高中数学极限、数学归纳法
一、选择题(本大题共6个小题,每小题6分,共36分) 111
1.(精选考题·江西高考) lim (1+=( ) n →∞33353
A. B. C .2 D .不存在 32解析:lim (1++…+) =
n →∞
11
3313
3=121-
3
1
答案:B
f ′(x )
2.设函数f (x ) =(x +1) (x -2) ,则x lim ( ) →-1x +1
2
A .6 B .2 C .0 D .-6
f ′(x )(x +1)2+2(x +1)(x -2)解析:∵=3x -3,
x +1x +1f ′(x )
∴x lim 6. →-1x +1答案:D
2
x +2x -3⎧⎪x -1x >1)
3.已知函数f (x ) =⎨
⎪⎩ax +1 (x ≤1)
在x =1处连续,则f -1(3)
等于( )
A .0 2
C .-
3
B .1 2 D. 3
x 2+2x -3
解析:∵函数f (x ) 在x =1处连续,∴f (1)=lim =4. x →1x -1
x 2+2x -3
又当x =1时,f (1)=a +1,∴a =3. 当x >1时,令3,得
x -12
x =0或1,不满足题设.当x ≤1时,令3x +1=3,得x 32
设.∴f (3)3
-1
答案:D
4.用数学归纳法证明
11111时,由n =k 到n
2n 34n +1n +2
=k +1,不等式左边的变化是( )
1
A .增加一项
2(k +1)11
B .增加
2k +12k +2C .增加
111,一项 2k +12k +2k +1
D .以上结论均错
解析:n =k 时,不等式左边为
111
++…+,n =k +1
2k k +1k +2
11111
时,不等式左边为+…+++
2k 2k +12k +2k +2k +3
故增加
111
一项. 2k +12k +2k +1
答案:C
5.已知数列{a n }的前n 项和S n =n 2a n (n ≥2) ,而a 1=1,通过计算a 2,a 3,a 4,猜想a n =
( )
2
B. n (n +1)
2A. (n +1)
2C. n 2-1
2 D. 2n -1
解析:由S n =n 2a n 知S n +1=(n +1) 2a n +1, ∴S n +1-S n =(n +1) 2a n +1-n 2a n ,
∴a n +1=(n +1) a n +1-n a n ,∴a n +1a (n ≥2) .
n +2n
2
2
当n =2时,S 2=4a 2,又S 2=a 1+a 2, a 12131∴a 2=,a 3=a 2=,a 4=3=.
3346510111由a 1=1,a 2=,a 3=,a 4=3610猜想a n =答案:B
x 2-bx -2x +2b a n +1+ab n -1
6.设a ,b 满足lim 1,则lim 等-
x →2n →∞a +2b x -a 于( )
A .1 1
C. 3
1 B. 21 D. 42
n (n +1)
解析:依题意得a =2,
x 2-bx -2x +2b (x -b )(x -2)lim =lim x →2x →2x -a x -2
a n +1+ab n -1=lim (x -b ) =2-b =-1,因此b =3. 故lim -
x →2n →∞a n 1+2b n 2n -1
4×()+2
2n +1+2×3n -131=lim =lim =. -
n →∞2+2×3n →∞2n -13
)+2×33
答案:C
二、填空题(本大题共3个小题,每小题6分,共18分) x 3-x 23
7.设a =lim ,则1+a +a +a +…=________. x →1x -1x 3-x x (x -1)(x +1)解析:∵a =lim lim x →1x -1x →1(x -1)(x +1)(x +1)1x =lim , x →1x +12∴1+a +a 2+a 3+…=2. 答案:2
⎧⎪a cos x (x ≥0)8.已知函数f (x ) =⎨2在点x =0处连续,则a =
⎪⎩x -1 (x <0)
________.
2
解析:由题意得x lim f (x ) =lim (x -1) =-1,x lim f (x ) =x lim a cos x →0-→0+→0+x →0-
=a ,由于f (x ) 在x =0处连续,因此a =-1.
答案:-1
b n +a n 9.已知log a b >1(0<a <1) ,则lim ________. n →∞b -a 解析:log a b >1,0<a <1得0<b <a , b n
(b +a a )+1
∴lim =lim 1. n →∞b n -a n n →∞b n
(a )-1
n
n
答案:-1
三、解答题(本大题共3个小题,共46分)
10.(本小题满分15分) 已知数列{a n }的前n 项和S n =(n 2+n )·3n . a (1)求lim n →∞S n
a a a (2)证明:+>3n .
