论文图表格式

Supplemental information

Observed volatilization fluxes of S-metolachlor and Benoxacor applied on soil with and without crop residues

Bedos C.1*, Alletto L.2, Durand B.1, Fanucci O.1, Brut A.3, Bourdat-Deschamps M.1 , Giuliano S. 2, Loubet B. 1, Ceschia E.3, Benoit P.1

Number of pages: 4 Number of Tables: 4 Number of Figures: 4

- Air sampling

Table S 1 Air sampling

Sample number

D1S1 D1S2 D1S3 N1S4 D2S5 D2S6 D2S7 N2S8 D3S9

D3S10

D3S11

T-MM1

116.260 116.406 116.417 116.552 116.563 116.698 116.719 117.271 117.292 117.427 117.448 117.583 117.604 117.740 117.760 118.260 118.281 118.417 118.438 118.573 118.594 118.729

Duration (min)

210 210 200 795 210 210 210 735 210 210 210

T-MM3

116.281 116.417 116.427 116.563 116.573 116.708 116.719 117.271 117.292 117.427 117.448 117.583 117.604 117.740 117.760 118.260 118.281 118.417 118.438 118.573 118.594 118.729

Duration (min)

210 210 200 795 210 210 210 735 210 210 210

Plot 136.51 136.63 136.63 136.73 - -

136.73 137.27 137.27 137.42 137.42 137.56 137.57 137.73 137.73 138.27 138.27 138.42 138.43 138.56 138.56 138.71

Duration (min)

170 144 777 207 205 236 777 207 198 208

Table S 2 Chemical analysis

TDS3 Transfer line

Splitless method Split method 30 to 325 °C (hold 8 min) at 60 °C/min in the TDS splitless mode 325 °C

Same conditions with transfer step (transfer

-50 °C to 325 °C (hold 23 min) at 12 °C/s into the GC system) operated with split to

Cooled injection

(straight glass liner) in the solvent vent analyze highly concentrated samples

system

mode Helium flow rate

200 mL/min

Compound Benoxacor Metolachlor

CAS number 98730-04-2 51218-45-2

Ion 1 120 162

Ion 2 259 238

Retention time (min) 15.0 15.5

Table S 3 Calibration points for air, soil, and plant residue samples

-

Recovery tests for soil and crop residue extraction

Soil and crop residues samples were spiked before extraction with a mixture of s-metholachlor, OA and ESA. The concentrations of each compound were 100 µg/kg and 150 µg/kg for soil and crop residue, respectively, corresponding to a final concentration in the extract before analysis of 0.3 µg/mL and 0.1 µg/mL, respectively.

Table S 4 Recovery results for soil and crop residue samples

Figure S 1 Picture of the three wind tunnels placed in the field. The arrow with thick dashed line represents the airflow

direction inside the tunnel (left). Map of the field for the field scale experiment. The red point indicates the location of the different masts

Figure S 2 Latent heat of evaporation together with soil surface temperature for the wind-tunnel experiment

Figure S 3 Ratio of the concentrations in S-metolachlor and benoxacor in the air for each sampling periods (left) and in the applied solution, measured application dose with filters, air concentrations averaged over all sampling periods and cumulated fluxes (right)

Figure S 4 Cumulated volatilization fluxes of S-Metolachlor and Benoxacor for the wind-tunnel and field experiments

Supplemental information

Observed volatilization fluxes of S-metolachlor and Benoxacor applied on soil with and without crop residues

Bedos C.1*, Alletto L.2, Durand B.1, Fanucci O.1, Brut A.3, Bourdat-Deschamps M.1 , Giuliano S. 2, Loubet B. 1, Ceschia E.3, Benoit P.1

Number of pages: 4 Number of Tables: 4 Number of Figures: 4

- Air sampling

Table S 1 Air sampling

Sample number

D1S1 D1S2 D1S3 N1S4 D2S5 D2S6 D2S7 N2S8 D3S9

D3S10

D3S11

T-MM1

116.260 116.406 116.417 116.552 116.563 116.698 116.719 117.271 117.292 117.427 117.448 117.583 117.604 117.740 117.760 118.260 118.281 118.417 118.438 118.573 118.594 118.729

Duration (min)

210 210 200 795 210 210 210 735 210 210 210

T-MM3

116.281 116.417 116.427 116.563 116.573 116.708 116.719 117.271 117.292 117.427 117.448 117.583 117.604 117.740 117.760 118.260 118.281 118.417 118.438 118.573 118.594 118.729

Duration (min)

210 210 200 795 210 210 210 735 210 210 210

Plot 136.51 136.63 136.63 136.73 - -

136.73 137.27 137.27 137.42 137.42 137.56 137.57 137.73 137.73 138.27 138.27 138.42 138.43 138.56 138.56 138.71

Duration (min)

170 144 777 207 205 236 777 207 198 208

Table S 2 Chemical analysis

TDS3 Transfer line

Splitless method Split method 30 to 325 °C (hold 8 min) at 60 °C/min in the TDS splitless mode 325 °C

