习题答案 习题1-1 (A)
1.(1)(-∞, 1) ⋃(1, 2) ⋃(2, +∞) (2)[-1, 0) ⋃(0, 1]
(3)(-∞, -1) ⋃(-1, 1) ⋃(1, +∞) (4)x ≠
k π+
且x ≠
π
3
k π+5π3
π
2)
(k =0, ±1, ±2, )
(5)(2k π
, 2k π+
(k =0, ±1, ±2, )
(6)[-1, 3] 2. 3.
12
6, 6+
19
22
2
, 6+(x 0+h )
2
,
22
,
, 0
5.(1)奇函数 (2)非奇非偶函数 (3)偶函数 (4)奇函数 (5)奇函数
(6)当f (x ) 为奇函数或偶函数时,该函数为偶函数;
当f (x ) 为非奇非偶函数时,该函数为非奇非偶函数. (7)偶函数 (8)奇函数 6.(1)是周期函数,T (3)是周期函数,T 7.(1)y
=
-dx +b cx -a
=2π=4
(2)是周期函数,T
=4
(4)不是周期函数
=13arcsin
x
2
(2)y
x 2
(3)y =e x -1-2 (4)y (5)y =
e -e
2
x
-x
=log
1-x
8.(1)y
=u , u =a -x
2
(2)y =e u , u
=x
2
(3)y =lg u , u =cos (4)y =u 2, u (5)y
=arctgu , u =cos v , v =e , w =-
w
=tgv , v =6x
1x
2
(6)y =u 2, u
=ln v , v =ln w , w =x
2
9.(1)[-1, 1] (2) [2k π, (2k +1) π] (3)[-a , 1-a ]
k ∈z
(4)若0
2
1
>
12
,则D =Ф.
2x
10. ϕ[ϕ(x )]=
x
4
,ψ[ψ(x )]=2,ϕ[ψ(x )]=2,ψ[ϕ(x )]=2.
2
x
x
2
11. a =4, b =-1
⎧1, x
f [g (x )]=⎨0, x =0
⎪-1, x >0⎩
=πh [r
2
12.
⎧e , x
,g [f (x )]=⎪⎨1, x =1
⎪-1⎪⎩e , x >1
13. V 14. V 15. V
h 2
-() ], 2
(0
=
r
32
24π
(2π-α)
2
4πα-α
2
, 0
=
πr h
2
23
2
3[(h -r ) -r ]
,
(2r , +∞)
16.(1)
⎧90, ⎪
p =⎨90-(x -100) ⋅0. 01,
⎪75, ⎩
0≤x ≤100100
0≤x ≤100100
(2)
⎧30x , ⎪2
p =(p -60) x =⎨31x -0. 01x ,
⎪15x , ⎩
(3)p =21000(元)
习题1-1 (B)
1. f (x ) 为偶函数.
2. f (x ) =
x -2, f (x -
2
1x
) =x +
2
1x
2
-4
3. f [g (x )]=⎨4. 8.
3+2x 1+x
22
⎧0, ⎩x ,
2
x
,g [f (x )]=⎨
⎧0, ⎩x ,
2
x
-1
⎧1-e -x ,
f (x ) =⎨
⎩-1,
9. g (x ) =
ln(1-x ) ,
(-∞, 0]
10. 奇函数,偶函数,偶函数,偶函数. 12. f (2005) =1
习题1-2 (A)
1.(1) (3) (5)
12
n +1
, 0 (2)(-1)
n +1
1n +1
, 0
n n +2
, 1 (4)(n +1) ⋅(-1) n +1, 没有极限
2
1(n +1)
+
2(n +1)
2
+ +
n +1(n +1)
2
,
2
1
(n +1)(n +2)
(6)(-1)
2
, 没有极限.
3
2.(1)17; (2)24; (3)[3.0, [
1
ε
]
ε
]
习题1-3 (A)
3. δ4. Z
=0. 0002
≥397
x →0
6. lim
x →0
-
f (x ) =lim +f (x ) =1, lim f (x ) =1
x →0
lim
x →0
-
ϕ(x ) =-1, lim ϕ(x ) =1, lim ϕ(x ) 不存在.
x →0
+
x →0
习题1-4 (A)
3.(1)0; (2)0; (3)0 4. lim
x →-1
y =0; lim y =∞
x →1
习题1-4 (B)
3. y
=x cos x 在(-∞, +∞) 上无界,但当x →+∞
时,此函数不是无穷大.
