圆.扇形.弓形的面积

圆、扇形、弓形的面积

圆、扇形、弓形的面积(一)

(一)复习(圆面积) 已知⊙O

半径为R,⊙O的面积S是多少?

S=πR2

我们在求面积时往往只需要求出圆的一部分面积,如图中阴影图形的面积.为了更好研究这样的图形

引出一个概念.

扇形:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.

提出新问题:已知⊙O半径为R,求圆心角n°的扇形的面积.

(二)迁移方法、探究新问题、归纳结论

1、迁移方法

教师引导学生迁移推导弧长公式的方法步骤:

(1)圆周长C=2πR;

(2)1°圆心角所对弧长= ;

(3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;

(4)n°圆心角所对弧长= .

归纳结论:若设⊙O半径为R, n°圆心角所对弧长l,则 (弧长公式)

2、探究新问题

教师组织学生对比研究:

(1)圆面积S=πR2;

(2)圆心角为1°的扇形的面积= ;

(3)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积n倍; (4)圆心角为n°的扇形的面积= . 归纳结论:若设⊙O半径为R,圆心角为n°的扇形的面积S扇形,则

S扇形= (扇形面积公式)

(三)理解公式

教师引导学生理解:

(1)在应用扇形的面积公式S扇形=

的; 进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位

(2)公式可以理解记忆(即按照上面推导过程记忆);

提出问题:扇形的面积公式与弧长公式有联系吗?(教师组织学生探讨)

S扇形= lR

想一想:这个公式与什么公式类似?(教师引导学生进行,或小组协作研究)

与三角形的面积公式类似,只要把扇形看成一个曲边三角形,把弧长l看作底,R看作高就行了.这样对比,帮助学生记忆公式.实际上,把扇形的弧分得越来越小,作经过各分点的半径,并顺次连结各分点,得到越来越多的小三角形,那么扇形的面积就是这些小三角形面积和的极限.要让学生在理解的基础上记住公式.

(四)应用

练习:1、已知扇形的圆心角为120°,半径为2,则这个扇形的面积,S扇=____.

2、已知扇形面积为 ,圆心角为120°,则这个扇形的半径R=____.

3、已知半径为2的扇形,面积为 ,则它的圆心角的度数=____.

4、已知半径为2cm的扇形,其弧长为 ,则这个扇形的面积,S扇=____.

5、已知半径为2的扇形,面积为 ,则这个扇形的弧长=____.

( ,2,120°, , )

例1、已知正三角形的边长为a,求它的内切圆与外接圆组成的圆环的面积.

(1)怎样求圆环的面积?

(2)如果设外接圆的半径为R,内切圆的半径为r, R、r与已知边长a有什么联系?

解:设正三角形的外接圆、内切圆的半径分别为R,r,面积为S1、S2.

S= .

∵ ,∴S= .

说明:要注意整体代入.

对于教材中的例2,可以采用典型例题中第4题,充分让学生探究.

(五)总结

知识:扇形及扇形面积公式S扇形= ,S扇形= lR.

圆、扇形、弓形的面积(二)

(一)概念与认识

弓形:由弦及其所对的弧组成的图形叫做弓形.

弦AB把圆分成两部分,这两部分都是弓形.弓形是一个最简单的组合图形之一.

(二)弓形的面积

提出问题:怎样求弓形的面积呢?

(1

)当弓形的弧小于半圆时,弓形的面积等于扇形面积与三角形面积的差;

(2)当弓形的弧大于半圆时,它的面积等于扇形面积与三角的面积的和;

(3)当弓形弧是半圆时,它的面积是圆面积的一半.

理解:如果组成弓形的弧是半圆,则此弓形面积是圆面积的一半;如果组成弓形的弧是劣弧则它的面积等于以此劣弧为弧的扇形面积减去三角形的面积;如果组成弓形的弧是优弧,则它的面积等于以此优弧为弧的扇形面积加上三角形的面积.也就是说:要计算弓形的面积,首先观察它的弧属于半圆?劣弧?优弧?只有对它分解正确才能保证计算结果的正确.

(三)应用与反思

练习:

(1)如果弓形的弧所对的圆心角为60°,弓形的弦长为a,那么这个弓形的面积等于_______;

(2)如果弓形的弧所对的圆心角为300°,弓形的弦长为a,那么这个弓形的面积等于_______.

(学生独立完成,巩固新知识)

例3、水平放着的圆柱形排水管的截面半径是0.6m,其中水面高是0.3m.求截面上有水的弓形的面积.(精确到0.01m) 教师引导学生并渗透数学建模思想,分析:

(1)“水平放着的圆柱形排水管的截面半径是0.6m”为你提供了什么数学信息?

(2)求截面上有水的弓形的面积为你提供什么信息?

(3)扇形、三角形、弓形是什么关系,选择什么公式计算?

学生完成解题过程,并归纳三角形OAB的面积的求解方法. 2

反思:①要注重题目的信息,处理信息;②归纳三角形OAB的面积的求解方法,根据条件特征,灵活应用公式;③弓形的面积可以选用图形分解法,将它转化为扇形与三角形的和或差来解决. 例4、已知:⊙O的半径为

R

,直径

AB⊥CD,以B为圆心,以BC为半径

作 .求 与 围成的新月牙形ACED的面积S.

解:∵ ,

有∵ ,

, ,

∴ .

组织学生反思解题方法:图形的分解与组合;公式的灵活应用.

(四)总结

1、弓形面积的计算:首先看弓形弧是半圆、优弧还是劣弧,从而选择分解方案;

2、应用弓形面积解决实际问题;

3、分解简单组合图形为规则圆形的和与差.

圆、扇形、弓形的面积(三)

(二)简单图形的分解和组合

1、图形的组合

让学生认识图形,并体验图形的外在美,激发学生的研究兴趣,促进学生的创造力.

2、提出问题:正方形的边长为a,以各边为直径,在正方形内画半圆,求所围成的图形(阴影部分)

的面积.

以小组的形式协作研究,班内交流思想和方法,教师组织.给学生发展思维的空间,充分发挥学生的主体作用. 归纳交流结论:

方案1

S阴=S正方形-4S空白.

方案2、S阴=4S瓣=4 (S半圆-S△AOB)

=2S圆-4S△AOB=2S圆-S正方形ABCD

方案3、S阴=4S瓣=4 (S半圆-S正方形AEOF)

=2S圆-4S正方形AEOF =2S圆-S正方形ABCD

方案4、S阴=4 S半圆-S正方形ABCD

„„„„„

反思:①对图形的分解不同,解题的难易程度不同,解题中要认真观察图形,追求最美的解法;

②图形的美也存在着内在的规律.

练习1:如图,圆的半径为r,分别以圆周上三个等分点为圆心,以r为半径画圆弧,则阴影部分面积是多少? 分析:连结OA,阴影部分可以看成由六个相同的弓形AmO组成.

解:连结AO,设P为其中一个三等分点,

连结PA、PO,则△POA是等边三角形.

说明:① 图形的分解与重新组合是重要方法;②本题还可以用下面方法求:若连结AB,用六个弓形APB的面积减去⊙O面积,也可得到阴影部分的面积.

练习2:教材P185练习第1题

例5、 已知⊙O的半径为R.

(1)求⊙O的内接正三角形、正六边形、正十二边形的周长与⊙O直径(2R)的比值;

(2)求⊙O的内接正三角形、正六边形、正十二边形的面积与圆面积的比值(保留两位小数).

例5的计算量较大,老师引导学生完成.并进一步巩固正多边形的计算知识,提高学生的计算能

力.

说明:从例5(1)可以看出:正多边形的周长与它的外接圆直径的比值,与直径的大小无关.实际上,古代数学家就是用逐次倍增正多边形的边数,使正多边形的周长趋近于圆的周长,从而求得了π的各种近似值.从(2)可以看出,增加圆内接正多边形的边数,可使它的面积趋近于圆的面积

(三)总结

1、简单组合图形的分解;

2、进一步巩固了正多边形的计算以,巩固了圆周长、弧长、圆面积、扇形面积、弓形面积的计算.

