统计学方法怎么选

统计学方法怎么选,实用手册教你妙招

一、两组或多组计量资料的比较

1.两组资料:

1)大样本资料或服从正态分布的小样本资料

(1)若方差齐性,则作成组t检验

(2)若方差不齐,则作t’检验或用成组的Wilcoxon秩和检验

2)小样本偏态分布资料,则用成组的Wilcoxon秩和检验

2.多组资料:

1)若大样本资料或服从正态分布,并且方差齐性,则作完全随机的方差分析。如果方差分析的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:LSD检验,Bonferroni检验等)进行两两比较。

2)如果小样本的偏态分布资料或方差不齐,则作Kruskal Wallis的统计检验。如果Kruskal Wallis的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:用成组的Wilcoxon秩和检验,但用Bonferroni方法校正P值等)进行两两比较。

二、 分类资料的统计分析

1.单样本资料与总体比较

1)二分类资料:

(1)小样本时:用二项分布进行确切概率法检验;

(2)大样本时:用U检验。

2)多分类资料:用Pearson c2检验(又称拟合优度检验)。

2. 四格表资料

1)n>40并且所以理论数大于5,则用Pearson c2

2)n>40并且所以理论数大于1并且至少存在一个理论数

3)n£40或存在理论数

3. 2×C表资料的统计分析

1)列变量为效应指标,并且为有序多分类变量,行变量为分组变量,则行评分的CMH c2或成组的Wilcoxon秩和检验

2)列变量为效应指标并且为二分类,列变量为有序多分类变量,则用趋势c2检验

3)行变量和列变量均为无序分类变量

(1)n>40并且理论数小于5的格子数

(2)n£40或理论数小于5的格子数>行列表中格子总数的25%,则用Fisher’s 确切概率法检验

4. R×C表资料的统计分析

1)列变量为效应指标,并且为有序多分类变量,行变量为分组变量,则CMH c2或Kruskal Wallis的秩和检验

2)列变量为效应指标,并且为无序多分类变量,行变量为有序多分类变量,作none zero correlation analysis的CMH c2

3)列变量和行变量均为有序多分类变量,可以作Spearman相关分析

4)列变量和行变量均为无序多分类变量,

(1)n>40并且理论数小于5的格子数

(2)n£40或理论数小于5的格子数>行列表中格子总数的25%,则用Fisher’s 确切概率法检验

三、 Poisson分布资料

1.单样本资料与总体比较:

1)观察值较小时:用确切概率法进行检验。

2)观察值较大时:用正态近似的U检验。

2.两个样本比较:用正态近似的U检验。

配对设计或随机区组设计

四、 两组或多组计量资料的比较

1.两组资料:

1)大样本资料或配对差值服从正态分布的小样本资料,作配对t检验

2)小样本并且差值呈偏态分布资料,则用Wilcoxon的符号配对秩检验

2.多组资料:

1)若大样本资料或残差服从正态分布,并且方差齐性,则作随机区组的方差分析。如果方差分析的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:LSD检验,Bonferroni检验等)进行两两比较。

2)如果小样本时,差值呈偏态分布资料或方差不齐,则作Fredman的统计检验。如果Fredman的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:用Wilcoxon的符号配对秩检验,但用Bonferroni方法校正P值等)进行两两比较。

五、 分类资料的统计分析

1.四格表资料

1)b+c>40,则用McNemar配对 c2检验或配对边际c2检验

2)b+c£40,则用二项分布确切概率法检验

2.C×C表资料:

1)配对比较:用McNemar配对 c2检验或配对边际c2检验

2)一致性问题(Agreement):用Kap检验

变量之间的关联性分析

六、 两个变量之间的关联性分析

1.两个变量均为连续型变量

1)小样本并且两个变量服从双正态分布,则用Pearson相关系数做统计分析

2)大样本或两个变量不服从双正态分布,则用Spearman相关系数进行统计分析

2.两个变量均为有序分类变量,可以用Spearman相关系数进行统计分析

3.一个变量为有序分类变量,另一个变量为连续型变量,可以用Spearman相关系数进行统计分析

七、 回归分析

1.直线回归:如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,则直线回归(单个自变量的线性回归,称为简单回归),否则应作适当的变换,使其满足上述条件。

2.多重线性回归:应变量(Y)为连续型变量(即计量资料),自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,可以作多重线性回归。