12n S n -S n -1a 解:(1)因为lim lim n →∞S n →∞S
n
n
S n -1S n -1=lim (1-S ) =1-lim S , →∞n →∞n n n S n -11n -11lim lim , n →∞S n 3n →∞n +13a 2所以lim =n →∞S n 3
a (2)证明:当n =1时,=S 1=6>3;
1
S n -S n -1a a a S S 2-S 1
当n >1时,+…++…+
12n 12n 1111111S =(-)·S +(-)·S +…+[-]S -+·S >=121232(n -1)n n 1n n n n 2+n n
3>3n . ·n
a a a 综上知,当n ≥1时,+…+3n .
12n
11.(本小题满分15分) 已知{a n }是由非负整数组成的数列,满足a 1=0,a 2=3,a 3=2,a n +1a n =(a n -1+2)(a n -2+2) ,n =3,4,5,….
试用数学归纳法证明:a n =a n -2+2,n =3,4,5,…; 证明:①当n =3时,a 3=2=a 1+2,所以等式成立; ②假设当n =k ≥3时等式成立,即a k =a k -2+2. 而由题设有a k +1a k =(a k -1+2)(a k -2+2) . 由a k -2是非负整数,得a k =a k -2+2≠0, ∴a k +1=a k -1+2,
即当n =k +1时,等式也成立.
综合①②得:对任意正整数n ≥3, 都有a n =a n -2+2.
12.(本小题满分16分) 在数列{a n }中,a 1=1,当n ≥2时,a n ,1
S n ,S n -
2
(1)求a 2,a 3,a 4并推出a n 的表达式, (2)用数学归纳法证明所得的结论. 1
解:∵a n ,S n ,S n -
212
∴S n =a n (S n -n ≥2) ①
2
2
(1)由a 1=1,S 2=a 1+a 2=1+a 2代入①得a 2=-,
3212
由a 1=1,a 2=-S 3=a 3代入①得a 3=-.
3315同理可得a 4=-
2
,由此可推出 35
⎧1 (n =1)a n =⎨2
⎩-(2n -3)(2n -1) (n ≥2)
.
(2)证明:①当n =1、2、3、4时,由(1)知猜想成立, ②假设n =k (k ≥2,k ∈N *) 时, 2
a k =-
(2k -3)(2k -1)212
故S k =-·(S k -,
2(2k -3)(2k -1)∴(2k -3)(2k -1) S 2k +2S k -1=0, ∴S k =
11
,S k =-舍) . 2k -12k -3
由
12
S k +1=a k +1·(S k +1-得
2
2
1(S k +a k +1) =a k +1(a k +1+S k -) ,
2
2a k +1a k +11122
∴a ++a ++-+, (2k -1)2k 12k -1k 12k -12k 1-2
∴a k +1=,
[2(k +1)-3]·[2(k +1)-1]即n =k +1时,命题也成立.
⎧1 (n =1)
由①②知a n =⎨2
-
⎩(2n -3)(2n -1) (n ≥2)
对一切n ∈N *成立.
x -3x
1.lim (+) 等于( ) x →1x -1x -1A .1 B .2 C .3
D .4
x -3x (x +1)+x -3x 解析:∵
x -1x -1x -1x 2+2x -3(x -1)(x +3)x +3
==
x -1(x +1)(x -1)x +1x -3x +31+3x ∴lim (+=lim 2. x →1x →1x -1x 2-1x +11+1答案:B
(x -a )(x +b )2.函数f (x ) =x =1和x =2处的极限值都是0,
x -c 而在点x =-2处不连续,则不等式f (x ) >0的解集为( )
A .(-2,1) B .(-∞,-2) ∪(2,+∞)
C .(-2,1) ∪(2,+∞) D .(-∞,-2) ∪(1,2)
(x -1)(x -2)
解析:由已知得:f (x ) =,则f (x ) >0的解集为(-2,1)
x +2∪(2,+∞) .
答案:C
3.设常数a >0,(ax 2143
) 的展开式中x 3的系数为则li n m (a →∞2x
+a 2+a 3+…+a n ) =________.
5r r 4-r
解析:∵T r +1=C 4a x 8-2
数为
3222
C 4a =6a =,则
2
1a = 2
12
5r
8-=3,得r =2,∴x 3的系
2
23n
∴li n m (a +a +a +…+a ) =→∞
1.