3、进一步理解了正多边形和圆的关系定理.

(四)作业 教材P185练习2、3;P187中8、11.

探究活动

四瓣花形

在边长为1的正方形中分别以四个顶点为圆心,以l为半径画弧所交成的“四瓣梅花”图形,如图 (1)所示. 再分别以四边中点为圆心,以相邻的两边中点连线为半径画弧而交成的“花形”,如图 (12)所示.

探讨:(1)两图中的圆弧均被互分为三等份.

(2)两朵“花”是相似图形.

(3)试求两“花”面积

提示:分析与解 (1)如图21所示,连结PD、PC,由PD=PC=DC知,∠PDC=60°.

从而,∠ADP=30°.

同理∠CDQ=30°.故∠ADP=∠CDQ=30

°,即,P、Q是AC弧的三等分点.

由对称性知,四段弧均被三等分.

如果证明了结论(2),则图 (12)也得相同结论.

(2)如图(22)所示,连结E、F、G、H所得的正方形EFGH内的花形恰为图 (1)的缩影.显然两“花”是相似图形;其相似比是AB ﹕EF = ﹕1.

(3)花形的面积为: , .

正多边形的有关计算

教学设计示例1

教学目标:

(1)会将正多边形的边长、半径、边心距和中心角、周长、面积等有关的计算问题转化为解直角三角形的问题;

(2)巩固学生解直角三角形的能力,培养学生正确迅速的运算能力;

(3)通过正多边形有关计算公式的推导,激发学生探索和创新.

教学重点:

把正多边形的有关计算问题转化为解直角三角形的问题.

教学难点:

正确地将正多边形的有关计算问题转化为解直角三角形的问题解决、综合运用几何知识准确计算.

(一)创设情境、观察、分析、归纳结论

1、情境一:给出图形.

问题1:正n边形内角的规律.

观察:在图形中,应用以有的知识(多边形内角和定理,多边形的每个内角都相等)得出新结论. 教师组织学生自主观察,学生回答.(正

n边形的每个内角都等于

2、情境二:给出图形. .)

问题2:每个图形的半径,分别将它们分割成什么样的三角形?它们有什么规律?

教师引导学生观察,学生回答.

观察:三角形的形状,三角形的个数.

归纳:正n边形的n条半径分正n边形为n个全等的等腰三角形.

3、情境三:给出图形.

问题3:作每个正多边形的边心距,又有什么规律?

观察、归纳:这些边心距又把这n个等腰三角形分成了个直角三角形,这些直角三角形也是全等的.

(二)定理、理解、应用:

1、定理: 正n边形的半径和边心距把正n边形分成2n 个全等的直角三角形.

2、理解:定理的实质是把正多边形的问题向直角三角形转化.

由于这些直角三角形的斜边都是正n边形的半径R,一条直角边是正n边形的边心距rn,另一条直角边是正n边形边长an的一半,一个锐角是正n边形中心角

角三角形问题.

3、应用: 的一半,即 ,所以,根据上面定理就可以把正n边形的有关计算归结为解直

例1、已知正六边形ABCDEF的半径为R,求这个正六边形的边长、周长P6和面积S6.

教师引导学生分析解题思路: n=6 =30°,又半径为R a6 、r6. P6、S6

学生完成解题过程,并关注学生解直角三角形的能力.

解:作半径OA、OB;作OG⊥AB,垂足为G,得Rt△OGB.

∵∠GOB= ,

∴a6 =2·Rsin30°=R,

∴P6=6·a6=6R,

∵r6=Rcos30°= ,

∴ .

归纳:如果用Pn表示正n边形的周长,由例1可知,正n边形的面积S6= Pn rn.

4、研究:(应用例1的方法进一步研究)

问题:已知圆的半径为R,求它的内接正三角形、正方形的边长、边心距及面积.

学生以小组进行研究,并初步归纳:

; ; ; ;

; .

上述公式是运用解直角三角形的方法得到的.

通过上式六公式看出,只要给定两个条件,则正多边形就完全确定了.例如:(1)圆的半径或边数;(2)圆的半径和边心距;

(3)边长及边心距,就可以确定正多边形的其它元素.

(三)小节

知识:定理、正三角形、正方形、正六边形的元素的计算问题.

思想:转化思想.

能力:解直角三角形的能力、计算能力;观察、分析、研究、归纳能力.

(四)作业 归纳正三角形、正方形、正六边形以及正n边形的有关计算公式. (一)知识回顾 (

1

)方法:运用将正多边形分割成三角形的方法,把正多边形有关计算转化为解直角三角形问题.

(2)知识:正三角形、正方形、正六边形的有关计算问题,正多边形的有关计算.

; ; ; ;

; .

组织学生填写教材P165练习中第2题的表格.

(二)正多边形的应用

正多边形的有关计算方法是基本的几何计算知识之一,掌握这些知识,一方面可以为学生进一

步学习打好基础,另一方面,这些知识在生产和生活中常常会用到,掌握后对学生参加实践活动具

有实用意义.

例2、在一种联合收割机上,拨禾轮的侧面是正五边形,测得这个正五边形的边长是48cm,求

它的半径R5和边心距r5(精确到0.1cm).

解:设正五边形为ABCDE,它的中心为点O,连接OA,作OF⊥AB,垂足为F,则OA=R5,OF=r5,∠AOF= . ∵AF= (cm),∴R5= (cm).

r5= (cm).

答:这个正多边形的半径约为40.8cm,边心距约为33.0cm

建议:①组织学生,使学生主动参与教学;②渗透简单的数学建模思想和实际应用意识;③对与本题除解直角三角形知识外,还要主要学生的近似计算能力的培养.

以小组的学习形式,每个小组自己举一个实际生活中的例子加以研究,班内交流.

例3、已知:正十边形的半径为R,求证:它的边长

教师引导学生: .

(1)∠AOB=? (2)在△OAB中,∠A与∠B的度数?

(3)如果BM平分∠OBA交OA于M,你发现图形中相等的线段有哪些?你发现图中三角形有什么关系?

(4)已知半径为R,你能不通过解三角形的方法求出AB吗?怎么计算?

解:如图,设AB=a10.作∠OBA的平分线BM,交OA于点M,则

∠AOB=∠1=∠2=36°,∠OAB=∠3=72°.

∴OM=MB=AB= a10.

△ OAB∽△BAM OA:AB=BA:AM,即R :a10= a10:(R- a10),整理,得

, (取正根).

由例3的结论可得 .

回顾:黄金分割线段.AD=DC·AC,也就是说点D将线段AC分为两部分,其中较长的线段AD是较小线段CD与全线段AC的比例中项.顶角36°角的等腰三角形的底边长是它腰长的黄金分割线段.

反思:解决方法.在推导a10与R关系时,辅助线角平分线是怎么想出来的.解决方法是复习等腰三角形的性质、判定及相似三角形的有关知识.

练习P.165中练习1

(三)总结

(1)应用正多边形的有关计算解决实际问题; 2

(2)综合代数列方程的方法证明了

(四)作业

教材P173中8、9、10、11、12.

探究活动 .

已知下列图形分别为正方形、正五边形、正六边形,试计算角 、 、 的大小.

探究它们存在什么规律?你能证明吗?

(提示:

.)

正多边形和圆

教学设计示例1

教学目标:

(1)使学生理解正多边形概念,初步掌握正多边形与圆的关系的第一个定理;

(2)通过正多边形定义教学,培养学生归纳能力;通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力;

(3)进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想.

教学重点:

正多边形的概念与正多边形和圆的关系的第一个定理.

教学难点:

对定理的理解以及定理的证明方法.

教学活动设计:

(一)观察、分析、归纳:

观察、分析:1.等边三角形的边、角各有什么性质?

2.正方形的边、角各有什么性质?

归纳:等边三角形与正方形的边、角性质的共同点.

教师组织学生进行,并可以提问学生问题.

(二)正多边形的概念: (1)概念:各边相等、各角也相等的多边形叫做正多边形.如果一个正多边形有n(n

3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.

