自 然 幂 数 列 求 和 初 探
令 S m =∑i m =1+2m +3m + +n m ,m , n ∈N ,k ∈N ,
i =1n
11⎡1⎤
易得 S 1=n (n +1) , S 2=n (n +1)(2n +1) , S 3=⎢n (n +1) ⎥;
26⎣2⎦
2
① 设 S m =n ∑a i n m +1-i =n (a 1n m +a 2n m -1+a 3n m -2+ +a m n +a m +1) ,a i ∈Q ,
i =1
m +1
m -111
m (m -1)(m -2) , …;a 2k +2=0, 则 a 1=, a 2=, a 3=, a 4=0, a 5=
m +12126!
∑a
i =1
m +1
i
=1;
② 设 S m =S 1∑b i n m -i =S 1(b 1n m -1+b 2n m -2+b 3n m -3+ +b m -1n +b m ) ,b i ∈Q ,
i =1
m +1
则 b 1=
2m -1(m -2)(m -3)
,b 2=,b 3=,b 4=-b 3, …, b m =2a m +1; m +1m +16(m +1)
m
b 2k +2=-b 2k +1,b k +b k +1=2a k +1,∑b i =1;
i =1
③ 当m=2k时, 可设
S m =S 2∑p i n m -1-i =S 2(p 1n m -2+p 2n m -3+p 3n m -4+ +p m -2n +p m -1) ,p i ∈Q ,
i =1m -1
则p 1=
33(m -2) (m -2)(m -6) -3(m -2)(m -4)
,p 2=,p 3=,p 4=,…; m +12(m +1) 4(m +1) 8(m +1)
m -1
111
p k +p k +1+p k +2=a k +2,∑p i =1;
623i =1
④ 当m=2k+1时, 可设
S m =S 3∑q i n m -2-i =S 3(q 1n m -3+q 2n m -4+q 3n m -5+ +q m -3n +q m -2) ,q i ∈Q
i =1m -2
则q 1=
42(m -3) (m -3)(m -8) -2(m -3)(m -5)
,q 2=,q 3=,q 4=,…; m +1m +13(m +1) 3(m +1)
m -2111
q k +q k +1+q k +2=a k +2,∑q i =1.
424i =1
★ 令S m =∑i m =1+2m +3m + +n m ,m , n ∈N ,
i =1
n
若S m =n ∑a i n m +1-i =n (a 1n m +a 2n m -1+a 3n m -2+ +a m n +a m +1) ,a i ∈Q ,
i =1
m +1
m +1
a i m +1m m +1m -1m +1m -2m +1
a 1n +a 2n +a 3n + +a m +1n +1-(m +1) ∑] 则S m +1=n [
m +2m +1m 2i =1m +3-i
n
m +1i =1
★ 设S m , m +1=∑k =n ∑a m , i n m +1-i =n (a m , 1n m +a m , 2n m -1+a m , 3n m -2+ +a m , m n +a m , m +1)
m k =1
m
a m -1, i ,(i =1, 2, 3, , m ) ,
m +2-i 11m
a m , 1=, a m , 2=, a m , 3=, a =0, a m , 2k +2=0,
m +1212m , 4
115-1-13
m (m -1)(m -2)(m -3)(m -4) =C m , a m , 5=m (m -1)(m -2) =C m a m , 7=
6⨯7! 2526! 20
-1-17
a m , 9=m (m -1)(m -2)(m -3)(m -4)(m -5)(m -6) =C m ,
30⨯8! 24019
a m , 11=C m ,…
132
1-111
末尾系数 a 1, 2=,a 2, 3=,a 4, 5=,a 6, 7=,
22⨯32⨯3⨯52⨯3⨯7-15-691
a 8, 9=,a 10, 11=,a 12, 13=
2⨯3⨯52⨯3⨯112⨯3⨯5⨯7⨯13
则 a m , i =
自 然 幂 数 列 求 和 初 探
令 S m =∑i m =1+2m +3m + +n m ,m , n ∈N ,k ∈N ,
i =1n
11⎡1⎤
易得 S 1=n (n +1) , S 2=n (n +1)(2n +1) , S 3=⎢n (n +1) ⎥;
26⎣2⎦
2
① 设 S m =n ∑a i n m +1-i =n (a 1n m +a 2n m -1+a 3n m -2+ +a m n +a m +1) ,a i ∈Q ,
i =1
m +1
m -111
m (m -1)(m -2) , …;a 2k +2=0, 则 a 1=, a 2=, a 3=, a 4=0, a 5=
m +12126!
∑a
i =1
m +1
i
=1;
② 设 S m =S 1∑b i n m -i =S 1(b 1n m -1+b 2n m -2+b 3n m -3+ +b m -1n +b m ) ,b i ∈Q ,
i =1
m +1
则 b 1=
2m -1(m -2)(m -3)
,b 2=,b 3=,b 4=-b 3, …, b m =2a m +1; m +1m +16(m +1)
m
b 2k +2=-b 2k +1,b k +b k +1=2a k +1,∑b i =1;
i =1
③ 当m=2k时, 可设
S m =S 2∑p i n m -1-i =S 2(p 1n m -2+p 2n m -3+p 3n m -4+ +p m -2n +p m -1) ,p i ∈Q ,
i =1m -1
则p 1=
33(m -2) (m -2)(m -6) -3(m -2)(m -4)
,p 2=,p 3=,p 4=,…; m +12(m +1) 4(m +1) 8(m +1)
m -1
111
p k +p k +1+p k +2=a k +2,∑p i =1;
623i =1
④ 当m=2k+1时, 可设
S m =S 3∑q i n m -2-i =S 3(q 1n m -3+q 2n m -4+q 3n m -5+ +q m -3n +q m -2) ,q i ∈Q
i =1m -2
则q 1=
42(m -3) (m -3)(m -8) -2(m -3)(m -5)
,q 2=,q 3=,q 4=,…; m +1m +13(m +1) 3(m +1)
m -2111
q k +q k +1+q k +2=a k +2,∑q i =1.
424i =1
★ 令S m =∑i m =1+2m +3m + +n m ,m , n ∈N ,
i =1
n
若S m =n ∑a i n m +1-i =n (a 1n m +a 2n m -1+a 3n m -2+ +a m n +a m +1) ,a i ∈Q ,
i =1
m +1
m +1
a i m +1m m +1m -1m +1m -2m +1
a 1n +a 2n +a 3n + +a m +1n +1-(m +1) ∑] 则S m +1=n [
m +2m +1m 2i =1m +3-i
n
m +1i =1
★ 设S m , m +1=∑k =n ∑a m , i n m +1-i =n (a m , 1n m +a m , 2n m -1+a m , 3n m -2+ +a m , m n +a m , m +1)
m k =1
m
a m -1, i ,(i =1, 2, 3, , m ) ,
m +2-i 11m
a m , 1=, a m , 2=, a m , 3=, a =0, a m , 2k +2=0,
m +1212m , 4
115-1-13
m (m -1)(m -2)(m -3)(m -4) =C m , a m , 5=m (m -1)(m -2) =C m a m , 7=
6⨯7! 2526! 20
-1-17
a m , 9=m (m -1)(m -2)(m -3)(m -4)(m -5)(m -6) =C m ,
30⨯8! 24019
a m , 11=C m ,…
132
1-111
末尾系数 a 1, 2=,a 2, 3=,a 4, 5=,a 6, 7=,
22⨯32⨯3⨯52⨯3⨯7-15-691
a 8, 9=,a 10, 11=,a 12, 13=
2⨯3⨯52⨯3⨯112⨯3⨯5⨯7⨯13
则 a m , i =