11-2
答案:1
4.(精选考题·上海高考) 将直线l 1:x +y -1=0,l 2:nx +y -n =0,l 3:x +ny -n =0(n ∈N *,n ≥2) 围成的三角形面积记为S n ,则lim S n
n →∞=________.
解析:如图所示,
⎧⎪nx +y -n =0,由⎨得⎪x +ny -n =0⎩
⎧
⎨n ⎩y =n +1n x =,n +1
n n
则直线l 2、l 3交于点A ,) .
n +1n +1
1111n n n S n =1××1×-1×1=-
2n +12n +12n +12
lim S n =lim (
n →∞
n →∞
1n
-=lim n +12n →∞
111-1-. 12221+n
1
1
答案:2
43x 5.对于数列{x n },满足x 1=x n +1f (x ) 在(-2,2)
31+x 3n
1
上有意义,f (-=2,且满足x ,y ,z ∈(-2,2) 时,有f (x ) +f (y ) +f (z )
2x +y +z =f () 成立.
1+xyz
4
(1)求f ) 的值;
3
(2)求证:{f (x n )}是等比数列;
3n -2
(3)设{f (x n )}的前n 项和为S n ,求li n m S . →∞
n 解:(1)由x =y =z =0⇒3f (0)=f (0),∴f (0)=0, 令z =0,得f (x ) +f (y ) =f (x +y ) , 再令y =-x ,得f (x ) +f (-x ) =f (0)=0, 则f (-x ) =-f (x ) .
41111所以f () =f +f () +f =3f (322221
=-3f (-) =-6.
2
4
(2)证明:由x 1=,结合已知可得
30<x n +1=
3x 33
≤4<2; 11+x n 2x x n n
x n +x n +x n 3x 由f (x n +1) =f =f (=f (x n ) +f (x n ) +f (x n ) =3f (x n ) ,
1+x 31+x 3n n f (x n +1)
得=3,即{f (x n )}是以-6为首项,以3为公比的等比数列,f (x n )且f (x n ) =-2×3n .
a 1(1-q n )-6×(1-3n )
(3)由S n ==3×(1-3n ) ,
1-q 1-33n -23n -2
得lim S =lim =lim n →∞n →∞3×(1-3)n →∞n
1
. 133×(-1)
31-
23
高中数学极限、数学归纳法
一、选择题(本大题共6个小题,每小题6分,共36分) 111
1.(精选考题·江西高考) lim (1+=( ) n →∞33353
A. B. C .2 D .不存在 32解析:lim (1++…+) =
n →∞
11
3313
3=121-
3
1
答案:B
f ′(x )
2.设函数f (x ) =(x +1) (x -2) ,则x lim ( ) →-1x +1
2
A .6 B .2 C .0 D .-6
f ′(x )(x +1)2+2(x +1)(x -2)解析:∵=3x -3,
x +1x +1f ′(x )
∴x lim 6. →-1x +1答案:D
2
x +2x -3⎧⎪x -1x >1)
3.已知函数f (x ) =⎨
⎪⎩ax +1 (x ≤1)
在x =1处连续,则f -1(3)
等于( )
A .0 2
C .-
3
B .1 2 D. 3
x 2+2x -3
解析:∵函数f (x ) 在x =1处连续,∴f (1)=lim =4. x →1x -1
x 2+2x -3
又当x =1时,f (1)=a +1,∴a =3. 当x >1时,令3,得
x -12
x =0或1,不满足题设.当x ≤1时,令3x +1=3,得x 32
设.∴f (3)3
-1
答案:D
4.用数学归纳法证明
11111时,由n =k 到n
2n 34n +1n +2
=k +1,不等式左边的变化是( )
1
A .增加一项
2(k +1)11
B .增加
2k +12k +2C .增加
111,一项 2k +12k +2k +1
D .以上结论均错
解析:n =k 时,不等式左边为
111
++…+,n =k +1
2k k +1k +2
11111
时,不等式左边为+…+++
2k 2k +12k +2k +2k +3
故增加
111
一项. 2k +12k +2k +1
答案:C
5.已知数列{a n }的前n 项和S n =n 2a n (n ≥2) ,而a 1=1,通过计算a 2,a 3,a 4,猜想a n =
( )
2
B. n (n +1)
2A. (n +1)
2C. n 2-1
2 D. 2n -1
解析:由S n =n 2a n 知S n +1=(n +1) 2a n +1, ∴S n +1-S n =(n +1) 2a n +1-n 2a n ,
∴a n +1=(n +1) a n +1-n a n ,∴a n +1a (n ≥2) .
n +2n
2
2
当n =2时,S 2=4a 2,又S 2=a 1+a 2, a 12131∴a 2=,a 3=a 2=,a 4=3=.