(2)概念理解:

①请同学们举例,自己在日常生活中见过的正多边形.(正三角形、正方形、正六边形,„„.)

②矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?

矩形不是正多边形,因为边不一定相等.菱形不是正多边形,因为角不一定相等.

(三)分析、发现:

问题:正多边形与圆有什么关系呢?

发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.

分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?

(四)多边形和圆的关系的定理

定理:把圆分成n(n≥3)等份:

(1)依次连结各分点所得的多边形是这个圆的内接正n边形;

(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.

我们以n=5的情况进行证明.

已知:⊙O中,

的切线. = = = = ,TP、PQ、QR、RS、ST分别是经过点A、B、C、D、E的⊙O

求证:(1)五边形ABCDE是⊙O的内接正五边形;

(2)五边形PQRST是⊙O的外切正五边形.

证明:(略)

引导学生分析、归纳证明思路:

弧相等

说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:①依次连结圆的n(n≥3)等分点,所得的多边形是正多迫形;②经过圆的n(n≥3)等分点作圆的切线,相邻切线相交成的多边形是正多边形.

(2)要注意定理中的“依次”、“相邻”等条件.

(3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据它作正多边形.

(五)初步应用

P157练习

1、(口答)矩形是正多边形吗?菱形是正多边形吗?为什么?

2.求证:正五边形的对角线相等.

3.如图,已知点A、B、C、D、E是⊙O的5等分点,画出⊙O的内接和外切正五边形.

(六)小结:

知识:(1)正多边形的概念.(2)n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形.

能力和方法:正多边形的证明方法和思路,正多边形判断能力

(七)作业 教材P172习题A组2、3.

教学设计示例2

教学目标:

(1)理解正多边形与圆的关系定理;

(2)理解正多边形的对称性和边数相同的正多边形相似的性质;

(3)理解正多边形的中心、半径、边心距、中心角等概念;

(4)通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;

教学重点:

理解正多边形的中心、半径、边心距、中心角的概念和性质定理.

教学难点:

对“正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆”的理解.

教学活动设计:

(一)提出问题:

问题:上节课我们学习了正多边形的定义,并且知道只要n等分(n≥3)圆周就可以得到的圆的内接正n边形和圆的外切正n边形.反过来,是否每一个正多边形都有一个外接圆和内切圆呢?

(二)实践与探究:

组织学生自己完成以下活动. 实践:1、作已知三角形的外接圆,圆心是已知三角形的什么线的交点?半径是什么? 2、作已知三角形的内切圆,圆心是已知三角形的什么线的交点?半径是什么?

探究1:当三角形为正三角形时,它的外接圆和内切圆有什么关系?

探究2:(1)正方形有外接圆吗?若有外接圆的圆心在哪?(正方形对角线的交点.)

(2)根据正方形的哪个性质证明对角线的交点是它的外接圆圆心?

(3)正方形有内切圆吗?圆心在哪?半径是谁?

(三)拓展、推理、归纳:

(1)拓展、推理:

过正五边形ABCDE的顶点A、B、C、作⊙O连结OA、OB、OC、OD.

同理,点E在⊙O上.

所以正五边形ABCDE有一个外接圆⊙O.

因为正五边形ABCDE的各边是⊙O中相等的弦,所以弦心距相等.因此,以点O为圆心,以弦心距(OH)为半径的圆与正五边形的各边都相切.可见正五边形ABCDE还有一个以O为圆心的内切圆.

(2)归纳:

正五边形的任意三个顶点都不在同一条直线上

它的任意三个顶点确定一个圆,即确定了圆心和半径. 其他两个顶点到圆心的距离都等于半径. 正五边形的各顶点共圆. 正五边形有外接圆. 圆心到各边的距离相等.

正五边形有内切圆,它的圆心是外接圆的圆心,半径是圆心到任意一边的距离.

照此法证明,正六边形、正七边形、„正n边形都有一个外接圆和内切圆.

定理: 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.

正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距.正多边形各边所对的外接圆的圆心角都相等.正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角.正n边形的每个中心角都等于 .

(3)巩固练习:

1、正方形ABCD的外接圆圆心O叫做正方形ABCD的______.

2、正方形ABCD的内切圆⊙O的半径OE叫做正方形ABCD的______.

3、若正六边形的边长为1,那么正六边形的中心角是______度,半径是______,边心距是______,它的每一个内角是______.

4、正n边形的一个外角度数与它的______角的度数相等.

(四)正多边形的性质:

1、各边都相等.

2、各角都相等.

观察正三角形、正方形、正五边形、正六边形是不是轴对称图形?如果是,它们又各应有几条对称轴?

3、正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.边数是偶数的正多边形还是中心对称图形,它的中心就是对称中心.

4、边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.

5、任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.

以上性质,教师引导学生自主探究和归纳,可以以小组的形式研究,这样既培养学生的探究问题的能力、培养学生的研究意识,也培养学生的协作学习精神.

(五)总结

知识:(1)正多边形的中心、半径、边心距、中心角等概念;

(2)正多边形与圆的关系定理、正多边形的性质.

能力:探索、推理、归纳等能力.

方法:证明点共圆的方法.

(六)作业 P159中练习1、2、3. 教学设计示例3

教学目标:

(1)巩固正多边形的有关概念、性质和定理;

(2)通过证明和画图提高学生综合运用分析问题和解决问题的能力;

(3)通过例题的研究,培养学生的探索精神和不断更新的创新意识及选优意识.

教学重点:

综合运用正多边形的有关概念和正多边形与圆关系的有关定理来解决问题,要理解通过对具体图形的证明所给出的一般的证明方法,还要注意与前面所学知识的联想和化归.

教学难点:综合运用知识证题.

教学活动设计:

(一)知识回顾

1.什么叫做正多边形?

2.什么是正多边形的中心、半径、边心距、中心角?

3.正多边形有哪些性质?(边、角、对称性、相似性、有两圆且同心)

4.正n边形的每个中心角都等于 .

5.正多边形的有关的定理.

(二)例题研究:

例1、求证:各角相等的圆外切五边形是正五边形.

已知:如图,在五边形ABCDE中,∠A=∠B=∠C=∠D=∠E,边AB、BC、CD、DE、EA与⊙O分别相切于A’、B’、C’、D’、E’.

求证:五边形ABCDE是正五边形.

分析:要证五边形ABCDE是正五边形,已知已具备了五个角相等,显然证五条边相等即可.

教师引导学生分析,学生动手证明.

证法1:连结OA、OB、OC,

∵五边形ABCDE外切于⊙O. ∴∠BAO=∠OAE,∠OCB=∠

OCD

,∠OBA=

OBC,

又∵∠BAE=∠ABC=∠BCD.

∴∠BAO=∠OCB.

又∵OB=OB

∴△ABO≌△CBO,∴AB=BC,同理 BC=CD=DE=EA.

∴五边形ABCDE是正五边形.

证法2:作⊙O的半径OA’、OB’、OC’,则

OA’⊥AB,OB’⊥BC、OC’⊥CD.

∠B=∠C ∠1=∠2 = .

同理 = = = ,

即切点A’、B’、C’、D’、E’是⊙O的5等分点.所以五边形ABCDE是正五边形.

反思:判定正多边形除了用定义外,还常常用正多边形与圆的关系定理1来判定,证明关键是证

出各切点为圆的等分点.由同样的方法还可以证明“各角相等的圆外切n边形是正边形”.

此外,用正多边形与圆的关系定理1中“把圆n等分,依次连结各分点,所得的多边形是圆内接

正多边形”还可以证明“各边相等的圆内接n边形是正n边形”,证明关键是证出各接点是圆的等分点。

拓展1:已知:如图,五边形ABCDE内接于⊙O,AB=BC=CD=DE=EA.

求证:五边形ABCDE是正五边形.(证明略)

分小组进行证明竞赛,并归纳学生的证明方法.

拓展2:已知:如图,同心圆⊙O分别为五边形ABCDE内切圆和外接圆,切点分别为F、G、H、M、

N.