5. 当a =0, b =1时,f (x ) 是无穷小量; 当a ≠0, b 为任意实数时,f (x ) 是无穷大量.
习题1-5 (A)
1.(1)0; (2)1; (3)1; (4) (5)
a -13a
2
310
;
; (6)3x 2; (7); (8)-1.
3
4
2.(1)-; (2)0; (3)∞; (4)-;
4
4
31
(5)
2
20
⋅3
50
30
5
; (6) -.
4
1
⎧1, ⎪
3.(1)⎨0,
⎪-1, ⎩
01
mn (n -m )
212
; (2)3; (3); (4)-
3
41
2
4.(1)10; (2); (3)
m n 34
; (4)0;
12
(5)0; (6); (7); (8).
习题1-5 (B)
1.(1)2; (2)-; (3)-
21
156
; (4)
2a (3-1)
2
⎧0, k >2
3⎪
(5); (6)⎨1, k =2
2⎪∞, k
⎩
; (7)2; (8)0 .
2. α=1, β=-1
3. a =9 4. a =1, b =-1 5. 不一定.
习题1-6 (A)
1.(1)2; (2)3; (3); (4)-1; (5)cos a ;
1
2 (6)π
2
; (7)1; (8)
2
; (9)1; 2.(1)e -1; (2)e 2; (3)e -2; (4)e -2; (5)e -1; (6)e 2.
习题1-6 (B)
1.(1)1
; (2)2
2π
; (3)1; (4)0;
(5)0; (6)1; (7)0; (8)e -1. 2.(4)3; (5)
1+5
2.
习题1-7 (A)
1. 当x →0时,x 4
-x
3
比x 2
+x
3
为高阶无穷小.
2. (1)同阶,但不是等价; (2)同阶,且为等价. 3. α=12
4. α
=m
⎧0, m
(2)⎪
⎨1, m =n ; 1
2;
(3)⎪2;
⎩
∞, m >n (4)1
a 1
2
; (5)b
; (6)4
.
(10)x .
习题1-7 (B)
1.(1); (2); (3); (4)0;
3
2
2
2
e
1
(5)1; (6)-; (7)∞; (8)1.
4
1
5. p (x ) =2x 36. A ln a .
+x +3x
2
.
习题1-8 (A)
1. a 2.
=1
f (x ) 在x =0处连续
=1为可去间断点,补充f (1) =-2
3.(1)x
x =2
为第二类间断点
+
(2)x =0和x =k π
π
2
为可去间断点,补充f (0) =1, f (k π
+
π
2
) =0;
x =k π(k ≠0) 为第二类间断点.
(3)x =1为第一类间断点
(4)x =0为第二类间断点. 4.(1)x
=1为可去间断点,补充f (1) =
2312
; ;
;x =0为第二类间断点;
(2)x =0为可去间断点,补充f (0) = (3)x (4)x
=1为可去间断点,补充f (1) =-=2
π
214
为可去间断点,补充f (2) =;x =0为第一类间断点;
x =-2为第二类间断点.
(5)x =0为第一类间断点; (6)x =a 为第一类间断点; (7)x
=1为第一类间断点;
(8)x =-1为第二类间断点.
习题1-8 (B)
1. 2. 3. 4. 5.
x =±1为第一类间断点.
a =0, b =1 a =
52
π
2
(n =0, ±1, ±2, )
a =2n π-
a =-π, b =0
6. (1)当a =0, b ≠1时,有无穷间断点x =0; (2)当a ≠1, b =e 时,有无穷间断点x
=1.
习题1-9 (A)
1. 连续区间为:(-∞, -3), (-3, 2), (2, +∞)
lim f (x ) =
x →0
12
,lim
x →-3
f (x ) =-
85
,lim
x →2
f (x ) =∞
.
2. 连续区间为:(-∞, 0), (0, +∞) .