1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

3.二分类的Logistic回归:应变量为二分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。

1)非配对的情况:用非条件Logistic回归

(1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

(2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

2)配对的情况:用条件Logistic回归

(1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

(2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

4.有序多分类有序的Logistic回归:应变量为有序多分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。

1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

5.无序多分类有序的Logistic回归:应变量为无序多分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。

1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

八、生存分析资:要求资料记录结局和结局发生的时间(如;死亡和死亡发生的时间)

1.用Kaplan-Meier方法估计生存曲线

2.大样本时,可以寿命表方法估计

3.单因素可以用Log-rank比较两条或多条生存曲线

4.多个因素时,可以作多重的Cox回归

1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

统计学方法怎么选,实用手册教你妙招

一、两组或多组计量资料的比较

1.两组资料:

1)大样本资料或服从正态分布的小样本资料

(1)若方差齐性,则作成组t检验

(2)若方差不齐,则作t’检验或用成组的Wilcoxon秩和检验

2)小样本偏态分布资料,则用成组的Wilcoxon秩和检验

2.多组资料:

1)若大样本资料或服从正态分布,并且方差齐性,则作完全随机的方差分析。如果方差分析的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:LSD检验,Bonferroni检验等)进行两两比较。

2)如果小样本的偏态分布资料或方差不齐,则作Kruskal Wallis的统计检验。如果Kruskal Wallis的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:用成组的Wilcoxon秩和检验,但用Bonferroni方法校正P值等)进行两两比较。

二、 分类资料的统计分析

1.单样本资料与总体比较

1)二分类资料:

(1)小样本时:用二项分布进行确切概率法检验;

(2)大样本时:用U检验。

2)多分类资料:用Pearson c2检验(又称拟合优度检验)。

2. 四格表资料

1)n>40并且所以理论数大于5,则用Pearson c2

2)n>40并且所以理论数大于1并且至少存在一个理论数

3)n£40或存在理论数

3. 2×C表资料的统计分析

1)列变量为效应指标,并且为有序多分类变量,行变量为分组变量,则行评分的CMH c2或成组的Wilcoxon秩和检验

2)列变量为效应指标并且为二分类,列变量为有序多分类变量,则用趋势c2检验

3)行变量和列变量均为无序分类变量

(1)n>40并且理论数小于5的格子数

(2)n£40或理论数小于5的格子数>行列表中格子总数的25%,则用Fisher’s 确切概率法检验

4. R×C表资料的统计分析

1)列变量为效应指标,并且为有序多分类变量,行变量为分组变量,则CMH c2或Kruskal Wallis的秩和检验

2)列变量为效应指标,并且为无序多分类变量,行变量为有序多分类变量,作none zero correlation analysis的CMH c2

3)列变量和行变量均为有序多分类变量,可以作Spearman相关分析

4)列变量和行变量均为无序多分类变量,

(1)n>40并且理论数小于5的格子数

(2)n£40或理论数小于5的格子数>行列表中格子总数的25%,则用Fisher’s 确切概率法检验

三、 Poisson分布资料

1.单样本资料与总体比较:

1)观察值较小时:用确切概率法进行检验。

2)观察值较大时:用正态近似的U检验。

2.两个样本比较:用正态近似的U检验。

配对设计或随机区组设计

四、 两组或多组计量资料的比较

1.两组资料:

1)大样本资料或配对差值服从正态分布的小样本资料,作配对t检验

2)小样本并且差值呈偏态分布资料,则用Wilcoxon的符号配对秩检验

2.多组资料:

1)若大样本资料或残差服从正态分布,并且方差齐性,则作随机区组的方差分析。如果方差分析的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:LSD检验,Bonferroni检验等)进行两两比较。

2)如果小样本时,差值呈偏态分布资料或方差不齐,则作Fredman的统计检验。如果Fredman的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:用Wilcoxon的符号配对秩检验,但用Bonferroni方法校正P值等)进行两两比较。

五、 分类资料的统计分析

1.四格表资料

1)b+c>40,则用McNemar配对 c2检验或配对边际c2检验

2)b+c£40,则用二项分布确切概率法检验

2.C×C表资料:

1)配对比较:用McNemar配对 c2检验或配对边际c2检验

2)一致性问题(Agreement):用Kap检验

变量之间的关联性分析

六、 两个变量之间的关联性分析

1.两个变量均为连续型变量

1)小样本并且两个变量服从双正态分布,则用Pearson相关系数做统计分析

2)大样本或两个变量不服从双正态分布,则用Spearman相关系数进行统计分析

2.两个变量均为有序分类变量,可以用Spearman相关系数进行统计分析

3.一个变量为有序分类变量,另一个变量为连续型变量,可以用Spearman相关系数进行统计分析

七、 回归分析

1.直线回归:如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,则直线回归(单个自变量的线性回归,称为简单回归),否则应作适当的变换,使其满足上述条件。