求证:五边形ABCDE是正五边形.(证明略)

学生独立完成证明过程,对B、C层学生教师给予及时指导,最后可以应用实物投影展示学生的证明成果,特别是对证明方法好,步骤推理严密的学生给予表扬.

例2、已知:正六边形ABCDEF.

求作:正六边形ABCDEF的外接圆和内切圆.

作法:1过A、B、C

三点作⊙O

.⊙O就是所求作的正六边形的外接圆.

2、以O为圆心,以O到AB的距离(OH)为半径作圆,所作的圆就是正六边形的内切圆. 用同样的方法,我们可以作正n边形的外接圆与内切圆.

练习:P161

1、求证:各边相等的圆内接多边形是正多边形.

2、(口答)下列命题是真命题吗?如果不是,举出一个反例.

(1)各边相等的圆外切多边形是正多边形;

(2)各角相等的圆内接多边形是正多边形.

3、已知:正方形ABCD.求作:正方形ABCD的外接圆与内切圆.

(三)小结

知识:复习了正多边形的定义、概念、性质和判定方法.

能力与方法:重点复习了正多边形的判定.正多边形的外接圆与内切圆的画法.

(四)作业

教材P172习题4、5;另A层学生:P174B组3、4.

探究活动

折叠问题:(1)想一想:怎样把一个正三角形纸片折叠一个最

大的正六边形.

(提示:①对折;②再折使A、B、C分别与O点重合即可)

(2)想一想:能否把一个边长为8正方形纸片折叠一个边长为4

的正六边形.

(提示:可以.主要应用把一个直角三等分的原理.参考图形如下:

①对折成小正方形ABCD;

②对折小正方形ABCD的中线;

③对折使点B在小正方形ABCD的中线上(即B’);

④则B、B’为正六边形的两个顶点,这样可得满足条件的正六边形.)

探究问题: (安徽省2002)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论: 甲同学:这种多边形不一定是正多边形,如圆内接矩形; 乙同学:我发现边数是6时,它也不一定是正多边形.如图一,△ABC是正三角形,

形, = = ,可以证明六边形ADBECF的各内角相等,但它未必是正六边形;

丙同学:我能证明,边数是5时,它是正多边形.我想,边数是7时,它可能也 是正多边形.

(1)请你说明乙同学构造的六边形各内角相等.

(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图二)是正七边形(不必写已知、求证).

(3)根据以上探索过程,提出你的猜想(不必证明).

(1)[说明]

(2)[证明]

(3)[猜想]

解:(1)由图知∠AFC对

的 = + = .因为 + = = ,而∠DAF对 .所以∠AFC=∠DAF.

同理可证,其余各角都等于∠AFC.所以,图1中六边形各内角相.

(2)因为∠A对 ,∠B对 ,又因为∠A=∠B,所以 = .所以 = . 同理 = = = = = = .所以 七边形ABCDEFG是正七边形.

猜想:当边数是奇数时(或当边数是3,5,7,9,„„时),各内角相等的圆内接多边形是正多边形.

相切

若直线与曲线交于两点,且这两点无限相近,趋于重合时,该直线就是该曲线在该点的切线。这个交点即为切点。初中数学中,若一条直线垂直于圆的半径且过圆的半径的外端,称这条直线与圆相切。 相切是平面上的圆与另一个几何形状的一种位置关系。

这里,“另一个几何形状”是圆或直线时,两者之间只有一个交点(公共点),当“另一个几何形状”是三角形时,圆与三角形的每条边之间仅有一个交点。这个交点即为

切点

直线和圆相切

直线和圆有三种位置关系,即直线和圆相离、相切、相交.各种位置关系是通过直线与圆的公共点的个数来定义的。

直线和圆有唯一公共点,叫做直线和圆相切

切线的性质:圆的切线垂直于经过切点的半径.

(1)切线和圆有唯一公共点;(切线的定义)

(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

(3)切线垂直于过切点的半径;(切线的性质定理)

(4)经过圆心垂直于切线的直线必过切点;(推论1)

(5)经过切点垂直于切线的直线必过圆心.(推论2)

圆和圆的位置关系

(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(图(1))

(2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.(图(2))

(3)相交:两个圆有两个公共点,此时叫做这两个圆相交.(图(3))

(4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.(图(4))

(5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图(5)).两圆同心是两圆内含的一个特例. (图(6))

设两圆 半径分别为 R和 r, 圆心距⊙1⊙2=d,则

(1)两圆外离⇔d>R+r;

(2)两圆外切 ⇔d=R+r;

(3)两圆相交 ⇔R-r

(4)两圆内切 ⇔d=R-r;

(5)两圆内含 ⇔0≤d

归纳:(1)两圆外离与内含时,两圆都无公共点.

(2)两圆外切和内切统称两圆相切,即外切和内切的共性是公共点的个数唯一

(3)两圆位置关系的五种情况也可归纳为三类:相离(外离和内含);相交;相切(外切和内切).

和两圆都相切的直线,叫做两圆的公切线.

(1)外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线.

(2)内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线.

(3)公切线的长:公切线上两个切点的距离叫做公切线的长.

公切线长的计算,都转化为解直角三角形,故解题思路主要是构造直角三角形. 两圆的公切线及公切线长

(1)两圆的公切线:和两圆都相切的直线,叫做两圆的公切线;

(2)两圆的 外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线;

(3)两圆的 内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线;

(4) 公切线长:公切线上两个切点间的距离叫公切线长.

(5)公切线公式: l外=d2-(R-r)2, l内=d2-(R+r)2.

公切线长定理

(1)如果两圆有两条外公切线,则它们的外公切线长相等;如果两圆有两条内公切线,那么这两条内公切线长相等;

(2)如果两条外(内) 公切线相交,那么交点一定在两圆的 连心线上,并且连心线平分这两条外(内)公切线的 夹角.

如果两个圆相切,那么切点一定在连心线上.

定理:相交两圆的连心线垂直平分公共弦.

相交两圆,也构成对称图形,它是以连心线为对称轴的轴对称图形.

圆、扇形、弓形的面积

圆、扇形、弓形的面积(一)

(一)复习(圆面积) 已知⊙O

半径为R,⊙O的面积S是多少?

S=πR2

我们在求面积时往往只需要求出圆的一部分面积,如图中阴影图形的面积.为了更好研究这样的图形

引出一个概念.

扇形:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.

提出新问题:已知⊙O半径为R,求圆心角n°的扇形的面积.

(二)迁移方法、探究新问题、归纳结论

1、迁移方法

教师引导学生迁移推导弧长公式的方法步骤:

(1)圆周长C=2πR;

(2)1°圆心角所对弧长= ;

(3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;

(4)n°圆心角所对弧长= .

归纳结论:若设⊙O半径为R, n°圆心角所对弧长l,则 (弧长公式)

2、探究新问题

教师组织学生对比研究:

(1)圆面积S=πR2;

(2)圆心角为1°的扇形的面积= ;

(3)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积n倍; (4)圆心角为n°的扇形的面积= . 归纳结论:若设⊙O半径为R,圆心角为n°的扇形的面积S扇形,则

S扇形= (扇形面积公式)

(三)理解公式

教师引导学生理解:

(1)在应用扇形的面积公式S扇形=

的; 进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位

(2)公式可以理解记忆(即按照上面推导过程记忆);

提出问题:扇形的面积公式与弧长公式有联系吗?(教师组织学生探讨)

S扇形= lR

想一想:这个公式与什么公式类似?(教师引导学生进行,或小组协作研究)

与三角形的面积公式类似,只要把扇形看成一个曲边三角形,把弧长l看作底,R看作高就行了.这样对比,帮助学生记忆公式.实际上,把扇形的弧分得越来越小,作经过各分点的半径,并顺次连结各分点,得到越来越多的小三角形,那么扇形的面积就是这些小三角形面积和的极限.要让学生在理解的基础上记住公式.

(四)应用

练习:1、已知扇形的圆心角为120°,半径为2,则这个扇形的面积,S扇=____.

