小学生数学必背公式定理

小学生数学必背公式定理

要求:

小学一年级 九九乘法口诀表。学会基础加减乘。

小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。

小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分

配律,分数小数。

小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。

小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。

小学六年级 比例百分比概率,圆扇圆柱及圆锥

一、单位换算:

长度单位换算

1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米

=10毫米

面积单位换算

1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

体(容) 积单位换算

1立方米=1000立方分米 1立方分米=1000立方厘米 1立方

分米=1升

1立方厘米=1毫升 1立方米=1000升

重量单位换算

1吨=1000 千克 1千克=1000克 1千克=1公斤

人民币单位换算

1元=10角 1角=10分 1元=100分

时间单位换算

1世纪=100年 1年=12月 1日=24小时 1时=60分

1分=60秒 1时=3600秒

大月(31天) 有:1\3\5\7\8\10\12月 小月(30天) 的有:4\6\9\11月

平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天

二、图形的面积体积公式:

1、长方形的周长=(长+宽)×2 C=(a+b)×2

2、正方形的周长=边长×4 C=4a

3、长方形的面积=长×宽 S=ab

4、正方形的面积=边长×边长 S=a.a= a

5、三角形的面积=底×高÷2 S=ah÷2

6、平行四边形的面积=底×高 S=ah

7、梯形的面积=(上底+下底)×高÷2 S=(a +b )h÷2

8、 直径=半径×2 d=2r 半径=直径÷2 r= d÷2

9、 圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

10、圆的面积=圆周率×半径×半径 Ѕ=πr

11、长方体的表面积=(长×宽+长×高+宽×高)×2 S=(ab+ah+bh)×2

12、长方体的体积 =长×宽×高 V =abh

13、正方体的表面积=棱长×棱长×6 S =6a

14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a

15、圆柱的侧面积=底面圆的周长×高 S=ch

16、圆柱的表面积=上下底面面积+侧面积 S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch

17、圆柱的体积=底面积×高 V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h

18、圆锥的体积=底面积×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3

三、基本定义与运算定律

0的意义:0既可以表示“没有”,也可以作为某些数量的界限。如温度等。0是一个完全有确定意义的数。0是最小的自然数,是一个偶数。0是最小的自然数,是一个偶数。是任何自然数(0除外) 的倍数。0不能作除数。

自然数:用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10„„叫做自然数。简单说就是大于等于零的整数。

整数: 自然数都是整数,整数不都是自然数。

小数:小数是特殊形式的分数,所有分数都可以表示成小数,小数中的圆点叫做小数点。但是不能说小数就是分数。

混小数(带小数):小数的整数部分不为零的小数叫混小数,也叫带小数。 纯小数:小数的整数部分为零的小数,叫做纯小数。

有限小数:小数的小数部分只有有限个数字的小数(不全为零)叫做有限小数。 无限小数:小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。

循环小数:小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:0.333„„,1.2470470470„„都是循环小数。

纯循环小数:循环节从十分位就开始的循环小数,叫做纯循环小数。

混循环小数:与纯循环小数有唯一的区别,不是从十分位开始循环的循环小数,叫混循环小数。

无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。

分数:表示把 “单位1”平均分成若干份,取其中的一份或几份的数,叫做分数。

真分数:分子比分母小的分数叫真分数。

假分数:分子比分母大,或者分子等于分母的分数叫做假分数。

带分数:一个整数(零除外)和一个真分数组合在一起的数,叫做带分数。带分数也是假分数的另一种表示形式,相互之间可以互化。

加法:把两个数合并成一个数的运算,叫做加法,其中两个数都叫“加数”,结果叫“和”。

减法:已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法。减

法是加法的逆运算。其中“和”叫“被减数”,已知的加数叫“减数”,求出的另一个加数叫“差”。

乘法:求n 个相同加数的和的简便运算,叫做乘法。其中相同的这个数及n 个这样的数都叫“因数”,结果叫“积”。

除法:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。除法是乘法的逆运算。其中“积”叫做“被除数”,已知的一个因数叫做“除数”,求出来的另一个因数叫做“商”。

加法交换律:两个数相加,交换两个加数的位置,和不变,叫做加法交换律。 a+b=b+a

加法结合律:三个数相加,先把前二个数相加,再加第三个数,或者,先把后二个数相加,再加上第一个数,其和不变。这叫做加法结合律。 a+b+c=(a+b)+c=a+(b+c)

减法性质:在减法中,被减数、减数同时加上或者减去一个数,差不变。a-b=(a+c)-(b+c) ,ab=(a-c)-(b-c)。在减法中,被减数增加多少或者减少多少,减数不变,差随着增加或者减少多少。反之,减数增加多少或者减少多少,被减数不变,差随着减少或者增加多少。在减法中,被减数减去若干个减数,可以把这些减数先加,差不变。a –b - c = a - (b + c)

