非齐次线性微分方程组的各种方法,从介绍常系数齐次线性方程组 ...查看


  • 代数方程 解法
  • 代数方程 解法 化归思想:高次化低次:降次的方法:因式分解,换元 分式化整式:化整式的方法:去分母,换元 无理化有理:化有理方程的方法:平方法,换元 多元化一元:代入和加减消元 1. 一元一次方程和一元二次方程的解法 一元二次方程的解法主要 ...查看


  • 一元二次方程的解法教案
  • <一元二次方程的解法>教案 一.教学目标 (一)知识教学点:认识形如x2=a(a≥0)或(ax+b)2=c(a≠0,c≥0,a,b,c为常数)类型的方程,并会用直接开平方法解. (二)能力训练点:培养学生准确而简洁的计算能力及抽 ...查看


  • 方程和不等式的解法复习课教案
  • 课题:方程和不等式的解法复习课 主备教师:李永琴 教学目标: 1. 指导学生回顾复习,进一步巩固有关方程和不等式的解题熟练程度,继续提高计算准确 率: 2. 通过对比一元一次方程和一元一次不等式的解法等,渗透类比,代入,消元,转化等数 学思 ...查看


热门内容