2、已知扇形面积为 ,圆心角为120°,则这个扇形的半径R=____.

3、已知半径为2的扇形,面积为 ,则它的圆心角的度数=____.

4、已知半径为2cm的扇形,其弧长为 ,则这个扇形的面积,S扇=____.

5、已知半径为2的扇形,面积为 ,则这个扇形的弧长=____.

( ,2,120°, , )

例1、已知正三角形的边长为a,求它的内切圆与外接圆组成的圆环的面积.

(1)怎样求圆环的面积?

(2)如果设外接圆的半径为R,内切圆的半径为r, R、r与已知边长a有什么联系?

解:设正三角形的外接圆、内切圆的半径分别为R,r,面积为S1、S2.

S= .

∵ ,∴S= .

说明:要注意整体代入.

对于教材中的例2,可以采用典型例题中第4题,充分让学生探究.

(五)总结

知识:扇形及扇形面积公式S扇形= ,S扇形= lR.

圆、扇形、弓形的面积(二)

(一)概念与认识

弓形:由弦及其所对的弧组成的图形叫做弓形.

弦AB把圆分成两部分,这两部分都是弓形.弓形是一个最简单的组合图形之一.

(二)弓形的面积

提出问题:怎样求弓形的面积呢?

(1

)当弓形的弧小于半圆时,弓形的面积等于扇形面积与三角形面积的差;

(2)当弓形的弧大于半圆时,它的面积等于扇形面积与三角的面积的和;

(3)当弓形弧是半圆时,它的面积是圆面积的一半.

理解:如果组成弓形的弧是半圆,则此弓形面积是圆面积的一半;如果组成弓形的弧是劣弧则它的面积等于以此劣弧为弧的扇形面积减去三角形的面积;如果组成弓形的弧是优弧,则它的面积等于以此优弧为弧的扇形面积加上三角形的面积.也就是说:要计算弓形的面积,首先观察它的弧属于半圆?劣弧?优弧?只有对它分解正确才能保证计算结果的正确.

(三)应用与反思

练习:

(1)如果弓形的弧所对的圆心角为60°,弓形的弦长为a,那么这个弓形的面积等于_______;

(2)如果弓形的弧所对的圆心角为300°,弓形的弦长为a,那么这个弓形的面积等于_______.

(学生独立完成,巩固新知识)

例3、水平放着的圆柱形排水管的截面半径是0.6m,其中水面高是0.3m.求截面上有水的弓形的面积.(精确到0.01m) 教师引导学生并渗透数学建模思想,分析:

(1)“水平放着的圆柱形排水管的截面半径是0.6m”为你提供了什么数学信息?

(2)求截面上有水的弓形的面积为你提供什么信息?

(3)扇形、三角形、弓形是什么关系,选择什么公式计算?

学生完成解题过程,并归纳三角形OAB的面积的求解方法. 2

反思:①要注重题目的信息,处理信息;②归纳三角形OAB的面积的求解方法,根据条件特征,灵活应用公式;③弓形的面积可以选用图形分解法,将它转化为扇形与三角形的和或差来解决. 例4、已知:⊙O的半径为

R

,直径

AB⊥CD,以B为圆心,以BC为半径

作 .求 与 围成的新月牙形ACED的面积S.

解:∵ ,

有∵ ,

, ,

∴ .

组织学生反思解题方法:图形的分解与组合;公式的灵活应用.

(四)总结

1、弓形面积的计算:首先看弓形弧是半圆、优弧还是劣弧,从而选择分解方案;

2、应用弓形面积解决实际问题;

3、分解简单组合图形为规则圆形的和与差.

圆、扇形、弓形的面积(三)

(二)简单图形的分解和组合

1、图形的组合

让学生认识图形,并体验图形的外在美,激发学生的研究兴趣,促进学生的创造力.

2、提出问题:正方形的边长为a,以各边为直径,在正方形内画半圆,求所围成的图形(阴影部分)

的面积.

以小组的形式协作研究,班内交流思想和方法,教师组织.给学生发展思维的空间,充分发挥学生的主体作用. 归纳交流结论:

方案1

S阴=S正方形-4S空白.

方案2、S阴=4S瓣=4 (S半圆-S△AOB)

=2S圆-4S△AOB=2S圆-S正方形ABCD

方案3、S阴=4S瓣=4 (S半圆-S正方形AEOF)

=2S圆-4S正方形AEOF =2S圆-S正方形ABCD

方案4、S阴=4 S半圆-S正方形ABCD

„„„„„

反思:①对图形的分解不同,解题的难易程度不同,解题中要认真观察图形,追求最美的解法;

②图形的美也存在着内在的规律.

练习1:如图,圆的半径为r,分别以圆周上三个等分点为圆心,以r为半径画圆弧,则阴影部分面积是多少? 分析:连结OA,阴影部分可以看成由六个相同的弓形AmO组成.

解:连结AO,设P为其中一个三等分点,

连结PA、PO,则△POA是等边三角形.

说明:① 图形的分解与重新组合是重要方法;②本题还可以用下面方法求:若连结AB,用六个弓形APB的面积减去⊙O面积,也可得到阴影部分的面积.

练习2:教材P185练习第1题

例5、 已知⊙O的半径为R.

(1)求⊙O的内接正三角形、正六边形、正十二边形的周长与⊙O直径(2R)的比值;

(2)求⊙O的内接正三角形、正六边形、正十二边形的面积与圆面积的比值(保留两位小数).

例5的计算量较大,老师引导学生完成.并进一步巩固正多边形的计算知识,提高学生的计算能

力.

说明:从例5(1)可以看出:正多边形的周长与它的外接圆直径的比值,与直径的大小无关.实际上,古代数学家就是用逐次倍增正多边形的边数,使正多边形的周长趋近于圆的周长,从而求得了π的各种近似值.从(2)可以看出,增加圆内接正多边形的边数,可使它的面积趋近于圆的面积

(三)总结

1、简单组合图形的分解;

2、进一步巩固了正多边形的计算以,巩固了圆周长、弧长、圆面积、扇形面积、弓形面积的计算.

3、进一步理解了正多边形和圆的关系定理.

(四)作业 教材P185练习2、3;P187中8、11.

探究活动

四瓣花形

在边长为1的正方形中分别以四个顶点为圆心,以l为半径画弧所交成的“四瓣梅花”图形,如图 (1)所示. 再分别以四边中点为圆心,以相邻的两边中点连线为半径画弧而交成的“花形”,如图 (12)所示.

探讨:(1)两图中的圆弧均被互分为三等份.

(2)两朵“花”是相似图形.

(3)试求两“花”面积

提示:分析与解 (1)如图21所示,连结PD、PC,由PD=PC=DC知,∠PDC=60°.

从而,∠ADP=30°.

同理∠CDQ=30°.故∠ADP=∠CDQ=30

°,即,P、Q是AC弧的三等分点.

由对称性知,四段弧均被三等分.

如果证明了结论(2),则图 (12)也得相同结论.

(2)如图(22)所示,连结E、F、G、H所得的正方形EFGH内的花形恰为图 (1)的缩影.显然两“花”是相似图形;其相似比是AB ﹕EF = ﹕1.

(3)花形的面积为: , .

正多边形的有关计算

教学设计示例1

教学目标:

(1)会将正多边形的边长、半径、边心距和中心角、周长、面积等有关的计算问题转化为解直角三角形的问题;

(2)巩固学生解直角三角形的能力,培养学生正确迅速的运算能力;

(3)通过正多边形有关计算公式的推导,激发学生探索和创新.

教学重点:

把正多边形的有关计算问题转化为解直角三角形的问题.

教学难点:

正确地将正多边形的有关计算问题转化为解直角三角形的问题解决、综合运用几何知识准确计算.

(一)创设情境、观察、分析、归纳结论

1、情境一:给出图形.

问题1:正n边形内角的规律.

观察:在图形中,应用以有的知识(多边形内角和定理,多边形的每个内角都相等)得出新结论. 教师组织学生自主观察,学生回答.(正

n边形的每个内角都等于

2、情境二:给出图形. .)