3346510111由a 1=1,a 2=,a 3=,a 4=3610猜想a n =答案:B
x 2-bx -2x +2b a n +1+ab n -1
6.设a ,b 满足lim 1,则lim 等-
x →2n →∞a +2b x -a 于( )
A .1 1
C. 3
1 B. 21 D. 42
n (n +1)
解析:依题意得a =2,
x 2-bx -2x +2b (x -b )(x -2)lim =lim x →2x →2x -a x -2
a n +1+ab n -1=lim (x -b ) =2-b =-1,因此b =3. 故lim -
x →2n →∞a n 1+2b n 2n -1
4×()+2
2n +1+2×3n -131=lim =lim =. -
n →∞2+2×3n →∞2n -13
)+2×33
答案:C
二、填空题(本大题共3个小题,每小题6分,共18分) x 3-x 23
7.设a =lim ,则1+a +a +a +…=________. x →1x -1x 3-x x (x -1)(x +1)解析:∵a =lim lim x →1x -1x →1(x -1)(x +1)(x +1)1x =lim , x →1x +12∴1+a +a 2+a 3+…=2. 答案:2
⎧⎪a cos x (x ≥0)8.已知函数f (x ) =⎨2在点x =0处连续,则a =
⎪⎩x -1 (x <0)
________.
2
解析:由题意得x lim f (x ) =lim (x -1) =-1,x lim f (x ) =x lim a cos x →0-→0+→0+x →0-
=a ,由于f (x ) 在x =0处连续,因此a =-1.
答案:-1
b n +a n 9.已知log a b >1(0<a <1) ,则lim ________. n →∞b -a 解析:log a b >1,0<a <1得0<b <a , b n
(b +a a )+1
∴lim =lim 1. n →∞b n -a n n →∞b n
(a )-1
n
n
答案:-1
三、解答题(本大题共3个小题,共46分)
10.(本小题满分15分) 已知数列{a n }的前n 项和S n =(n 2+n )·3n . a (1)求lim n →∞S n
a a a (2)证明:+>3n .
12n S n -S n -1a 解:(1)因为lim lim n →∞S n →∞S
n
n
S n -1S n -1=lim (1-S ) =1-lim S , →∞n →∞n n n S n -11n -11lim lim , n →∞S n 3n →∞n +13a 2所以lim =n →∞S n 3
a (2)证明:当n =1时,=S 1=6>3;
1
S n -S n -1a a a S S 2-S 1
当n >1时,+…++…+
12n 12n 1111111S =(-)·S +(-)·S +…+[-]S -+·S >=121232(n -1)n n 1n n n n 2+n n
3>3n . ·n
a a a 综上知,当n ≥1时,+…+3n .
12n
11.(本小题满分15分) 已知{a n }是由非负整数组成的数列,满足a 1=0,a 2=3,a 3=2,a n +1a n =(a n -1+2)(a n -2+2) ,n =3,4,5,….
试用数学归纳法证明:a n =a n -2+2,n =3,4,5,…; 证明:①当n =3时,a 3=2=a 1+2,所以等式成立; ②假设当n =k ≥3时等式成立,即a k =a k -2+2. 而由题设有a k +1a k =(a k -1+2)(a k -2+2) . 由a k -2是非负整数,得a k =a k -2+2≠0, ∴a k +1=a k -1+2,
即当n =k +1时,等式也成立.
综合①②得:对任意正整数n ≥3, 都有a n =a n -2+2.
12.(本小题满分16分) 在数列{a n }中,a 1=1,当n ≥2时,a n ,1
S n ,S n -
2
(1)求a 2,a 3,a 4并推出a n 的表达式, (2)用数学归纳法证明所得的结论. 1
解:∵a n ,S n ,S n -
212
∴S n =a n (S n -n ≥2) ①
2
2
(1)由a 1=1,S 2=a 1+a 2=1+a 2代入①得a 2=-,
3212
由a 1=1,a 2=-S 3=a 3代入①得a 3=-.
3315同理可得a 4=-
2
,由此可推出 35
⎧1 (n =1)a n =⎨2
⎩-(2n -3)(2n -1) (n ≥2)
.
