框架结构毕业设计

中国石油大学(华东)毕业设计(论文)

东营市华凌科技公司办公楼

学生姓名:

学 号:

专业班级:土木工程03-1班

指导教师:

2007年6月18日

中国石油大学(华东)本科毕业设计(论文)

摘 要

本课题为东营市华凌科技办公楼的设计,4层,建筑面积约3000m2,长42m,宽16.8m,高14.95m。采用钢筋混凝土框架结构。首先,根据设计出的建筑方案及所选用的建筑材料及做法,确定结构计算简图,进行荷载和内力计算,绘制了相应的内力图;其次,进行结构内力组合,确定结构控制截面的弯矩、剪力和轴力设计值。最后,根据已经计算出的结构控制截面的内力值,对梁、板、柱、基础等进行配筋计算,并绘制了相应的结构施工图。同时,本文采用PKPM软件进行电算,以保证计算结果的可靠性,并达到同手算结果对比、分析的目的。

关键词:框架结构;内力;配筋;控制截面

中国石油大学(华东)本科毕业设计(论文)

ABSTRACT

The topic is the design of Hua Ling technology office building in DongYing city, four layers, the area of construction is about 3000m2, the length of the building is 42m, the width is 16.8m and the height is 14.95m. This building is reinforced concrete frame structure. First of all, according to architectural drawing of design, building material and method, determine schematic calculation, thus completing the load and internal forces calculation, drawing a map corresponding to the internal forces; Secondly, proceed the structure internal force combination, determine the structure control sectional bending moment, shearing force and ax force design value. Finally, according to already calculate structure control sectional internal force value, the beam, slab and columns, the foundation being reinforced, and the mapping of the corresponding structure construction plan. At the same time, we used the software PKPM to ensure the reliability of results, and achieve the purpose of analysis, contrast the result which was calculated by hand.

Keywords:frame construction; internal force; reinforcement; control section

中国石油大学(华东)本科毕业设计(论文)

目 录

前 言 ···················································································································· 1

第1章 设计资料 ·································································································· 2

1.1 工程概况 ······································································································ 2

1.2 设计标高 ······································································································ 2

1.3 气象资料 ······································································································ 2

1.4 工程地质资料 ······························································································ 2

1.5 抗震烈度 ······································································································ 2

1.6 墙身做法 ······································································································ 2

1.7 门窗做法 ······································································································ 2

1.8 所用材料 ······································································································ 2

第2章 结构布置和计算简图 ·············································································· 3

第3章 荷载计算 ·································································································· 5

3.1 恒载计算 ······································································································ 5

3.1.1 屋面框架梁线荷载标准值 ··································································· 5

3.1.2 楼面框架梁线荷载标准值 ··································································· 5

3.1.3 屋面框架节点集中荷载标准值 ··························································· 6

3.1.4 楼面框架节点集中荷载标准值 ··························································· 6

3.2 活荷载计算 ·································································································· 8

3.2.1 屋面活荷载 ··························································································· 8

3.2.2 楼面活荷载 ··························································································· 8

3.3 风荷载计算 ·································································································· 9

3.4 地震作用计算 ···························································································· 10

3.4.1 重力荷载代表值计算 ········································································· 10

3.4.2 框架刚度计算 ····················································································· 12

中国石油大学(华东)本科毕业设计(论文)

3.4.3 结构基本周期的计算 ········································································· 14

3.4.4 多遇水平地震作用标准值计算 ························································· 14

3.4.5 横向框架弹性变形验算 ····································································· 15

第4章 内力计算 ································································································ 16

4.1 恒荷载作用下的内力计算 ········································································ 16

4.2 活荷载作用下的内力计算 ········································································ 21

4.3 风荷载作用下的内力计算 ········································································ 24

4.4 水平地震作用下的内力分析 ···································································· 27

第5章 内力组合 ································································································ 30

第6章 截面设计 ································································································ 31

6.1 梁的配筋计算 ···························································································· 31

6.1.1 边跨梁配筋计算 ················································································· 31

6.1.2 中跨梁配筋计算 ················································································· 33

6.2 框架柱配筋计算 ························································································ 33

6.2.1 框架柱的纵向受力钢筋计算 ····························································· 33

6.2.2 斜截面受剪承载力计算 ····································································· 35

第7章 楼板设计与计算 ···················································································· 41

7.1 屋面板计算 ································································································ 41

7.1.1 荷载计算 ····························································································· 41

7.1.2 按弹性理论计算 ················································································· 41

7.2 楼面板计算 ································································································ 42

7.2.1 荷载计算 ····························································································· 42

7.2.2 按弹性理论计算 ················································································· 42

7.2.3 截面设计 ····························································································· 44

第8章 楼梯设计 ································································································ 45

8.1 梯段板计算 ································································································ 45

中国石油大学(华东)本科毕业设计(论文)

8.1.1 荷载计算 ····························································································· 45

8.1.2 截面设计 ····························································································· 45

8.2 平台板计算 ································································································ 46

8.2.1 荷载计算 ····························································································· 46

8.2.2 截面设计 ····························································································· 46

8.3 平台梁计算 ································································································ 47