问题2:每个图形的半径,分别将它们分割成什么样的三角形?它们有什么规律?

教师引导学生观察,学生回答.

观察:三角形的形状,三角形的个数.

归纳:正n边形的n条半径分正n边形为n个全等的等腰三角形.

3、情境三:给出图形.

问题3:作每个正多边形的边心距,又有什么规律?

观察、归纳:这些边心距又把这n个等腰三角形分成了个直角三角形,这些直角三角形也是全等的.

(二)定理、理解、应用:

1、定理: 正n边形的半径和边心距把正n边形分成2n 个全等的直角三角形.

2、理解:定理的实质是把正多边形的问题向直角三角形转化.

由于这些直角三角形的斜边都是正n边形的半径R,一条直角边是正n边形的边心距rn,另一条直角边是正n边形边长an的一半,一个锐角是正n边形中心角

角三角形问题.

3、应用: 的一半,即 ,所以,根据上面定理就可以把正n边形的有关计算归结为解直

例1、已知正六边形ABCDEF的半径为R,求这个正六边形的边长、周长P6和面积S6.

教师引导学生分析解题思路: n=6 =30°,又半径为R a6 、r6. P6、S6

学生完成解题过程,并关注学生解直角三角形的能力.

解:作半径OA、OB;作OG⊥AB,垂足为G,得Rt△OGB.

∵∠GOB= ,

∴a6 =2·Rsin30°=R,

∴P6=6·a6=6R,

∵r6=Rcos30°= ,

∴ .

归纳:如果用Pn表示正n边形的周长,由例1可知,正n边形的面积S6= Pn rn.

4、研究:(应用例1的方法进一步研究)

问题:已知圆的半径为R,求它的内接正三角形、正方形的边长、边心距及面积.

学生以小组进行研究,并初步归纳:

; ; ; ;

; .

上述公式是运用解直角三角形的方法得到的.

通过上式六公式看出,只要给定两个条件,则正多边形就完全确定了.例如:(1)圆的半径或边数;(2)圆的半径和边心距;

(3)边长及边心距,就可以确定正多边形的其它元素.

(三)小节

知识:定理、正三角形、正方形、正六边形的元素的计算问题.

思想:转化思想.

能力:解直角三角形的能力、计算能力;观察、分析、研究、归纳能力.

(四)作业 归纳正三角形、正方形、正六边形以及正n边形的有关计算公式. (一)知识回顾 (

1

)方法:运用将正多边形分割成三角形的方法,把正多边形有关计算转化为解直角三角形问题.

(2)知识:正三角形、正方形、正六边形的有关计算问题,正多边形的有关计算.

; ; ; ;

; .

组织学生填写教材P165练习中第2题的表格.

(二)正多边形的应用

正多边形的有关计算方法是基本的几何计算知识之一,掌握这些知识,一方面可以为学生进一

步学习打好基础,另一方面,这些知识在生产和生活中常常会用到,掌握后对学生参加实践活动具

有实用意义.

例2、在一种联合收割机上,拨禾轮的侧面是正五边形,测得这个正五边形的边长是48cm,求

它的半径R5和边心距r5(精确到0.1cm).

解:设正五边形为ABCDE,它的中心为点O,连接OA,作OF⊥AB,垂足为F,则OA=R5,OF=r5,∠AOF= . ∵AF= (cm),∴R5= (cm).

r5= (cm).

答:这个正多边形的半径约为40.8cm,边心距约为33.0cm

建议:①组织学生,使学生主动参与教学;②渗透简单的数学建模思想和实际应用意识;③对与本题除解直角三角形知识外,还要主要学生的近似计算能力的培养.

以小组的学习形式,每个小组自己举一个实际生活中的例子加以研究,班内交流.

例3、已知:正十边形的半径为R,求证:它的边长

教师引导学生: .

(1)∠AOB=? (2)在△OAB中,∠A与∠B的度数?

(3)如果BM平分∠OBA交OA于M,你发现图形中相等的线段有哪些?你发现图中三角形有什么关系?

(4)已知半径为R,你能不通过解三角形的方法求出AB吗?怎么计算?

解:如图,设AB=a10.作∠OBA的平分线BM,交OA于点M,则

∠AOB=∠1=∠2=36°,∠OAB=∠3=72°.

∴OM=MB=AB= a10.

△ OAB∽△BAM OA:AB=BA:AM,即R :a10= a10:(R- a10),整理,得

, (取正根).

由例3的结论可得 .

回顾:黄金分割线段.AD=DC·AC,也就是说点D将线段AC分为两部分,其中较长的线段AD是较小线段CD与全线段AC的比例中项.顶角36°角的等腰三角形的底边长是它腰长的黄金分割线段.

反思:解决方法.在推导a10与R关系时,辅助线角平分线是怎么想出来的.解决方法是复习等腰三角形的性质、判定及相似三角形的有关知识.

练习P.165中练习1

(三)总结

(1)应用正多边形的有关计算解决实际问题; 2

(2)综合代数列方程的方法证明了

(四)作业

教材P173中8、9、10、11、12.

探究活动 .

已知下列图形分别为正方形、正五边形、正六边形,试计算角 、 、 的大小.

探究它们存在什么规律?你能证明吗?

(提示:

.)

正多边形和圆

教学设计示例1

教学目标:

(1)使学生理解正多边形概念,初步掌握正多边形与圆的关系的第一个定理;

(2)通过正多边形定义教学,培养学生归纳能力;通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力;

(3)进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想.

教学重点:

正多边形的概念与正多边形和圆的关系的第一个定理.

教学难点:

对定理的理解以及定理的证明方法.

教学活动设计:

(一)观察、分析、归纳:

观察、分析:1.等边三角形的边、角各有什么性质?

2.正方形的边、角各有什么性质?

归纳:等边三角形与正方形的边、角性质的共同点.

教师组织学生进行,并可以提问学生问题.

(二)正多边形的概念: (1)概念:各边相等、各角也相等的多边形叫做正多边形.如果一个正多边形有n(n

3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.

(2)概念理解:

①请同学们举例,自己在日常生活中见过的正多边形.(正三角形、正方形、正六边形,„„.)

②矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?

矩形不是正多边形,因为边不一定相等.菱形不是正多边形,因为角不一定相等.

(三)分析、发现:

问题:正多边形与圆有什么关系呢?

发现:正三角形与正方形都有内切圆和外接圆,并且为同心圆.

分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢?

(四)多边形和圆的关系的定理

定理:把圆分成n(n≥3)等份:

(1)依次连结各分点所得的多边形是这个圆的内接正n边形;

(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.

我们以n=5的情况进行证明.

已知:⊙O中,

的切线. = = = = ,TP、PQ、QR、RS、ST分别是经过点A、B、C、D、E的⊙O

求证:(1)五边形ABCDE是⊙O的内接正五边形;

(2)五边形PQRST是⊙O的外切正五边形.

证明:(略)

引导学生分析、归纳证明思路:

弧相等

说明:(1)要判定一个多边形是不是正多边形,除根据定义来判定外,还可以根据这个定理来判定,即:①依次连结圆的n(n≥3)等分点,所得的多边形是正多迫形;②经过圆的n(n≥3)等分点作圆的切线,相邻切线相交成的多边形是正多边形.

(2)要注意定理中的“依次”、“相邻”等条件.

(3)此定理被称为正多边形的判定定理,我们可以根据它判断一多边形为正多边形或根据它作正多边形.

(五)初步应用

P157练习

1、(口答)矩形是正多边形吗?菱形是正多边形吗?为什么?

2.求证:正五边形的对角线相等.

3.如图,已知点A、B、C、D、E是⊙O的5等分点,画出⊙O的内接和外切正五边形.

(六)小结:

知识:(1)正多边形的概念.(2)n等分圆周(n≥3)可得圆的内接正n边形和圆的外切正n边形.

能力和方法:正多边形的证明方法和思路,正多边形判断能力

(七)作业 教材P172习题A组2、3.