3. (1) -1; (2) 1; (3) h ; (4) -1; (5) (9) 4. 5.
-
22
; (6) -2; (7) 1; (8) 1;
e
5
ab
; (10) ; (11) -1; (12) 2.
a =1 a =1
习题1-9 (B)
1. (1)x =0为第一类间断点; (2)x = (3)x =0为第一类间断点; (4)x = (5)无间断点.
-1为第一类间断点; ±1为第一类间断点;
2. a =0, b =1
-1
-1
3. (1)e ; (2)e 2; (3)e cot a ; (4)0; (5)0; (6)-2; (7); (8)
1
π
2
.
24.
12
总复习题一
一. 1. D 2. D 3. D 4. B 6. D 7. D 8. C 9. D f (-x ) =⎧⎪x 2二.1. -x , x
⎨
⎪0
⎩x 2, x ≥ 2.
arcsin(1-x 2
) , [-2,
2]
3. -1 4. 充分,必要 5. 充分,必要 6. 充分必要 7. 12
8. a =b
9.
65
10. 第二类,第一类 三. 1. ϕ(x ) =
x +1x -1
2. α
=-
200412005
, β=
2005
4. 4 5. e
4
7.
12ln a
8. 当α≤0时,f (x ) 在x =0处不连续;
8
5. C 10. D 3. lim n →∞
x n =1 6. -50
当α当α9.
-2
8
>0, β=-1时,f (x ) 在x =0处不连续; >0, β≠-1时,f (x ) 在x =0处不连续.
习题选解 习题1-2 (B)
1. 根据数列极限的定义证明:
(1)lim
n →∞
a =1
(a >0时) >0
>1时,令a =1+h n (h n >0) =(1+h n )
n
证明:(ⅰ) ∀ε 当a ∴a
=1+nh n +
n >
a
n (n -1)
2
h n + +h n >nh n
2n
∴0
n
n
ε
时,
a =1
a
=[]+1,当n >N
ε
a -1=h n
a n
,即lim
n →∞
=1时,显然成立.
1a >1
(ⅲ) 当0
n →∞
b =lim
1a
n →∞=1
n
∴lim
n →∞
a =1
>0
n
时,有lim
n →∞
综合(ⅰ) ,(ⅱ) ,(ⅲ) ,∴当a
a =1.
习题1-6 (B)
2. 利用极限存在准则证明: (2)lim
n →∞
(
1n +n +1
2
+
2n +n +2
2
+ +
n n +n +n
2
) =
12
证明:设x
1
n
=
1n +n +1
2
+
2n +n +2
2
+ +
n n +n +n
2
n (n +1)
22 2≤x n ≤2n +n +n n +n +1
1
n (n +1)
1
n (n +1)
1 =n →∞n →∞n 2+n +12
1
∴由夹逼性定理知,lim x n = n →∞2
12n 1
即lim (2+2+ +2) =
n →∞n 2+n +1n +n +2n +n +n
x +y
3. 设x 0, y 0>0,x n +1=x n y n ,y n +1=n n .
2
lim
=2
2n +n +n
n (n +1)
1
1
,lim
.
证明:lim x n
n →∞ 证明:
=lim y n
n →∞
x n y n ≤
x n +y n
2
(n =0, 1, 2, )
∴0≤
x n +1≤y n +1
∴x n +1=
y n +1=
x n y n ≥x n +y n
2
≤
x n x n =x n y n +y n
2
(n =0, 1, 2, )
=y n
由此可知数列{x n }单调增加,数列{y n }单调减少, 又x 0
≤x 1≤ ≤x n ≤x n +1≤y n +1≤y n ≤ ≤y 1≤y 0
∴{x n }与{y n }都是有界的.
由“单调有界数列必有极限”准则, ∴{x n },{y n }都收敛.
x n 设lim n →∞
=a , lim y n =b
n →∞
由
y n +1=
a +b 2
x n +y n
2
⇒a =b
y n ,∴lim n →∞
=lim
x n +y n
2
n →∞
∴b =
x n 即lim n →∞
=lim y n .
n →∞
习题1-10 (B)
3. 设函数f (x ) 在[0, 1]上非负连续,且f (0) =
f (1) =0,
f (x 0+l ) .