2.多重线性回归:应变量(Y)为连续型变量(即计量资料),自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,可以作多重线性回归。

1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

3.二分类的Logistic回归:应变量为二分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。

1)非配对的情况:用非条件Logistic回归

(1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

(2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

2)配对的情况:用条件Logistic回归

(1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

(2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

4.有序多分类有序的Logistic回归:应变量为有序多分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。

1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

5.无序多分类有序的Logistic回归:应变量为无序多分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。

1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用

八、生存分析资:要求资料记录结局和结局发生的时间(如;死亡和死亡发生的时间)

1.用Kaplan-Meier方法估计生存曲线

2.大样本时,可以寿命表方法估计

3.单因素可以用Log-rank比较两条或多条生存曲线

4.多个因素时,可以作多重的Cox回归

1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素

2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用


相关文章

  • 条形统计图
  • 条形统计图(第一课时) 教学内容:西师版小学数学课标教材四上第66页主题图,第67页例1,第69页课堂活动,练习十六第1.2题. 教学目标: 1.认识1格表示1个单位的条形统计图,初步感知条形统计图的特点. 2.经历条形统计图的形成过程,并 ...查看


  • 数据的分段整理
  • 黄梅中心小学   侯晓燕 设计思想: 一.注意读懂教材,把握学生,定准目标 让课堂更精彩,读懂教材,把握学生,定准目标是基础.读懂教材至少包含两个方面:一是要读懂教材内容在数学知识体系中的位置,读懂相关知识的来龙去脉,读懂教学内容与生活之间 ...查看


  • 谢宇 定量与定性研究方法
  • 定量与定性研究方法 谢宇 (注:本文系谢宇教授与北大社会学系学生座谈整理.) 马戎:今天我们请到了密歇根大学的谢宇教授,来跟我们的学生面对面,今天上午不是一个正式的讲座,是一个座谈.可能不需要太多介绍谢宇教授的情况了吧?他是我们系的老朋友, ...查看


  • 评选吉祥物教学设计 1
  • 评选吉祥物教学设计 一.教学内容 新北师大版二年级下册第86-87页. 二.教学目标 1.使学生通过对数据统计过程的体验,学习一些简单的收集.整理和描述数据的方法,初步了解分类统计的意义. 2.初步认识简单的统计表,能根据统计表中的数据提出 ...查看


  • 跟时间做朋友:时间管理 App 大盘点 | 读者来稿
  • 2014-4-28 16:43 这是 AppSolution 热心读者 @xy 发来的一篇投稿.上周 AppQ 跟大家聊到了「用 App 管理时间」这个话题,正当我在整理大家的各种观点时,意外收到了 @xy 的这篇盘点时间管理方法的长文.文 ...查看


  • 2015新苏教版六年级下册数学教案
  • 第一单元 扇形统计图 教材分析: 本单元在统计表以及条形统计图.折线统计图的基础上编排. 扇形统计图不仅表示各个部分数量的多少,而且侧重于用同一个圆里的大大小小的扇形,表示各个部分数量与总数量之间的关系,表示各个部分数量分别占总数量的百分之 ...查看


  • 统计学经典教材
  • 2010-12-31 07:34:46 来⾃自: yobalcony 2008-06-21 16:41 ⼀一.统计学基础部分 1.<统计学> David Freedman等著,魏宗舒,施锡铨等译 中国统计出版社 据说是统计思想讲 ...查看


  • 苏教版五数上册复式统计表教案
  • 教学内容:义务教育课程标准实验教科书(苏教版)五年级数学上册第84-85页 例1.练一练.练习十五第1.2题. 教学目标: 1.使学生在具体的统计活动中认识复式统计表,能根据收集.整理的数据填写统计表,并能根据统计表中的数据进行简单的分析. ...查看


  • 2015新北师大版三年级数学下册第六七单元教案及课堂练习题
  • 第六单元 认识分数 分一分(一) 教学目标: 1.结合具体情境和直观操作,初步理解分数的意义, 体会学习分数的必要性. 2.会用折纸.涂色等方式,表示简单的分数. 教学重点:初步理解分数的意义,体会学习分数的必 要性. 教学难点:会用折纸. ...查看


热门内容