教学设计示例2

教学目标:

(1)理解正多边形与圆的关系定理;

(2)理解正多边形的对称性和边数相同的正多边形相似的性质;

(3)理解正多边形的中心、半径、边心距、中心角等概念;

(4)通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;

教学重点:

理解正多边形的中心、半径、边心距、中心角的概念和性质定理.

教学难点:

对“正多边形都有一个外接圆和一个内切圆,并且这两个圆是同心圆”的理解.

教学活动设计:

(一)提出问题:

问题:上节课我们学习了正多边形的定义,并且知道只要n等分(n≥3)圆周就可以得到的圆的内接正n边形和圆的外切正n边形.反过来,是否每一个正多边形都有一个外接圆和内切圆呢?

(二)实践与探究:

组织学生自己完成以下活动. 实践:1、作已知三角形的外接圆,圆心是已知三角形的什么线的交点?半径是什么? 2、作已知三角形的内切圆,圆心是已知三角形的什么线的交点?半径是什么?

探究1:当三角形为正三角形时,它的外接圆和内切圆有什么关系?

探究2:(1)正方形有外接圆吗?若有外接圆的圆心在哪?(正方形对角线的交点.)

(2)根据正方形的哪个性质证明对角线的交点是它的外接圆圆心?

(3)正方形有内切圆吗?圆心在哪?半径是谁?

(三)拓展、推理、归纳:

(1)拓展、推理:

过正五边形ABCDE的顶点A、B、C、作⊙O连结OA、OB、OC、OD.

同理,点E在⊙O上.

所以正五边形ABCDE有一个外接圆⊙O.

因为正五边形ABCDE的各边是⊙O中相等的弦,所以弦心距相等.因此,以点O为圆心,以弦心距(OH)为半径的圆与正五边形的各边都相切.可见正五边形ABCDE还有一个以O为圆心的内切圆.

(2)归纳:

正五边形的任意三个顶点都不在同一条直线上

它的任意三个顶点确定一个圆,即确定了圆心和半径. 其他两个顶点到圆心的距离都等于半径. 正五边形的各顶点共圆. 正五边形有外接圆. 圆心到各边的距离相等.

正五边形有内切圆,它的圆心是外接圆的圆心,半径是圆心到任意一边的距离.

照此法证明,正六边形、正七边形、„正n边形都有一个外接圆和内切圆.

定理: 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.

正多边形的外接圆(或内切圆)的圆心叫做正多边形的中心,外接圆的半径叫做正多边形的半径,内切圆的半径叫做正多边形的边心距.正多边形各边所对的外接圆的圆心角都相等.正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角.正n边形的每个中心角都等于 .

(3)巩固练习:

1、正方形ABCD的外接圆圆心O叫做正方形ABCD的______.

2、正方形ABCD的内切圆⊙O的半径OE叫做正方形ABCD的______.

3、若正六边形的边长为1,那么正六边形的中心角是______度,半径是______,边心距是______,它的每一个内角是______.

4、正n边形的一个外角度数与它的______角的度数相等.

(四)正多边形的性质:

1、各边都相等.

2、各角都相等.

观察正三角形、正方形、正五边形、正六边形是不是轴对称图形?如果是,它们又各应有几条对称轴?

3、正多边形都是轴对称图形,一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心.边数是偶数的正多边形还是中心对称图形,它的中心就是对称中心.

4、边数相同的正多边形相似.它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.

5、任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.

以上性质,教师引导学生自主探究和归纳,可以以小组的形式研究,这样既培养学生的探究问题的能力、培养学生的研究意识,也培养学生的协作学习精神.

(五)总结

知识:(1)正多边形的中心、半径、边心距、中心角等概念;

(2)正多边形与圆的关系定理、正多边形的性质.

能力:探索、推理、归纳等能力.

方法:证明点共圆的方法.

(六)作业 P159中练习1、2、3. 教学设计示例3

教学目标:

(1)巩固正多边形的有关概念、性质和定理;

(2)通过证明和画图提高学生综合运用分析问题和解决问题的能力;

(3)通过例题的研究,培养学生的探索精神和不断更新的创新意识及选优意识.

教学重点:

综合运用正多边形的有关概念和正多边形与圆关系的有关定理来解决问题,要理解通过对具体图形的证明所给出的一般的证明方法,还要注意与前面所学知识的联想和化归.

教学难点:综合运用知识证题.

教学活动设计:

(一)知识回顾

1.什么叫做正多边形?

2.什么是正多边形的中心、半径、边心距、中心角?

3.正多边形有哪些性质?(边、角、对称性、相似性、有两圆且同心)

4.正n边形的每个中心角都等于 .

5.正多边形的有关的定理.

(二)例题研究:

例1、求证:各角相等的圆外切五边形是正五边形.

已知:如图,在五边形ABCDE中,∠A=∠B=∠C=∠D=∠E,边AB、BC、CD、DE、EA与⊙O分别相切于A’、B’、C’、D’、E’.

求证:五边形ABCDE是正五边形.

分析:要证五边形ABCDE是正五边形,已知已具备了五个角相等,显然证五条边相等即可.

教师引导学生分析,学生动手证明.

证法1:连结OA、OB、OC,

∵五边形ABCDE外切于⊙O. ∴∠BAO=∠OAE,∠OCB=∠

OCD

,∠OBA=

OBC,

又∵∠BAE=∠ABC=∠BCD.

∴∠BAO=∠OCB.

又∵OB=OB

∴△ABO≌△CBO,∴AB=BC,同理 BC=CD=DE=EA.

∴五边形ABCDE是正五边形.

证法2:作⊙O的半径OA’、OB’、OC’,则

OA’⊥AB,OB’⊥BC、OC’⊥CD.

∠B=∠C ∠1=∠2 = .

同理 = = = ,

即切点A’、B’、C’、D’、E’是⊙O的5等分点.所以五边形ABCDE是正五边形.

反思:判定正多边形除了用定义外,还常常用正多边形与圆的关系定理1来判定,证明关键是证

出各切点为圆的等分点.由同样的方法还可以证明“各角相等的圆外切n边形是正边形”.

此外,用正多边形与圆的关系定理1中“把圆n等分,依次连结各分点,所得的多边形是圆内接

正多边形”还可以证明“各边相等的圆内接n边形是正n边形”,证明关键是证出各接点是圆的等分点。

拓展1:已知:如图,五边形ABCDE内接于⊙O,AB=BC=CD=DE=EA.

求证:五边形ABCDE是正五边形.(证明略)

分小组进行证明竞赛,并归纳学生的证明方法.

拓展2:已知:如图,同心圆⊙O分别为五边形ABCDE内切圆和外接圆,切点分别为F、G、H、M、

N.

求证:五边形ABCDE是正五边形.(证明略)

学生独立完成证明过程,对B、C层学生教师给予及时指导,最后可以应用实物投影展示学生的证明成果,特别是对证明方法好,步骤推理严密的学生给予表扬.

例2、已知:正六边形ABCDEF.

求作:正六边形ABCDEF的外接圆和内切圆.

作法:1过A、B、C

三点作⊙O

.⊙O就是所求作的正六边形的外接圆.

2、以O为圆心,以O到AB的距离(OH)为半径作圆,所作的圆就是正六边形的内切圆. 用同样的方法,我们可以作正n边形的外接圆与内切圆.

练习:P161

1、求证:各边相等的圆内接多边形是正多边形.

2、(口答)下列命题是真命题吗?如果不是,举出一个反例.

(1)各边相等的圆外切多边形是正多边形;

(2)各角相等的圆内接多边形是正多边形.

3、已知:正方形ABCD.求作:正方形ABCD的外接圆与内切圆.

(三)小结

知识:复习了正多边形的定义、概念、性质和判定方法.

能力与方法:重点复习了正多边形的判定.正多边形的外接圆与内切圆的画法.

(四)作业

教材P172习题4、5;另A层学生:P174B组3、4.

探究活动

折叠问题:(1)想一想:怎样把一个正三角形纸片折叠一个最

大的正六边形.