试证:对∀l ∈(0, 1) ,必存在一点x 0∈[0, 1-l ],使f (x 0) =证明:令F (x ) =
f (x ) -f (x +l ) ,
∀l ∈(0, 1)
f (x ) 在[0, 1]上连续,f (x +l ) 在[-l , 1-l ]上连续,
∴F (x ) 在[0, 1-l ]上连续. 又
F (0) =f (0) -f (l ) =-f (l ) ≤0F (1-l ) =f (1-l ) -f (1) =f (1-l ) ≥0
(
f (x ) ≥0)
∴F (0) ⋅F (1-l ) ≤0 (ⅰ) 若F (0) =0,取x 0
=0
,即f (0) =f (l )
f (1)
(ⅱ) 若F (1-l ) =0,取x 0
=1-l
,即f (1-l ) =
(ⅲ) F (0) ≠0, F (1-l ≠0) ∴F (0) ⋅F (1-l )
使F (x 0) =0, 即f (x 0) =
f (x 0+l ) .
综合(ⅰ) ,(ⅱ) ,(ⅲ) ,对∀l ∈(0, 1) ,必存在一点
x 0∈[0, 1-l ],使f (x 0) =f (x 0+l ) .
总复习题一
三.11. 设f (x ) 在[a , b ]上连续,且f (x ) 在[a , b ]上无零点. 证明f (x ) 在[a , b ]上不变号. 证明:(反证法)
假设f (x ) 在[a , b ]变号,
即∃x 1, x 2∈[a , b ],使f (x 1) >0, f (x 2)
f (x 2)
f (x ) 在[a , b ]上连续,∴f (x ) 在[x 1, x 2]上连续.
由零点存在定理知,∃ξ∈(x 1, x 2) ⊂(a , b ) ,使f (ξ) =0 即ξ是f (x ) 在[a , b ]上的一个零点. 这与f (x ) 在[a , b ]上无零点矛盾, ∴
f (x ) 在[a , b ]上不变号.
习题答案 习题1-1 (A)
1.(1)(-∞, 1) ⋃(1, 2) ⋃(2, +∞) (2)[-1, 0) ⋃(0, 1]
(3)(-∞, -1) ⋃(-1, 1) ⋃(1, +∞) (4)x ≠
k π+
且x ≠
π
3
k π+5π3
π
2)
(k =0, ±1, ±2, )
(5)(2k π
, 2k π+
(k =0, ±1, ±2, )
(6)[-1, 3] 2. 3.
12
6, 6+
19
22
2
, 6+(x 0+h )
2
,
22
,
, 0
5.(1)奇函数 (2)非奇非偶函数 (3)偶函数 (4)奇函数 (5)奇函数
(6)当f (x ) 为奇函数或偶函数时,该函数为偶函数;
当f (x ) 为非奇非偶函数时,该函数为非奇非偶函数. (7)偶函数 (8)奇函数 6.(1)是周期函数,T (3)是周期函数,T 7.(1)y
=
-dx +b cx -a
=2π=4
(2)是周期函数,T
=4
(4)不是周期函数
=13arcsin
x
2
(2)y
x 2
(3)y =e x -1-2 (4)y (5)y =
e -e
2
x
-x
=log
1-x
8.(1)y
=u , u =a -x
2
(2)y =e u , u
=x
2
(3)y =lg u , u =cos (4)y =u 2, u (5)y
=arctgu , u =cos v , v =e , w =-
w
=tgv , v =6x
1x
2
(6)y =u 2, u
=ln v , v =ln w , w =x
2
9.(1)[-1, 1] (2) [2k π, (2k +1) π] (3)[-a , 1-a ]
k ∈z
(4)若0
2
1
>
12
,则D =Ф.
2x
10. ϕ[ϕ(x )]=
x
4
,ψ[ψ(x )]=2,ϕ[ψ(x )]=2,ψ[ϕ(x )]=2.
2
x
x
2
11. a =4, b =-1
⎧1, x
f [g (x )]=⎨0, x =0
⎪-1, x >0⎩
=πh [r
2
12.
