放射性同位素C-14的应用

放射性同位素C-14的应用

自然界中碳元素有三种同位素,即稳定同位素12C、13C和放射性同位素14C,14C的半衰期为5730年,14C的应用主要有两个方面:一是在考古学中测定生物死亡年代,即放射性测年法;二是以14C标记化合物为示踪剂,探索化学和生命科学中的微观运动。

一、14C测年法

自然界中的14C是宇宙射线与大气中的氮通过核反应产生的。碳-14不仅存在于大气中,随着生物体的吸收代谢,经过食物链进入活的动物或人体等一切生物体中。由于碳-14一面在生成,一面又以一定的速率在衰变,致使碳-14在自然界中(包括一切生物体内)的含量与稳定同位素碳-12的含量的相对比值基本保持不变。

当生物体死亡后,新陈代谢停止,由于碳-14的不断衰变减少,因此体内碳-14和碳-12含量的相对比值相应不断减少。通过对生物体出土化石中碳-14和碳-12含量的测定,就可以准确算出生物体死亡(即生存)的年代。例如某一生物体出土化石,经测定含碳量为M克(或碳-12的质量),按自然界碳的各种同位素含量的相对比值可计算出,生物体活着时,体内碳-14的质量应为 m克。但实际测得体内碳-14的质量内只有m克的八分之一,根据半衰期可知生物死亡已有了3个5730年了,即已死亡了一万七千二百九十年了。美国放射化学家W.F.利比因发明了放射性测年代的方法,为考古学做出了杰出贡献而荣获1960年诺贝尔化学奖。

由于碳-14含量极低,而且半衰期很长,所以用碳-14只能准确测出5~6万年以内的出土文物,对于年代更久远的出土文物,如生活在五十万年以前的周口店北京猿人,利用碳-14测年法是无法测定出来的。

二、碳-14标记化合物的应用

碳-14标记化合物是指用放射性14C取代化合物中它的稳定同位素碳-12,并以碳-14作为标记的放射性标记化合物。它与未标记的相应化合物具有相同的化学与生物学性质,不同的只是它们带有放射性,可以利用放射性探测技术来追踪。

自 20世纪 40年代,就开始了碳-14标记化合物的研制、生产和应用。由于碳是构成有机物三大重要元素之一,碳-14半衰期长,β期线能量较低,空气中最大射程 22cm,属于低毒核素,所以碳-14标记化合物产品应用范围广。至80年代,国际上以商品形式出售的碳-14标记化合物,包括了氨基酸、多肽、蛋白质、糖类、核酸类、类脂类、类固醇类及医学研究用的神经药物、受体、维生素和其他药物等,品种已达近千种,约占所有放射性标记化合物的一半。

以碳-14为主的标记化合物在医学上还广泛用于体内、体外的诊断和病理研究。用于体外诊断的竞争放射性分析是本世纪60年代发展起来的微量分析技术。应用这种技术只要取很少量的体液(血液或尿液)在化验室分析后,即可进行疾病诊断。由于竞争放射性分析体外诊断的特异性强,灵敏度高,准确性和精密性好,许多疾病就可能在早期发现,为有效防治疾病提供了条件。

碳-14标记化合物作为灵敏的示踪剂,具有非常广泛的应用前景。

放射性同位素C-14的应用

自然界中碳元素有三种同位素,即稳定同位素12C、13C和放射性同位素14C,14C的半衰期为5730年,14C的应用主要有两个方面:一是在考古学中测定生物死亡年代,即放射性测年法;二是以14C标记化合物为示踪剂,探索化学和生命科学中的微观运动。

一、14C测年法

自然界中的14C是宇宙射线与大气中的氮通过核反应产生的。碳-14不仅存在于大气中,随着生物体的吸收代谢,经过食物链进入活的动物或人体等一切生物体中。由于碳-14一面在生成,一面又以一定的速率在衰变,致使碳-14在自然界中(包括一切生物体内)的含量与稳定同位素碳-12的含量的相对比值基本保持不变。

当生物体死亡后,新陈代谢停止,由于碳-14的不断衰变减少,因此体内碳-14和碳-12含量的相对比值相应不断减少。通过对生物体出土化石中碳-14和碳-12含量的测定,就可以准确算出生物体死亡(即生存)的年代。例如某一生物体出土化石,经测定含碳量为M克(或碳-12的质量),按自然界碳的各种同位素含量的相对比值可计算出,生物体活着时,体内碳-14的质量应为 m克。但实际测得体内碳-14的质量内只有m克的八分之一,根据半衰期可知生物死亡已有了3个5730年了,即已死亡了一万七千二百九十年了。美国放射化学家W.F.利比因发明了放射性测年代的方法,为考古学做出了杰出贡献而荣获1960年诺贝尔化学奖。