(提示:①对折;②再折使A、B、C分别与O点重合即可)

(2)想一想:能否把一个边长为8正方形纸片折叠一个边长为4

的正六边形.

(提示:可以.主要应用把一个直角三等分的原理.参考图形如下:

①对折成小正方形ABCD;

②对折小正方形ABCD的中线;

③对折使点B在小正方形ABCD的中线上(即B’);

④则B、B’为正六边形的两个顶点,这样可得满足条件的正六边形.)

探究问题: (安徽省2002)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论: 甲同学:这种多边形不一定是正多边形,如圆内接矩形; 乙同学:我发现边数是6时,它也不一定是正多边形.如图一,△ABC是正三角形,

形, = = ,可以证明六边形ADBECF的各内角相等,但它未必是正六边形;

丙同学:我能证明,边数是5时,它是正多边形.我想,边数是7时,它可能也 是正多边形.

(1)请你说明乙同学构造的六边形各内角相等.

(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图二)是正七边形(不必写已知、求证).

(3)根据以上探索过程,提出你的猜想(不必证明).

(1)[说明]

(2)[证明]

(3)[猜想]

解:(1)由图知∠AFC对

的 = + = .因为 + = = ,而∠DAF对 .所以∠AFC=∠DAF.

同理可证,其余各角都等于∠AFC.所以,图1中六边形各内角相.

(2)因为∠A对 ,∠B对 ,又因为∠A=∠B,所以 = .所以 = . 同理 = = = = = = .所以 七边形ABCDEFG是正七边形.

猜想:当边数是奇数时(或当边数是3,5,7,9,„„时),各内角相等的圆内接多边形是正多边形.

相切

若直线与曲线交于两点,且这两点无限相近,趋于重合时,该直线就是该曲线在该点的切线。这个交点即为切点。初中数学中,若一条直线垂直于圆的半径且过圆的半径的外端,称这条直线与圆相切。 相切是平面上的圆与另一个几何形状的一种位置关系。

这里,“另一个几何形状”是圆或直线时,两者之间只有一个交点(公共点),当“另一个几何形状”是三角形时,圆与三角形的每条边之间仅有一个交点。这个交点即为

切点

直线和圆相切

直线和圆有三种位置关系,即直线和圆相离、相切、相交.各种位置关系是通过直线与圆的公共点的个数来定义的。

直线和圆有唯一公共点,叫做直线和圆相切

切线的性质:圆的切线垂直于经过切点的半径.

(1)切线和圆有唯一公共点;(切线的定义)

(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

(3)切线垂直于过切点的半径;(切线的性质定理)

(4)经过圆心垂直于切线的直线必过切点;(推论1)

(5)经过切点垂直于切线的直线必过圆心.(推论2)

圆和圆的位置关系

(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(图(1))

(2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.(图(2))

(3)相交:两个圆有两个公共点,此时叫做这两个圆相交.(图(3))

(4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.(图(4))

(5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图(5)).两圆同心是两圆内含的一个特例. (图(6))

设两圆 半径分别为 R和 r, 圆心距⊙1⊙2=d,则

(1)两圆外离⇔d>R+r;

(2)两圆外切 ⇔d=R+r;

(3)两圆相交 ⇔R-r

(4)两圆内切 ⇔d=R-r;

(5)两圆内含 ⇔0≤d

归纳:(1)两圆外离与内含时,两圆都无公共点.

(2)两圆外切和内切统称两圆相切,即外切和内切的共性是公共点的个数唯一

(3)两圆位置关系的五种情况也可归纳为三类:相离(外离和内含);相交;相切(外切和内切).

和两圆都相切的直线,叫做两圆的公切线.

(1)外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线.

(2)内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线.

(3)公切线的长:公切线上两个切点的距离叫做公切线的长.

公切线长的计算,都转化为解直角三角形,故解题思路主要是构造直角三角形. 两圆的公切线及公切线长

(1)两圆的公切线:和两圆都相切的直线,叫做两圆的公切线;

(2)两圆的 外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线;

(3)两圆的 内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线;

(4) 公切线长:公切线上两个切点间的距离叫公切线长.

(5)公切线公式: l外=d2-(R-r)2, l内=d2-(R+r)2.

公切线长定理

(1)如果两圆有两条外公切线,则它们的外公切线长相等;如果两圆有两条内公切线,那么这两条内公切线长相等;

(2)如果两条外(内) 公切线相交,那么交点一定在两圆的 连心线上,并且连心线平分这两条外(内)公切线的 夹角.

如果两个圆相切,那么切点一定在连心线上.

定理:相交两圆的连心线垂直平分公共弦.

相交两圆,也构成对称图形,它是以连心线为对称轴的轴对称图形.


相关文章

  • 圆扇形弧面积
  • 圆.扇形.弓形的面积(一) 教学目标: 1.掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算: 2.通过扇形面积公式的推导,培养学生抽象.理解.概括.归纳能力和迁移能力: 3.在扇形面积公式的推导和例题教学过程中,渗透&qu ...查看


  • 圆弧计算公式及运用
  • 圆弧计算公式及运用 一. 教学内容: 弧长及扇形的面积 圆锥的侧面积 二. 教学要求 1.了解弧长计算公式及扇形面积计算公式,并会运用公式解决具体问题. 2.了解圆锥的侧面积公式,并会应用公式解决问题. 三. 重点及难点 重点: 1.弧长的 ...查看


  • 弧长.扇形.弓形的面积及侧面积
  • [知识要点] 弧长.扇形面积及圆锥侧面积 1.弧长公式:半径为R 的圆,其周长是2πR ,将圆周分成360份,每一份弧就是1的弧,1弧的弧长 o o 应是圆周长的 12πR πR n πR o =,而为,因此,n 的弧的弧长就是,于是得到公 ...查看


  • [第4讲]圆和扇形的周长与面积(二)
  • 圆和扇形的周长与面积(二)扇形:由顶点在圆心的角的两边和这两边所截一段圆弧 围成的图形. 扇形是圆的一部分 扇形的圆心角占这个圆周角的几分之几 扇形的弧长C=2r 扇形的面积S=r2 扇形的周长=2rn360n360n+2×半径 ...查看


  • 第课和圆有关的计算知识点正多边形
  • 第34 课 和圆有关的计算 知识点:正多边形和圆.正多边形的有关计算.等分圆周.圆周长.弧长.圆的面积.扇形的面积.弓形的面积.面积变换 大纲要求: 1.了解用量角器等分圆周的方法,会用直尺和圆规画圆内接正方形和正多边形: 2. 掌握正多边 ...查看


  • 巧用割补法求阴影部分面积
  • 九年级上册学完扇形的面积公式后,细心的同学一定会发现,与扇形有关的练习题常常以"与圆有关的求解阴影部分面积"的形式出现.这类题目看起来复杂,其实只要掌握好解题技巧,就能化繁为简. 下面通过几个例子详细介绍解决这类题目最常 ...查看


  • 常见面积公式
  • 在半径为R 的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S=πR^2,所以圆心角为n°的扇形面积: S=nπR²÷360 比如:半径为1cm 的圆,那么所对圆心角为135°的扇形的周长: C=2R+nπR÷180 =2×1+135 ...查看


  • 扇形面积和圆锥
  • 弧长和扇形面积及圆锥.圆柱面积 1.(2009 旅顺)若圆锥的底面周长为20π,侧面展开后所得扇形的圆心角为120°,则圆锥的侧面积为 . 2.(2009 海南)正方形ABCD的边长为2cm,以B点为圆心,AB长为半径作AC,则图中阴影部 ...查看


  • 圆_阴影部分面积(含答案)
  • 求阴影部分面积 例1. 求阴影部分的面积.(单位:厘米) 解:这是最基本的方法: 圆面积减去等腰直角三角形的面积, 形的面积减去 圆的面积. 米) ×-2×1=1.14(平方厘 设圆的半径为 r ,因为正方形的面积为7平方厘米,所以 =7, ...查看


热门内容