⎧e , x
,g [f (x )]=⎪⎨1, x =1
⎪-1⎪⎩e , x >1
13. V 14. V 15. V
h 2
-() ], 2
(0
=
r
32
24π
(2π-α)
2
4πα-α
2
, 0
=
πr h
2
23
2
3[(h -r ) -r ]
,
(2r , +∞)
16.(1)
⎧90, ⎪
p =⎨90-(x -100) ⋅0. 01,
⎪75, ⎩
0≤x ≤100100
0≤x ≤100100
(2)
⎧30x , ⎪2
p =(p -60) x =⎨31x -0. 01x ,
⎪15x , ⎩
(3)p =21000(元)
习题1-1 (B)
1. f (x ) 为偶函数.
2. f (x ) =
x -2, f (x -
2
1x
) =x +
2
1x
2
-4
3. f [g (x )]=⎨4. 8.
3+2x 1+x
22
⎧0, ⎩x ,
2
x
,g [f (x )]=⎨
⎧0, ⎩x ,
2
x
-1
⎧1-e -x ,
f (x ) =⎨
⎩-1,
9. g (x ) =
ln(1-x ) ,
(-∞, 0]
10. 奇函数,偶函数,偶函数,偶函数. 12. f (2005) =1
习题1-2 (A)
1.(1) (3) (5)
12
n +1
, 0 (2)(-1)
n +1
1n +1
, 0
n n +2
, 1 (4)(n +1) ⋅(-1) n +1, 没有极限
2
1(n +1)
+
2(n +1)
2
+ +
n +1(n +1)
2
,
2
1
(n +1)(n +2)
(6)(-1)
2
, 没有极限.
3
2.(1)17; (2)24; (3)[3.0, [
1
ε
]
ε
]
习题1-3 (A)
3. δ4. Z
=0. 0002
≥397
x →0
6. lim
x →0
-
f (x ) =lim +f (x ) =1, lim f (x ) =1
x →0
lim
x →0
-
ϕ(x ) =-1, lim ϕ(x ) =1, lim ϕ(x ) 不存在.
x →0
+
x →0
习题1-4 (A)
3.(1)0; (2)0; (3)0 4. lim
x →-1
y =0; lim y =∞
x →1
习题1-4 (B)
3. y
=x cos x 在(-∞, +∞) 上无界,但当x →+∞
时,此函数不是无穷大.
5. 当a =0, b =1时,f (x ) 是无穷小量; 当a ≠0, b 为任意实数时,f (x ) 是无穷大量.
习题1-5 (A)
1.(1)0; (2)1; (3)1; (4) (5)
a -13a
2
310
;
; (6)3x 2; (7); (8)-1.
3
4
2.(1)-; (2)0; (3)∞; (4)-;
4
4
31
(5)
2
20
⋅3
50
30
5
; (6) -.
4
1
⎧1, ⎪
3.(1)⎨0,
⎪-1, ⎩
01
mn (n -m )
212
; (2)3; (3); (4)-
3
41
2
4.(1)10; (2); (3)
m n 34
; (4)0;
12
(5)0; (6); (7); (8).
习题1-5 (B)
1.(1)2; (2)-; (3)-
21
156
; (4)
2a (3-1)
2
⎧0, k >2
3⎪
(5); (6)⎨1, k =2
2⎪∞, k
⎩
; (7)2; (8)0 .
2. α=1, β=-1
3. a =9 4. a =1, b =-1 5. 不一定.
习题1-6 (A)
1.(1)2; (2)3; (3); (4)-1; (5)cos a ;
1
2 (6)π
2
; (7)1; (8)
2
; (9)1; 2.(1)e -1; (2)e 2; (3)e -2; (4)e -2; (5)e -1; (6)e 2.
习题1-6 (B)
1.(1)1
; (2)2
2π
; (3)1; (4)0;
(5)0; (6)1; (7)0; (8)e -1. 2.(4)3; (5)
1+5
2.
习题1-7 (A)
1. 当x →0时,x 4
-x
3
比x 2
+x
3
为高阶无穷小.