乘法的交换律:两个数相乘,交换两个因数的位置,积不变,叫做乘法的交换律。a×b = b×a

乘法的结合律:三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变。这叫做乘法结合律。a×b×c = a×(b×c)

乘法分配律:两个数的和(或差)与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积相加(或相减)。这叫做乘法分配律。 (a + b) ×c= a×c + b×c, (a - b)×c= a×c - b×c

乘法的其他运算性质:一个因数扩大若干倍,必须把另一个因数缩小相同的倍数,其积不变。a×b = (a×c) ×( b÷c)

除法的运算性质:商不变性质, 两个数相除,被除数和除数同时扩大或者缩小相同

的一个数(0除外),商的大小不变。 a÷b=(a×c)÷(b×c) a÷b=(a÷c)÷(b÷c )

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。a÷b÷c = a÷(b×c)

乘法的意义:

求几个相同加数的和是多少?例如:27×13,表示求13个27的和是多少?也可以表示求27的13倍是多少?

求一个数的若干倍是多少?例如:27×0.3或者的意义:求27的十分之三是多少?

除法的意义:

一个数里有几个除数。简称“包含除法”。 例如,24÷3表示24里面包含有几个3。

一个数是另一个数的多少倍。例如:24÷3,表示24是3的多少倍?

把一个数平均分成若干份,每份是多少?简称“等分除法”。例如:24÷3,表

示把24平均分成3份,每份是多少?

已知一个数的几分之几是多少,求这个数。

例如:,表示:已知一个数的三分之一是24,求这个数。

整除与除尽

整除:甲数除以乙数(甲、乙为自然数),商是整数,余数为零。就说甲数能被乙数整除。

除尽:甲数除以乙数(乙数不为零),商是有限数。就说甲数能被乙数除尽。 整除可以说是除尽,但除尽就不能说一定叫整除。例如:1÷5=0.2,叫除尽,但不叫整除。因为商是小数。又如:10÷3=3„„1,既不叫整除,(因为余数不为零)也不叫除尽。

约数和倍数:当甲数能被乙数整除时,就说甲数是乙数的倍数,乙数是甲数的约数。这两个概念都是相对而存在。一个自然数,不存在是否倍数与约数。例如:“3是约数”,就是一个错误说法。只能是对3、6、9、„„等数而言,是其中某个数的约数。

最简分数:分子、分母只有公因数1的分数叫做最简分数或者说分子和分母是互质数的分数,叫做最简分数,又称既约分数。最简分数又叫既约分数, 既约分数可理解成已经约分过的分数, 也就是分子和分母是互质数的分数。假分数虽然是大于1或等于1的分数,但如果符合以上定义也是最简分数。互质数:对于两个数来看:公因数只有1的两个数,叫做互质数。对于多个数来看:若干个最大公因数只有1的正整数,叫做互质数。

分数实质上就是两个正整数相除的商的另外一种形式,它的分子就是被除数,分母就是除数,分数线相当于“÷”号;分数的分子与分母千万不可颠倒;分数与正整数的关系是双向的。

小学生数学必背公式定理

要求:

小学一年级 九九乘法口诀表。学会基础加减乘。

小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。

小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分

配律,分数小数。

小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。

小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。

小学六年级 比例百分比概率,圆扇圆柱及圆锥

一、单位换算:

长度单位换算

1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米

=10毫米

面积单位换算

1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米

体(容) 积单位换算

1立方米=1000立方分米 1立方分米=1000立方厘米 1立方

分米=1升

1立方厘米=1毫升 1立方米=1000升

重量单位换算

1吨=1000 千克 1千克=1000克 1千克=1公斤

人民币单位换算

1元=10角 1角=10分 1元=100分

时间单位换算

1世纪=100年 1年=12月 1日=24小时 1时=60分

1分=60秒 1时=3600秒

大月(31天) 有:1\3\5\7\8\10\12月 小月(30天) 的有:4\6\9\11月

平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天

二、图形的面积体积公式:

1、长方形的周长=(长+宽)×2 C=(a+b)×2

2、正方形的周长=边长×4 C=4a

3、长方形的面积=长×宽 S=ab

4、正方形的面积=边长×边长 S=a.a= a

5、三角形的面积=底×高÷2 S=ah÷2

6、平行四边形的面积=底×高 S=ah

7、梯形的面积=(上底+下底)×高÷2 S=(a +b )h÷2

8、 直径=半径×2 d=2r 半径=直径÷2 r= d÷2

9、 圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

10、圆的面积=圆周率×半径×半径 Ѕ=πr

11、长方体的表面积=(长×宽+长×高+宽×高)×2 S=(ab+ah+bh)×2

12、长方体的体积 =长×宽×高 V =abh

13、正方体的表面积=棱长×棱长×6 S =6a

14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a

15、圆柱的侧面积=底面圆的周长×高 S=ch

16、圆柱的表面积=上下底面面积+侧面积 S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch

17、圆柱的体积=底面积×高 V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h

18、圆锥的体积=底面积×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3

三、基本定义与运算定律

0的意义:0既可以表示“没有”,也可以作为某些数量的界限。如温度等。0是一个完全有确定意义的数。0是最小的自然数,是一个偶数。0是最小的自然数,是一个偶数。是任何自然数(0除外) 的倍数。0不能作除数。

