课题:探索多边形的内角和
一、教学目标:
(1)知识与技能:掌握多边形的内角和与外角和的计算方法,并能用其解决一些简单的
问题;通过多边形内角和计算公式的推导,体验转化和类比的数学思想方法。
(2)过程与方法:①、让学生经历猜想、探索、推理、归纳等过程,发展学生的合情推
理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。②、通过
把多边形转化为三角形,体会转化思想在几何中的运用,让学生体会从特殊到一般的认识问题的方
法。③通过探索多边形的内角和与外角和,让学生尝试从不同的角度寻求解决问题的方法,
并能有效地解决问题。
(3)情感态度与价值观:通过动手实践、相互间的交流,进一步激发学习热情和求知欲
望。同时,体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探
索和创造。
二、教学重、难点:
重点:探索多边形的内角和及外角和公式。
难点:多边形内角和公式的推导。
三、教法学法设计:以教师的精讲、点拨引导为主,辅以引导发现、合作交流。
四、教具、学具准备:三角板、量角器、作业纸。
五、教学过程:
(一)复习提问,导入新课
问题:三角形的内角和是多少度?我们不仅知道三角形的内角和是180°,而且还利用
多种方法来验证,谁能说一说我们可以采用哪些方法?
【设计说明】直接提出问题,唤醒学生已有的知识,把学生引到本节课思维的最近发展区,
为新课学习提供知识铺垫。 (二)引申思考,探索新知
我们学过的平面图形不仅仅只有三角形,还有四边形、五边形、六边形等等,像这样的
多边形的内角和是多少度呢?其中有没有什么规律呢?这就是我们今天要研究的多边形的内
角和。
(1)探究活动一:探索四边形内角和。
问题:我们已经知道正方形和长方形的内角和为3600,那么任意四边形的内角和是多少?
你是怎么得到的?
在学生独立思考的基础上,分组交流,并汇总解决问题的方法: 做法①测量法。量出任意一个四边形每个内角度数,然后相加为360°
(让学生明确使用这种做法的缺陷是往往会引起误差,得不到预想的结果)
做法②拼图法。把四个角拼在一起刚好是一个周角360°
(让学生明确使用这种做法的局限性,不是任何情况都可以采用这种办法验证四边形的内
角和。)
教师在做法②的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边
形转化为两个三角形. A D 连结AC,四边形的内角和为2×180°=360°【设计说明】通过活动一的探究,学生易把四边形分割成
三角形,从而把四边形的内角和与三角形的内角和有效的 C
联系起来,求出任意四边形的内角和。这个环节着重渗透分
割转化的思想方法。为探究n边形的内角和做准备。
(2)探究活动二:探索五边形、六边形、七边形的内角和
学生先独立思考每个问题再分组讨论。
关注①学生能否类比四边形的方式解决问题得出正确的结论。
②学生能否采用不同的方法。
学生分组讨论后进行交流(五边形的内角和)
A.把五边形分成三个三角形,3个180º的和是540º。
B.把五边形分成一个三角形和一个四边形,然后用180º加上360º,结果得540º。
交流得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720º,七边形内角和是900º。 师:通过前面的讨论,你能知道多边形内角和吗?
活动三:探究任意多边形的内角和公式。
思考 ①多边形内角和与三角形内角和的关系?
②多边形的边数与内角和的关系?
③从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?
学生结合思考题进行讨论,并把讨论后的结果进行交流。
发现1:四边形内角和是(4-2)个180º的和,五边形内角和是(5-2)个
180º的和,六边形内角和是(6-2)个180º的和,七边形内角和是(7-2)个180º的和。
发现2:多边形的边数增加1,内角和增加180º。
发现3:从五边形的一个顶点出发,可以引(5-3)条对角线,将五边形分成(5-2)个三角形, 从六边形的一个顶点出发,可以引(6-3)条对角线,将六边形分成(6-2)个三角形……
那如果用n表示边数,从n边形的一个顶点出发,能分成几个三角形?内角和是多少?你能用n 来表示吗?请你在作业纸上试一试。
交流得到:可以引(n-3)条对角线,将n边形分成(n-2)个三角形.
