1.用反证法证明“至多有两个解”的说法中,正C是直角,那么∠B一定是锐角. 确的第一步是假设( ) 证明:假设结论不成立,则∠B是A.有一个解 B.有两个解 ______或______. C.至少有三个解D.至少有两个解 2.否定“自然数a、b、c中恰有一个偶数”时的正确假设为( )A.a、b、c都是奇数 B.a、b、c或都是奇数或至少有两个偶数 C.a、b、c都是偶数 D.a、b、c中至少有两个偶数 3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,假设正确的是( ) A.假设三内角都不大于60° B.假设三内角都大于60° C.假设三内角至多有一个大于60° D.假设三内角至多有两个大于60° 4.用反证法证明命题:正整数X、Y、Z的和为偶数,那么X、Y、Z中至少有一个是偶数”时,下列假设正确的是( )A.假设a,b,c都是偶数 B.假设a、b,c都不是偶数 C.假设a,b,c至多有一个偶数 D.假设a,b,c至多有两个偶数 5.命题“△ABC中,若∠A>∠B,则a>b”的结论的否定应该是( ) A.a180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立; ②所以一个三角形中不能有两个直角; ③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.正确顺序的序号排列为____________,故只有a+b≥0.逆命题得证. 7.用反证法证明命题“ab C.a=b D.a=b或a>b 8.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设( ) A.a不垂直于c B.a,b都不垂直于c C.a⊥b D.a与b相交 9.用反证法证明命题“在一个三角形中,如果两条边不相等,那么它们所对的角也不相等”时,应假设___________. 10.用反证法证明“若│a│
证明:假设AB,CD相交于两个
交点O与O′,那么过O,O′两
点就有_____条直线,这与“过两点”矛盾,所以假设不成立,则.
12.完成下列证明:如上右图,在△ABC中,若∠
当∠B是____时,则_________,这与________矛盾; 当∠B是____时,则_________,这与________矛盾. 综上所述,假设不成立. ∴∠B一定是锐角. 13.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45•°”时,应假设_______________. 14.下列语句中,属于命题的是( ).A.直线AB和CD垂直吗 B.过线段AB的中点C画AB的垂线 C.同旁内角不互补,两直线不平行 D.连结A,B两点 15.下列命题中,属于假命题的是( ) A.若a⊥c,b⊥c,则a⊥b B.若a∥b,b∥c,则a∥c C.若a⊥c,b⊥c,则a∥b D.若a⊥c,b∥a,则b⊥c 16.下列四个命题中,属于真命题的是( ).A.互补的两角必有一条公共边 B.同旁内角互补C.同位角不相等,两直线不平行 D.一个角的补角大于这个角 17.命题“垂直于同一条直线的两条直线互相平行”的题设是( ).A.垂直 B.两条直线 C.同一条直线 D.两条直线垂直于同一条直线 18.“两直线平行,同位角互补”是______命题(填“真”或“假”). 19.•把命题“等角的补有相等”改写成“如果„„那么„„”的形式是结果_________,那么__________. 20.命题“直角都相等”的题设是________,结论是____________. 21.判断下列命题的真假,若是假命题,举出反例. (1)若两个角不是对顶角,则这两个角不相等; (2)若a+b=0,则ab=0; (3)若ab=0,则a+b=0.
1.用反证法证明“至多有两个解”的说法中,正C是直角,那么∠B一定是锐角. 确的第一步是假设( ) 证明:假设结论不成立,则∠B是A.有一个解 B.有两个解 ______或______. C.至少有三个解D.至少有两个解 2.否定“自然数a、b、c中恰有一个偶数”时的正确假设为( )A.a、b、c都是奇数 B.a、b、c或都是奇数或至少有两个偶数 C.a、b、c都是偶数 D.a、b、c中至少有两个偶数 3.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,假设正确的是( ) A.假设三内角都不大于60° B.假设三内角都大于60° C.假设三内角至多有一个大于60° D.假设三内角至多有两个大于60° 4.用反证法证明命题:正整数X、Y、Z的和为偶数,那么X、Y、Z中至少有一个是偶数”时,下列假设正确的是( )A.假设a,b,c都是偶数 B.假设a、b,c都不是偶数 C.假设a,b,c至多有一个偶数 D.假设a,b,c至多有两个偶数 5.命题“△ABC中,若∠A>∠B,则a>b”的结论的否定应该是( ) A.a180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立; ②所以一个三角形中不能有两个直角; ③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.正确顺序的序号排列为____________,故只有a+b≥0.逆命题得证. 7.用反证法证明命题“ab C.a=b D.a=b或a>b 8.用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设( ) A.a不垂直于c B.a,b都不垂直于c C.a⊥b D.a与b相交 9.用反证法证明命题“在一个三角形中,如果两条边不相等,那么它们所对的角也不相等”时,应假设___________. 10.用反证法证明“若│a│
证明:假设AB,CD相交于两个
交点O与O′,那么过O,O′两
点就有_____条直线,这与“过两点”矛盾,所以假设不成立,则.
12.完成下列证明:如上右图,在△ABC中,若∠
当∠B是____时,则_________,这与________矛盾; 当∠B是____时,则_________,这与________矛盾. 综上所述,假设不成立. ∴∠B一定是锐角. 13.若用反证法证明命题“在直角三角形中,至少有一个锐角不大于45•°”时,应假设_______________. 14.下列语句中,属于命题的是( ).A.直线AB和CD垂直吗 B.过线段AB的中点C画AB的垂线 C.同旁内角不互补,两直线不平行 D.连结A,B两点 15.下列命题中,属于假命题的是( ) A.若a⊥c,b⊥c,则a⊥b B.若a∥b,b∥c,则a∥c C.若a⊥c,b⊥c,则a∥b D.若a⊥c,b∥a,则b⊥c 16.下列四个命题中,属于真命题的是( ).A.互补的两角必有一条公共边 B.同旁内角互补C.同位角不相等,两直线不平行 D.一个角的补角大于这个角 17.命题“垂直于同一条直线的两条直线互相平行”的题设是( ).A.垂直 B.两条直线 C.同一条直线 D.两条直线垂直于同一条直线 18.“两直线平行,同位角互补”是______命题(填“真”或“假”). 19.•把命题“等角的补有相等”改写成“如果„„那么„„”的形式是结果_________,那么__________. 20.命题“直角都相等”的题设是________,结论是____________. 21.判断下列命题的真假,若是假命题,举出反例. (1)若两个角不是对顶角,则这两个角不相等; (2)若a+b=0,则ab=0; (3)若ab=0,则a+b=0.