8.3.1 荷载计算 ····························································································· 47

8.3.2 内力计算 ····························································································· 47

8.3.3 截面计算 ····························································································· 47

第9章 基础设计 ································································································ 49

9.1 设计资料 ···································································································· 49

9.2 基础梁配筋计算 ························································································ 49

9.3 翼板的承载力计算 ···················································································· 55

9.3.1 边基础翼板的承载力计算 ································································· 55

9.3.2 中基础翼板的承载力计算 ································································· 55 结 论 ·················································································································· 57 致 谢 ·················································································································· 58 参考文献 ·············································································································· 59 附 录 ·················································································································· 60

前言

前 言

毕业设计大学四年最后的实践性演练,对我们的综合素质和毕业后实际工作能力、适应社会能力的提高有着不可忽视的作用。在毕业设计过程中,能系统化的运用头脑里的知识框架,充分调动工作积极性,以及操作制图能力等。

本次设计为钢筋混凝土框架结构,其中主要包括建筑设计和结构设计。遵循由建筑到结构,再到基础的设计过程。

建筑设计根据地形及周边环境,合理布置建筑总平面,综合考虑各个部分的具体使用要求,统筹相互间的关系和位置,使建筑各部分人流组织通畅,建筑流线简捷、明确,以取得良好的使用效果、景观效果和经济效果。然后进行立面造型、剖面设计。

结构设计包括确定结构体系与结构布置、根据经验对构件初估、确定计算单元计算模型及计算简图、荷载计算、内力计算、基础设计等内容。框架结构设计的计算工作量很大,在计算过程中以手算为主,辅以一些计算软件如PKPM的校正。设计时尽量做到安全、经济、适用的要求。

通过本次毕业设计,涉猎了大量的知识,查阅资料的能力大大提高,手工绘图,上机制图的能力也逐渐巩固,由于时间相对紧张,让自己能够更加充分合理的利用时间,使自己能更加有信心面对将来的工作和学习,做好迎接未来挑战的准备。

1

设计资料

第1章 设计资料

1.1 工程概况

山东东营华凌科技公司办公楼,建筑总面积约为3000m2。采用钢筋混凝土框架结构,四层。

1.2 设计标高

室内设计标高±0.00m,相当于绝对标高6.00m,室内外高差450mm。

1.3 气象资料

夏季室外计算温度:34.5℃,绝对最高温度:40℃,冬季室外计算温度:-9℃,绝对最高温度:-22℃,最大降雨量:300mm,基本风压:0.45kN/m2,主导风向:冬季:西北,夏季:东南。基本雪压:0.2kN/m2 ,最大冻深:500mm。

1.4 工程地质资料

地基允许承载力R=90kN/m2,土类型为粉质粘土,Ⅱ类场地,最高地下水位:自然地面以下1.2m;地下水性质:有弱硫酸盐侵蚀。

1.5 抗震烈度

抗震设防烈度为7度,设计基本地震加速度值为0.10g,Ⅱ类场地,设计地震分组为第二组。

1.6 墙身做法

外墙采用蒸压粉煤灰加气混凝土砌块:厚240mm;内墙采用蒸压粉煤灰加气混凝土砌块:厚200mm。

1.7 门窗做法

门厅处为铝合金门窗,其他均为木门、铝合金窗。

1.8 所用材料

混凝土C25:fc11.9N/mm2,ft1.27N/mm2;HPB235级钢筋:fy210N/mm2;HRB335级钢筋:fy300N/mm2,b=0.55。

2

结构布置和计算简图

第2章 结构布置和计算简图

结构平面布置如图2-1所示。各梁柱截面尺寸如下:

图 2-1 结构平面布置 边跨梁:hl7200600mm,取h600mm,b250mm。 1212

中跨梁:hl2400200mm,取h400mm,b250mm。 1212

l4200350mm,取h400mm,b250mm。 1212纵向框架梁:h

N柱:ANfc=124(3.61.2)4.210001.2108423.5mm2, 11.90.9

取bh400mm400mm。 板厚:hl4200105mm,取h100mm。 4040

结构计算简图如图2-2所示。底层层高为4.15m,各梁柱构件的线刚度经计算后列于图2-2。其中在求梁截面惯性矩时考虑到现浇楼板的作用,取I2I0(I0为不考虑楼板翼缘作用的梁截面惯性矩)。