得出结论:多边形内角和公式:(n-2)•180º
【设计说明】逐步增加图形的复杂性,再一次经历转化的过程,加深对转化的思想方法的理解,体会由简单到复杂、由特殊到复杂的思想方法。
想一想:把一个多边形分成几个三角形,可以得到多边形的内角和。除利用对角线把多边形分成几个三角形外,还有其他分法吗?以四边形为例。
学生动手并与同伴交流,老师归纳,多媒体演示。
【设计说明】让学生再一次经历转化的过程,注意培养学生思维的灵活性,进一步发展学生的推理能力和语言表达能力。
(四)探索多边形的外角和 问题:(1)小丽家有一张六边形的地毯,小丽绕各顶点
走了一圈,回到起点A,他的身体旋转了多少度? D 如:六边形外角和等于多少度?
学生思考作答,教师作适当点拨。
通过课件演示,学生发现:六边形的外角和等于360 问题(2)n边形外角和等于多少度?
教师引导学生利用多边形的内角和公式,进一步 6 论证六边形外角和等于360°。即:六个平角减去 六边形内角和等于六边形外角和360°
(3)进行类比推理并小结:n边形外角和等于n个平
角减去n边形内角和,与边数无关。
180°n-(n-2)·180°=360°
总结:n边形外角和等于360°
【设计说明】经历现实情况引出六边形的外角和等于360°,从学生已有的生活经验出发,更能激发学生的学习兴趣。通过类比和扩展方法的使用,使学生掌握复杂问题化为简单问题,化未知为已知的思想方法。
(五)课堂小结
问题:谈谈本节课你有哪些收获?
【设计说明】鼓励学生积极发言,并对学生的进步给予肯定,树立学生学好数学的自信心。再一次发展学生的评理能力和语言表达能力。
课题:探索多边形的内角和
一、教学目标:
(1)知识与技能:掌握多边形的内角和与外角和的计算方法,并能用其解决一些简单的
问题;通过多边形内角和计算公式的推导,体验转化和类比的数学思想方法。
(2)过程与方法:①、让学生经历猜想、探索、推理、归纳等过程,发展学生的合情推
理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。②、通过
把多边形转化为三角形,体会转化思想在几何中的运用,让学生体会从特殊到一般的认识问题的方
法。③通过探索多边形的内角和与外角和,让学生尝试从不同的角度寻求解决问题的方法,
并能有效地解决问题。
(3)情感态度与价值观:通过动手实践、相互间的交流,进一步激发学习热情和求知欲
望。同时,体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探
索和创造。
二、教学重、难点:
重点:探索多边形的内角和及外角和公式。
难点:多边形内角和公式的推导。
三、教法学法设计:以教师的精讲、点拨引导为主,辅以引导发现、合作交流。
四、教具、学具准备:三角板、量角器、作业纸。
五、教学过程:
(一)复习提问,导入新课
问题:三角形的内角和是多少度?我们不仅知道三角形的内角和是180°,而且还利用
多种方法来验证,谁能说一说我们可以采用哪些方法?
【设计说明】直接提出问题,唤醒学生已有的知识,把学生引到本节课思维的最近发展区,
为新课学习提供知识铺垫。 (二)引申思考,探索新知
我们学过的平面图形不仅仅只有三角形,还有四边形、五边形、六边形等等,像这样的
多边形的内角和是多少度呢?其中有没有什么规律呢?这就是我们今天要研究的多边形的内
角和。
(1)探究活动一:探索四边形内角和。
问题:我们已经知道正方形和长方形的内角和为3600,那么任意四边形的内角和是多少?
你是怎么得到的?