自然数:用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10„„叫做自然数。简单说就是大于等于零的整数。

整数: 自然数都是整数,整数不都是自然数。

小数:小数是特殊形式的分数,所有分数都可以表示成小数,小数中的圆点叫做小数点。但是不能说小数就是分数。

混小数(带小数):小数的整数部分不为零的小数叫混小数,也叫带小数。 纯小数:小数的整数部分为零的小数,叫做纯小数。

有限小数:小数的小数部分只有有限个数字的小数(不全为零)叫做有限小数。 无限小数:小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。

循环小数:小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:0.333„„,1.2470470470„„都是循环小数。

纯循环小数:循环节从十分位就开始的循环小数,叫做纯循环小数。

混循环小数:与纯循环小数有唯一的区别,不是从十分位开始循环的循环小数,叫混循环小数。

无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。

分数:表示把 “单位1”平均分成若干份,取其中的一份或几份的数,叫做分数。

真分数:分子比分母小的分数叫真分数。

假分数:分子比分母大,或者分子等于分母的分数叫做假分数。

带分数:一个整数(零除外)和一个真分数组合在一起的数,叫做带分数。带分数也是假分数的另一种表示形式,相互之间可以互化。

加法:把两个数合并成一个数的运算,叫做加法,其中两个数都叫“加数”,结果叫“和”。

减法:已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法。减

法是加法的逆运算。其中“和”叫“被减数”,已知的加数叫“减数”,求出的另一个加数叫“差”。

乘法:求n 个相同加数的和的简便运算,叫做乘法。其中相同的这个数及n 个这样的数都叫“因数”,结果叫“积”。

除法:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。除法是乘法的逆运算。其中“积”叫做“被除数”,已知的一个因数叫做“除数”,求出来的另一个因数叫做“商”。

加法交换律:两个数相加,交换两个加数的位置,和不变,叫做加法交换律。 a+b=b+a

加法结合律:三个数相加,先把前二个数相加,再加第三个数,或者,先把后二个数相加,再加上第一个数,其和不变。这叫做加法结合律。 a+b+c=(a+b)+c=a+(b+c)

减法性质:在减法中,被减数、减数同时加上或者减去一个数,差不变。a-b=(a+c)-(b+c) ,ab=(a-c)-(b-c)。在减法中,被减数增加多少或者减少多少,减数不变,差随着增加或者减少多少。反之,减数增加多少或者减少多少,被减数不变,差随着减少或者增加多少。在减法中,被减数减去若干个减数,可以把这些减数先加,差不变。a –b - c = a - (b + c)

乘法的交换律:两个数相乘,交换两个因数的位置,积不变,叫做乘法的交换律。a×b = b×a

乘法的结合律:三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变。这叫做乘法结合律。a×b×c = a×(b×c)

乘法分配律:两个数的和(或差)与一个数相乘,等于把这两个数分别与这个数相乘,再把两个积相加(或相减)。这叫做乘法分配律。 (a + b) ×c= a×c + b×c, (a - b)×c= a×c - b×c

乘法的其他运算性质:一个因数扩大若干倍,必须把另一个因数缩小相同的倍数,其积不变。a×b = (a×c) ×( b÷c)

除法的运算性质:商不变性质, 两个数相除,被除数和除数同时扩大或者缩小相同

的一个数(0除外),商的大小不变。 a÷b=(a×c)÷(b×c) a÷b=(a÷c)÷(b÷c )

一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。a÷b÷c = a÷(b×c)

乘法的意义:

求几个相同加数的和是多少?例如:27×13,表示求13个27的和是多少?也可以表示求27的13倍是多少?

求一个数的若干倍是多少?例如:27×0.3或者的意义:求27的十分之三是多少?

除法的意义:

一个数里有几个除数。简称“包含除法”。 例如,24÷3表示24里面包含有几个3。

一个数是另一个数的多少倍。例如:24÷3,表示24是3的多少倍?

把一个数平均分成若干份,每份是多少?简称“等分除法”。例如:24÷3,表

示把24平均分成3份,每份是多少?