由于碳-14含量极低,而且半衰期很长,所以用碳-14只能准确测出5~6万年以内的出土文物,对于年代更久远的出土文物,如生活在五十万年以前的周口店北京猿人,利用碳-14测年法是无法测定出来的。

二、碳-14标记化合物的应用

碳-14标记化合物是指用放射性14C取代化合物中它的稳定同位素碳-12,并以碳-14作为标记的放射性标记化合物。它与未标记的相应化合物具有相同的化学与生物学性质,不同的只是它们带有放射性,可以利用放射性探测技术来追踪。

自 20世纪 40年代,就开始了碳-14标记化合物的研制、生产和应用。由于碳是构成有机物三大重要元素之一,碳-14半衰期长,β期线能量较低,空气中最大射程 22cm,属于低毒核素,所以碳-14标记化合物产品应用范围广。至80年代,国际上以商品形式出售的碳-14标记化合物,包括了氨基酸、多肽、蛋白质、糖类、核酸类、类脂类、类固醇类及医学研究用的神经药物、受体、维生素和其他药物等,品种已达近千种,约占所有放射性标记化合物的一半。

以碳-14为主的标记化合物在医学上还广泛用于体内、体外的诊断和病理研究。用于体外诊断的竞争放射性分析是本世纪60年代发展起来的微量分析技术。应用这种技术只要取很少量的体液(血液或尿液)在化验室分析后,即可进行疾病诊断。由于竞争放射性分析体外诊断的特异性强,灵敏度高,准确性和精密性好,许多疾病就可能在早期发现,为有效防治疾病提供了条件。

碳-14标记化合物作为灵敏的示踪剂,具有非常广泛的应用前景。


相关文章

  • 07-10年地球化学真题及答案--简答题
  • 07-10年地球化学真题及答案--简答题 1. 写出国际,国内两位著名的地球化学家的名字并简述其对地球化学的主要贡献. 答: 国际:戈尔德施密特,V .M. Victor Moritz Goldschmidt (1888-1947) 挪威地 ...查看


  • 同位素示踪法
  • 同位素示踪法 放射性同位素的应用-同位素示踪法 同位素示踪法(isotopic tracer method)是利用放射性核素作为示踪剂对研究对象进行标记的微量分析方法,示踪实验的创建者是Hevesy.Hevesy于1923年首先用天然放射性 ...查看


  • 核能应用与发展
  • 1.序言 1.1经典物理学和量子力学 在这本书中介绍的原子和量子物理学,基本上是本世纪前第三的产物.经典物理学的分 支如力学.声学.热力学和光学必须扩大时,作为物质的原子结构知识增加的结果,原子和 量子成为了物理学研究的对象.因此,在第二十 ...查看


  • 专题复习-同位素标记法
  • 同位素标记法专题复习 同位素示踪法是利用放射性元素作为示踪剂对研究对象进行标记的微量分析方法. 一.同位素示踪法基本原理和特点: 同位素示踪所利用的放射性核素(或稳定性核素)及它们的化合物,与自然界存在的相应普通元素及其化合物之间的化学性质 ...查看


  • 专题复习-同位素标记法 1
  • 同位素标记法专题复习 同位素示踪法是利用放射性元素作为示踪剂对研究对象进行标记的微量分析方法. 一.同位素示踪法基本原理和特点: 同位素示踪所利用的放射性核素(或稳定性核素)及它们的化合物,与自然界存在的相应普通元素及其化合物之间的化学性质 ...查看


  • 23.原子核
  • 第二十二章 原子核 第一部分 教学纲要 3.新课标: (1)了解人类探索原子结构的历史以及有关经典实验. (2)知道原子核的组成.知道放射性和原子核的衰变.会用半衰期描述衰变速度,知道半衰期的统计意义. (3)知道X 射线.α射线.β射线. ...查看


  • 碳同位素技术在土壤碳循环研究中的应用
  • 第20卷第5期2005年5月 文章编号:100128166(2005) 0520568210 地球科学进展 ADVANCES I N E ART H SC I ENCE Vol . 20 No . 5 May . , 2005 碳同位素技术 ...查看


  • 亚洲国家放射性同位素生产概况
  • 第10卷第2期 1997年5月同 位 素Jou rnal of Iso topes . 10 N o . 2V o l M ay 1997 亚洲国家放射性同位素生产概况 贺佑丰 (中国原子能科学研究院, 北京102413) 报道了亚洲国家放 ...查看


  • 核电池简介
  • 核电池简介 *** ************* 核电池简介 1.什么是核电池 2.核电池的分类.原理及各自的优缺点 3.核电池的特点 4.核电池的应用现状及前景 5.目前核电池研发的推广难点 什么是核电池 核电池,又称同位素电池,它是利用放 ...查看


热门内容