在学生独立思考的基础上,分组交流,并汇总解决问题的方法: 做法①测量法。量出任意一个四边形每个内角度数,然后相加为360°
(让学生明确使用这种做法的缺陷是往往会引起误差,得不到预想的结果)
做法②拼图法。把四个角拼在一起刚好是一个周角360°
(让学生明确使用这种做法的局限性,不是任何情况都可以采用这种办法验证四边形的内
角和。)
教师在做法②的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边
形转化为两个三角形. A D 连结AC,四边形的内角和为2×180°=360°【设计说明】通过活动一的探究,学生易把四边形分割成
三角形,从而把四边形的内角和与三角形的内角和有效的 C
联系起来,求出任意四边形的内角和。这个环节着重渗透分
割转化的思想方法。为探究n边形的内角和做准备。
(2)探究活动二:探索五边形、六边形、七边形的内角和
学生先独立思考每个问题再分组讨论。
关注①学生能否类比四边形的方式解决问题得出正确的结论。
②学生能否采用不同的方法。
学生分组讨论后进行交流(五边形的内角和)
A.把五边形分成三个三角形,3个180º的和是540º。
B.把五边形分成一个三角形和一个四边形,然后用180º加上360º,结果得540º。
交流得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720º,七边形内角和是900º。 师:通过前面的讨论,你能知道多边形内角和吗?
活动三:探究任意多边形的内角和公式。
思考 ①多边形内角和与三角形内角和的关系?
②多边形的边数与内角和的关系?
③从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?
学生结合思考题进行讨论,并把讨论后的结果进行交流。
发现1:四边形内角和是(4-2)个180º的和,五边形内角和是(5-2)个
180º的和,六边形内角和是(6-2)个180º的和,七边形内角和是(7-2)个180º的和。
发现2:多边形的边数增加1,内角和增加180º。
发现3:从五边形的一个顶点出发,可以引(5-3)条对角线,将五边形分成(5-2)个三角形, 从六边形的一个顶点出发,可以引(6-3)条对角线,将六边形分成(6-2)个三角形……
那如果用n表示边数,从n边形的一个顶点出发,能分成几个三角形?内角和是多少?你能用n 来表示吗?请你在作业纸上试一试。
交流得到:可以引(n-3)条对角线,将n边形分成(n-2)个三角形.
得出结论:多边形内角和公式:(n-2)•180º
【设计说明】逐步增加图形的复杂性,再一次经历转化的过程,加深对转化的思想方法的理解,体会由简单到复杂、由特殊到复杂的思想方法。
想一想:把一个多边形分成几个三角形,可以得到多边形的内角和。除利用对角线把多边形分成几个三角形外,还有其他分法吗?以四边形为例。
学生动手并与同伴交流,老师归纳,多媒体演示。
【设计说明】让学生再一次经历转化的过程,注意培养学生思维的灵活性,进一步发展学生的推理能力和语言表达能力。
(四)探索多边形的外角和 问题:(1)小丽家有一张六边形的地毯,小丽绕各顶点
走了一圈,回到起点A,他的身体旋转了多少度? D 如:六边形外角和等于多少度?
学生思考作答,教师作适当点拨。
通过课件演示,学生发现:六边形的外角和等于360 问题(2)n边形外角和等于多少度?
教师引导学生利用多边形的内角和公式,进一步 6 论证六边形外角和等于360°。即:六个平角减去 六边形内角和等于六边形外角和360°
(3)进行类比推理并小结:n边形外角和等于n个平
角减去n边形内角和,与边数无关。
180°n-(n-2)·180°=360°
总结:n边形外角和等于360°
【设计说明】经历现实情况引出六边形的外角和等于360°,从学生已有的生活经验出发,更能激发学生的学习兴趣。通过类比和扩展方法的使用,使学生掌握复杂问题化为简单问题,化未知为已知的思想方法。
(五)课堂小结
问题:谈谈本节课你有哪些收获?
【设计说明】鼓励学生积极发言,并对学生的进步给予肯定,树立学生学好数学的自信心。再一次发展学生的评理能力和语言表达能力。