已知一个数的几分之几是多少,求这个数。

例如:,表示:已知一个数的三分之一是24,求这个数。

整除与除尽

整除:甲数除以乙数(甲、乙为自然数),商是整数,余数为零。就说甲数能被乙数整除。

除尽:甲数除以乙数(乙数不为零),商是有限数。就说甲数能被乙数除尽。 整除可以说是除尽,但除尽就不能说一定叫整除。例如:1÷5=0.2,叫除尽,但不叫整除。因为商是小数。又如:10÷3=3„„1,既不叫整除,(因为余数不为零)也不叫除尽。

约数和倍数:当甲数能被乙数整除时,就说甲数是乙数的倍数,乙数是甲数的约数。这两个概念都是相对而存在。一个自然数,不存在是否倍数与约数。例如:“3是约数”,就是一个错误说法。只能是对3、6、9、„„等数而言,是其中某个数的约数。

最简分数:分子、分母只有公因数1的分数叫做最简分数或者说分子和分母是互质数的分数,叫做最简分数,又称既约分数。最简分数又叫既约分数, 既约分数可理解成已经约分过的分数, 也就是分子和分母是互质数的分数。假分数虽然是大于1或等于1的分数,但如果符合以上定义也是最简分数。互质数:对于两个数来看:公因数只有1的两个数,叫做互质数。对于多个数来看:若干个最大公因数只有1的正整数,叫做互质数。

分数实质上就是两个正整数相除的商的另外一种形式,它的分子就是被除数,分母就是除数,分数线相当于“÷”号;分数的分子与分母千万不可颠倒;分数与正整数的关系是双向的。


相关文章

  • 多面体欧拉定理5
  • 多面体欧拉定理的发现 温州中学 黄 振 [教学背景] 数学不应看作真理的汇集,而主要的应看成人类活动的一种创造性的活动.因而在教学中,如何积极引导学生主动地探索,深刻剖析知识的产生.形成和发展过程,提高学生发现问题和解决问题的能力,这是我经 ...查看


  • 中学数学教学论文题目
  • 1.数学中的研究性学习 2.数字危机 3.中学数学中的化归方法 4.高斯分布的启示 5.a2+b2≧2ab的变形推广及应用 6.网络优化 7.泰勒公式及其应用 8.浅谈中学数学中的反证法 9.数学选择题的利和弊 10.浅谈计算机辅助数学教学 ...查看


  • 高等数学大纲(物理类)
  • <高等数学>教学大纲 课程名称:高等数学 适用层次.专业:理科.工科各专业 学 时:320学时 学 分:20学分 课程类型:通识教育平台课 课 程 性 质:必修课 一.课程的教学目标与任务 高等数学是理.工.管等相关专业的第一基 ...查看


  • 勾股定理公开课精品教案
  • 课题:18.1 勾股定理(1) --直角三角形三边的关系 袁婉霞 一.教学目标 (一)知识目标 1.创设情境引出问题,激起学生探索直角三角形三边的关系的兴趣. 2.让学生带着问题体验勾股定理的探索过程,并正确运用勾股定理解决相关问题. (二 ...查看


  • 初中数学"命题课"与"概念课"教学初探
  • 初中数学"命题课"与"概念课"教学初探 在初中数学教学中,根据知识结构特点,我们可将数学教学分为复习课.命题课.概念课等课型.不同的课型,其教学任务.教学方法.学习方法是不尽相同的.对此,笔者主要对初 ...查看


  • 2009年全国考试大纲(数学(理)卷)及理综
  • (必修+选修Ⅱ) Ⅰ.考试性质 普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试,高等学校根据考生成绩,按已确定的招生计划,德.智.体.全面衡量,择优录取,因此,高考应有较高的信度.效度,必要的区分度和适当 ...查看


  • 高中数学公式口诀
  • 高中数学公式口诀 一.<集合与函数> 内容子交并补集,还有幂指对函数.性质奇偶与增减,观察图象最明显. 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓. 指数与对数函数,两者互为反函数.底数非1的正数,1两边增减 ...查看


  • 南开大学本科课程教学大纲
  • 南开大学 本科课程教学大纲 课程名称: 高等数学 (生化类) Mathematics 英文名称: Advanced 课 号:所 属 院: 数学科学学院 日 期: 2006 年 3 月 30 日 周学时 5.5 总学时 160 学分.4.5 ...查看


  • 培训听课笔记
  • 7月17日听课笔记: 普通高中数学课程标准实验教科书(A版) 一.几个基本观点 1.坚持我国数学教育的优良传统 • • • • • • • • 课程教材体系结构严谨,逻辑性强,语言叙述条理清晰,文字简洁.流畅,有利于教师组织教学,注重对学生 ...查看


  • 高等数学课程教学大纲 1
  • <高等数学>课程教学大纲 名称:<高等数学> 课程性质:公共必修棵 学时:56课时 适用专业:药学系各专业 一.课程性质.目的和要求 高等数学是我院文理科非数学专业学生学习的一门必修的重要基础理论课程,是为培养我国社 ...查看


热门内容