(2)证明:①当n =1、2、3、4时,由(1)知猜想成立, ②假设n =k (k ≥2,k ∈N *) 时, 2
a k =-
(2k -3)(2k -1)212
故S k =-·(S k -,
2(2k -3)(2k -1)∴(2k -3)(2k -1) S 2k +2S k -1=0, ∴S k =
11
,S k =-舍) . 2k -12k -3
由
12
S k +1=a k +1·(S k +1-得
2
2
1(S k +a k +1) =a k +1(a k +1+S k -) ,
2
2a k +1a k +11122
∴a ++a ++-+, (2k -1)2k 12k -1k 12k -12k 1-2
∴a k +1=,
[2(k +1)-3]·[2(k +1)-1]即n =k +1时,命题也成立.
⎧1 (n =1)
由①②知a n =⎨2
-
⎩(2n -3)(2n -1) (n ≥2)
对一切n ∈N *成立.
x -3x
1.lim (+) 等于( ) x →1x -1x -1A .1 B .2 C .3
D .4
x -3x (x +1)+x -3x 解析:∵
x -1x -1x -1x 2+2x -3(x -1)(x +3)x +3
==
x -1(x +1)(x -1)x +1x -3x +31+3x ∴lim (+=lim 2. x →1x →1x -1x 2-1x +11+1答案:B
(x -a )(x +b )2.函数f (x ) =x =1和x =2处的极限值都是0,
x -c 而在点x =-2处不连续,则不等式f (x ) >0的解集为( )
A .(-2,1) B .(-∞,-2) ∪(2,+∞)
C .(-2,1) ∪(2,+∞) D .(-∞,-2) ∪(1,2)
(x -1)(x -2)
解析:由已知得:f (x ) =,则f (x ) >0的解集为(-2,1)
x +2∪(2,+∞) .
答案:C
3.设常数a >0,(ax 2143
) 的展开式中x 3的系数为则li n m (a →∞2x
+a 2+a 3+…+a n ) =________.
5r r 4-r
解析:∵T r +1=C 4a x 8-2
数为
3222
C 4a =6a =,则
2
1a = 2
12
5r
8-=3,得r =2,∴x 3的系
2
23n
∴li n m (a +a +a +…+a ) =→∞
1.
11-2
答案:1
4.(精选考题·上海高考) 将直线l 1:x +y -1=0,l 2:nx +y -n =0,l 3:x +ny -n =0(n ∈N *,n ≥2) 围成的三角形面积记为S n ,则lim S n
n →∞=________.
解析:如图所示,
⎧⎪nx +y -n =0,由⎨得⎪x +ny -n =0⎩
⎧
⎨n ⎩y =n +1n x =,n +1
n n
则直线l 2、l 3交于点A ,) .
n +1n +1
1111n n n S n =1××1×-1×1=-
2n +12n +12n +12
lim S n =lim (
n →∞
n →∞
1n
-=lim n +12n →∞
111-1-. 12221+n
1
1
答案:2
43x 5.对于数列{x n },满足x 1=x n +1f (x ) 在(-2,2)
31+x 3n
1
上有意义,f (-=2,且满足x ,y ,z ∈(-2,2) 时,有f (x ) +f (y ) +f (z )
2x +y +z =f () 成立.
1+xyz
4
(1)求f ) 的值;
3
(2)求证:{f (x n )}是等比数列;
3n -2
(3)设{f (x n )}的前n 项和为S n ,求li n m S . →∞
n 解:(1)由x =y =z =0⇒3f (0)=f (0),∴f (0)=0, 令z =0,得f (x ) +f (y ) =f (x +y ) , 再令y =-x ,得f (x ) +f (-x ) =f (0)=0, 则f (-x ) =-f (x ) .
41111所以f () =f +f () +f =3f (322221
=-3f (-) =-6.
2
4
(2)证明:由x 1=,结合已知可得
30<x n +1=
3x 33
≤4<2; 11+x n 2x x n n
x n +x n +x n 3x 由f (x n +1) =f =f (=f (x n ) +f (x n ) +f (x n ) =3f (x n ) ,
1+x 31+x 3n n f (x n +1)
得=3,即{f (x n )}是以-6为首项,以3为公比的等比数列,f (x n )且f (x n ) =-2×3n .
a 1(1-q n )-6×(1-3n )
(3)由S n ==3×(1-3n ) ,
1-q 1-33n -23n -2
得lim S =lim =lim n →∞n →∞3×(1-3)n →∞n
1
. 133×(-1)
31-
23