Same conditions with transfer step (transfer

-50 °C to 325 °C (hold 23 min) at 12 °C/s into the GC system) operated with split to

Cooled injection

(straight glass liner) in the solvent vent analyze highly concentrated samples

system

mode Helium flow rate

200 mL/min

Compound Benoxacor Metolachlor

CAS number 98730-04-2 51218-45-2

Ion 1 120 162

Ion 2 259 238

Retention time (min) 15.0 15.5

Table S 3 Calibration points for air, soil, and plant residue samples

-

Recovery tests for soil and crop residue extraction

Soil and crop residues samples were spiked before extraction with a mixture of s-metholachlor, OA and ESA. The concentrations of each compound were 100 µg/kg and 150 µg/kg for soil and crop residue, respectively, corresponding to a final concentration in the extract before analysis of 0.3 µg/mL and 0.1 µg/mL, respectively.

Table S 4 Recovery results for soil and crop residue samples

Figure S 1 Picture of the three wind tunnels placed in the field. The arrow with thick dashed line represents the airflow

direction inside the tunnel (left). Map of the field for the field scale experiment. The red point indicates the location of the different masts

Figure S 2 Latent heat of evaporation together with soil surface temperature for the wind-tunnel experiment

Figure S 3 Ratio of the concentrations in S-metolachlor and benoxacor in the air for each sampling periods (left) and in the applied solution, measured application dose with filters, air concentrations averaged over all sampling periods and cumulated fluxes (right)

Figure S 4 Cumulated volatilization fluxes of S-Metolachlor and Benoxacor for the wind-tunnel and field experiments


相关文章

  • 毕业论文排版格式及图表插入全攻略
  • 目 录 引 言.............................................................. 1 一.另起一页.......................................... ...查看


  • 本科毕业论文字体,格式
  • 本科毕业论文格式要求 一: 1.题目.应能概括整个论文最重要的内容,言简意赅,引人注目,一般不宜超过20个字. 2.论文摘要和关键词. 论文摘要应阐述学位论文的主要观点.说明本论文的目的.研究方法.成果和结论.尽可能保留原论文的基本信息,突 ...查看


  • 英语专业本科毕业论文格式要求
  • 外国语学院英语专业本科毕业论文格式要求(修订版) (正文部分) 目录 一. 正文构成 二. 页面设置.页码.字体及字号 三. 撰写具体格式 1. 题目 2. 范例 3. 注释 4. 参考文献 5. 图表 6. 附录 一. 正文构成 正文依次 ...查看


  • 标准论文格式(发表及毕业论文均可用)
  • 标准论文格式 一: 1.题目.应能概括整个论文最重要的内容,言简意赅,引人注目, 一般不宜超过 20 个字. 论文摘要和关键词. 2.论文摘要应阐述学位论文的主要观点.说明本论文的目的.研究 方法.成果和结论.尽可能保留原论文的基本信息,突 ...查看


  • 论文格式和内容的有关要求
  • 课程设计说明书撰写格式和内容的有关要求 为提高我校本科生课程设计说明书的撰写质量,做到课程设计说明书在内容和格式上的统一和规范,特规定如下: 一.装订顺序 设计说明书内容一般应由以下部分组成,装订顺序依次为: (1)封面 (2) 目录 (3 ...查看


  • 上海大学毕业设计论文撰写基本格式
  • 上海大学毕业设计(论文) 题目:毕业设计论文撰写 学 生: 学 号: 指导教师:专 业: 完成年月: × × × ××× 影视艺术技术 2013年×月 目录 摘要 . .................................... ...查看


  • 2010年省毕业论文抽检分析报告(2010-12-27)
  • 钱江学院2010年省教育厅 毕业设计(论文)抽查结果分析报告 (根据抽查评分整理) 一.独立学院总体抽检情况 毕业设计(论文)工作还有较大的提升空间,离优秀.良好的标准还有一定的距离--省内独立学院共抽查了4个学科大类,涉及9个专业,总体平 ...查看


  • 2013年郑大自考毕业论文格式要求
  • 2013年郑大自考毕业论文格式要求 标准论文格式 一: 1.题目.应能概括整个论文最重要的内容,言简意赅,引人注目,一般不宜超过20个字. 论文摘要和关键词. 2.论文摘要应阐述学位论文的主要观点.说明本论文的目的.研究方法.成果和结论.尽 ...查看


  • 硕士毕业生论文最规范格式 最新版
  • 学校代码 10345 研究类型 硕 士 学 位 论 文 题 目: 学 科 专 业: 年 级: 学 号: 研 究 生: 指导教师: 中图分类号: 论文提交时间: 年 月 日 扉页 扉页内容一般包括论文题目.作者.申请学位类别和级别.学科专业. ...查看


  • 安徽大学工商管理学院
  • 安徽大学工商管理学院 关于硕士学位论文的撰写要求 为提高研究生学位论文的质量,规范学位论文的内容和格式,根据2007年1月29日安徽大学研究生部下发的<安徽大学关于博士.硕士学位论文撰写要求(修订稿)>,结合我院的实际情况,对硕 ...查看


热门内容