2. (1)同阶,但不是等价; (2)同阶,且为等价. 3. α=12
4. α
=m
⎧0, m
(2)⎪
⎨1, m =n ; 1
2;
(3)⎪2;
⎩
∞, m >n (4)1
a 1
2
; (5)b
; (6)4
.
(10)x .
习题1-7 (B)
1.(1); (2); (3); (4)0;
3
2
2
2
e
1
(5)1; (6)-; (7)∞; (8)1.
4
1
5. p (x ) =2x 36. A ln a .
+x +3x
2
.
习题1-8 (A)
1. a 2.
=1
f (x ) 在x =0处连续
=1为可去间断点,补充f (1) =-2
3.(1)x
x =2
为第二类间断点
+
(2)x =0和x =k π
π
2
为可去间断点,补充f (0) =1, f (k π
+
π
2
) =0;
x =k π(k ≠0) 为第二类间断点.
(3)x =1为第一类间断点
(4)x =0为第二类间断点. 4.(1)x
=1为可去间断点,补充f (1) =
2312
; ;
;x =0为第二类间断点;
(2)x =0为可去间断点,补充f (0) = (3)x (4)x
=1为可去间断点,补充f (1) =-=2
π
214
为可去间断点,补充f (2) =;x =0为第一类间断点;
x =-2为第二类间断点.
(5)x =0为第一类间断点; (6)x =a 为第一类间断点; (7)x
=1为第一类间断点;
(8)x =-1为第二类间断点.
习题1-8 (B)
1. 2. 3. 4. 5.
x =±1为第一类间断点.
a =0, b =1 a =
52
π
2
(n =0, ±1, ±2, )
a =2n π-
a =-π, b =0
6. (1)当a =0, b ≠1时,有无穷间断点x =0; (2)当a ≠1, b =e 时,有无穷间断点x
=1.
习题1-9 (A)
1. 连续区间为:(-∞, -3), (-3, 2), (2, +∞)
lim f (x ) =
x →0
12
,lim
x →-3
f (x ) =-
85
,lim
x →2
f (x ) =∞
.
2. 连续区间为:(-∞, 0), (0, +∞) .
3. (1) -1; (2) 1; (3) h ; (4) -1; (5) (9) 4. 5.
-
22
; (6) -2; (7) 1; (8) 1;
e
5
ab
; (10) ; (11) -1; (12) 2.
a =1 a =1
习题1-9 (B)
1. (1)x =0为第一类间断点; (2)x = (3)x =0为第一类间断点; (4)x = (5)无间断点.
-1为第一类间断点; ±1为第一类间断点;
2. a =0, b =1
-1
-1
3. (1)e ; (2)e 2; (3)e cot a ; (4)0; (5)0; (6)-2; (7); (8)
1
π
2
.
24.
12
总复习题一
一. 1. D 2. D 3. D 4. B 6. D 7. D 8. C 9. D f (-x ) =⎧⎪x 2二.1. -x , x
⎨
⎪0
⎩x 2, x ≥ 2.
arcsin(1-x 2
) , [-2,
2]
3. -1 4. 充分,必要 5. 充分,必要 6. 充分必要 7. 12
8. a =b
9.
65
10. 第二类,第一类 三. 1. ϕ(x ) =
x +1x -1
2. α
=-
200412005
, β=
2005
4. 4 5. e
4
7.
12ln a
8. 当α≤0时,f (x ) 在x =0处不连续;
8
5. C 10. D 3. lim n →∞
x n =1 6. -50
当α当α9.
-2
8
>0, β=-1时,f (x ) 在x =0处不连续; >0, β≠-1时,f (x ) 在x =0处不连续.
习题选解 习题1-2 (B)
1. 根据数列极限的定义证明:
(1)lim
n →∞
a =1
(a >0时) >0
>1时,令a =1+h n (h n >0) =(1+h n )
n
证明:(ⅰ) ∀ε 当a ∴a
=1+nh n +
n >
a
n (n -1)
2
h n + +h n >nh n
2n
∴0
n
n
ε
时,
a =1
a
=[]+1,当n >N
ε
a -1=h n
a n
,即lim
n →∞
=1时,显然成立.
1a >1
(ⅲ) 当0
n →∞
b =lim
1a
n →∞=1
n
∴lim
n →∞
a =1
>0
n
时,有lim
n →∞
综合(ⅰ) ,(ⅱ) ,(ⅲ) ,∴当a
a =1.
习题1-6 (B)
2. 利用极限存在准则证明: (2)lim
n →∞
(
1n +n +1
2
+
2n +n +2
2
+ +
n n +n +n
2
) =
12
证明:设x
1
n
=
1n +n +1
2
+
2n +n +2
2
+ +
n n +n +n
2
n (n +1)
22 2≤x n ≤2n +n +n n +n +1
1
n (n +1)
1
n (n +1)
1 =n →∞n →∞n 2+n +12
1
∴由夹逼性定理知,lim x n = n →∞2
12n 1
即lim (2+2+ +2) =
n →∞n 2+n +1n +n +2n +n +n
x +y
3. 设x 0, y 0>0,x n +1=x n y n ,y n +1=n n .
2
lim
=2
2n +n +n
n (n +1)
1
1
,lim
.
证明:lim x n
n →∞ 证明:
=lim y n
n →∞
x n y n ≤
x n +y n
2
(n =0, 1, 2, )
∴0≤
x n +1≤y n +1
∴x n +1=
y n +1=
x n y n ≥x n +y n
2
≤
x n x n =x n y n +y n
2
(n =0, 1, 2, )
=y n
由此可知数列{x n }单调增加,数列{y n }单调减少, 又x 0
≤x 1≤ ≤x n ≤x n +1≤y n +1≤y n ≤ ≤y 1≤y 0
∴{x n }与{y n }都是有界的.
由“单调有界数列必有极限”准则, ∴{x n },{y n }都收敛.
x n 设lim n →∞
=a , lim y n =b
n →∞
由
y n +1=
a +b 2
x n +y n
2
⇒a =b
y n ,∴lim n →∞
=lim
x n +y n
2
n →∞
∴b =
x n 即lim n →∞
=lim y n .
n →∞
习题1-10 (B)
3. 设函数f (x ) 在[0, 1]上非负连续,且f (0) =
f (1) =0,
f (x 0+l ) .
试证:对∀l ∈(0, 1) ,必存在一点x 0∈[0, 1-l ],使f (x 0) =证明:令F (x ) =
f (x ) -f (x +l ) ,
∀l ∈(0, 1)
f (x ) 在[0, 1]上连续,f (x +l ) 在[-l , 1-l ]上连续,
∴F (x ) 在[0, 1-l ]上连续. 又
F (0) =f (0) -f (l ) =-f (l ) ≤0F (1-l ) =f (1-l ) -f (1) =f (1-l ) ≥0
(
f (x ) ≥0)
∴F (0) ⋅F (1-l ) ≤0 (ⅰ) 若F (0) =0,取x 0
=0
,即f (0) =f (l )
f (1)
(ⅱ) 若F (1-l ) =0,取x 0
=1-l
,即f (1-l ) =
(ⅲ) F (0) ≠0, F (1-l ≠0) ∴F (0) ⋅F (1-l )
使F (x 0) =0, 即f (x 0) =
f (x 0+l ) .
综合(ⅰ) ,(ⅱ) ,(ⅲ) ,对∀l ∈(0, 1) ,必存在一点
x 0∈[0, 1-l ],使f (x 0) =f (x 0+l ) .
总复习题一
三.11. 设f (x ) 在[a , b ]上连续,且f (x ) 在[a , b ]上无零点. 证明f (x ) 在[a , b ]上不变号. 证明:(反证法)
假设f (x ) 在[a , b ]变号,
即∃x 1, x 2∈[a , b ],使f (x 1) >0, f (x 2)
f (x 2)
f (x ) 在[a , b ]上连续,∴f (x ) 在[x 1, x 2]上连续.
由零点存在定理知,∃ξ∈(x 1, x 2) ⊂(a , b ) ,使f (ξ) =0 即ξ是f (x ) 在[a , b ]上的一个零点. 这与f (x ) 在[a , b ]上无零点矛盾, ∴
f (x ) 在[a , b ]上不变号.