3

结构布置和计算简图

AB、CD跨梁:i2E10.250.63/7.0212.82104E(m3) 12

BC跨梁:i2E10.250.43/2.610.26104E(m3) 12

10.44/3.65.93104E(m3) 12上部各层柱:iE

底层柱:i

E10.44/4.155.14104E(m3) 12

注:图中数字为线刚度,单位:10

图 2-2 结构计算简图 4Em3

4

第3章 荷载计算

3.1 恒载计算

3.1.1 屋面框架梁线荷载标准值

4厚高聚物改性沥青防水卷材防水层 0.004×10=0.04kN/m2

20厚1:3水泥砂浆保护层 20×0.02=0.4kN/m2 水泥珍珠岩(最薄40mm)2%找坡 0.124×4=0.496kN/m2100厚憎水膨胀珍珠岩 0.1×4=0.4kN/m2 100厚现浇楼板 25×0.1=2.5kN/m2 20厚1:3水泥砂浆找平层 20×0.02=0.4kN/m2 15mm厚纸筋石灰抹灰 0.015×16=0.24kN/m2 屋面恒载 4.476kN/m2 边跨框架梁自重 0.25×0.6×25=3.75kN/m 梁侧粉刷 2×(0.6-0.1)×0.02×17=0.34kN/m 边跨框架梁总重 4.09kN/m 边跨框架梁自重 0.25×0.4×25=2.5kN/m 梁侧粉刷 2×(0.4-0.1)×0.02×17=0.204kN/m 中跨框架梁总重 2.704kN/m 因此作用在顶层框架梁的线荷载为:

g4AB1g4CD14.09kN/m g4BC12.704kN/m g4AB2g4CD24.4764.218.799kN/m g4BC24.4762.611.638kN/m

3.1.2 楼面框架梁线荷载标准值

水磨石地面 0.65kN/m2 100厚钢筋混凝土楼板 0.1×25=2.5kN/m2 15mm厚纸筋石灰抹底 0.015×17=0.255kN/m2

楼面恒载 3.405kN/m2 边跨框架梁及梁侧粉刷 4.09kN/m2 边跨填充墙自重 0.2×5.5×(3.6-0.6)=3.3kN/m 填充墙粉刷自重 (3.6-0.6)×0.02×2×17=2.04kN/m 中跨框架梁及梁侧粉刷 2.704kN/m 因此作用在中间层框架梁的线荷载为:

gAB1gCD14.093.32.049.43kN/m gBC12.704kN/m gAB2gCD23.4054.214.301kN/mgBC23.4052.68.853kN/m

3.1.3 屋面框架节点集中荷载标准值

边柱纵向框架梁自重 0.25×0.4×4.2×25=10.5kN

边柱纵向框架梁粉刷 (0.4-0.1)×2×0.02×4.2×17=0.8568kN

1000高女儿墙自重 1×0.24×4.2×5.5=5.544kN 1000高女儿墙粉刷 4.2×0.02×17×2=2.856kN

框架梁传来屋面自重 4.2×2.1×4.476×0.5=19.739kN 顶层边节点集中荷载 G4AG4D39.50kN 中柱纵向框架梁自重 0.25×0.4×4.2×25=10.5kN 中柱纵向框架梁粉刷 0.8568kN 纵向框架梁传来屋面自重 0.5×4.2×4.2/2×4.476=19.739kN 0.5×(4.2+4.2-2.6)×1.3×4.476=16.875kN 顶层中节点集中荷载: G4BG4C47.97kN3.1.4 楼面框架节点集中荷载标准值

边柱纵向框架梁自重 10.5kN

边柱纵向框架梁粉刷 0.8568kN 铝合金窗自重 2.4×2.3×0.5=2.76kN 窗下墙体自重 0.9×3.8×0.24×5.5=4.5144kN

窗下墙体粉刷 0.9×0.02×2×17×3.8=2.3256kN 窗边墙体自重 1.4×2.3×0.24×5.5=4.2504kN 窗边墙体粉刷 1.4×0.02×2×2.3×17=2.1896kN 框架柱自重 0.4×0.4×3.6×25=14.4kN 框架柱粉刷 0.92×0.02×3.6×17=1.1261kN 纵向框架梁传来楼面自重 0.5×4.2×4.2/2×3.405=15.016kN 中间层边节点集中荷载 GAGD57.94kN 中柱纵向框架梁自重 10.5kN 中柱纵向框架梁粉刷 0.8568kN

内纵墙自重 (3.6-0.4)×0.2×4.2×5.5= 14.784kN 墙粉刷 (3.6-0.4)×0.02×2×17×4.2=9.1392kN 扣除门洞重加上门重 -2.1×1×(1.78-0.2)=-3.318kN 框架柱自重 14.4kN 框架柱粉刷 0.02×1×17×3.6=1.224kN 纵向框架梁传来楼面自重 0.5×4.2×4.2/2×3.405=15.016kN 0.5×(4.2+4.2-2.6)×1.3×3.405=12.837kN

中间间层中节点集中荷载 GBGC47.97kN 恒载作用下的计算简图如图3-1所示。

图 3-1 恒载作用下的计算简图

3.2 活荷载计算

3.2.1 屋面活荷载

P4ABP4CD0.54.22.1kN/m P4BC0.52.61.3kN/m

P4AP4D0.54.24.2/20.52.205kN

P4BP4C0.54.24.2/20.50.5(4.24.2-2.6)1.30.54.09kN

3.2.2 楼面活荷载

PABPCD2.04.28.4kN/m PBC2.52.66.5kN/m

PAPD0.54.24.2/22.08.82kN

PBPC0.54.24.2/22.00.5(4.24.2-2.6)1.32.518.245kN

活荷载作用下的结构计算简图如图3-2所示。

图 3-2 活载作用下的计算简图

3.3 风荷载计算

风压标准值计算公式为ZSZ0(3-1)

因结构高度H=14.85m

表3-1 风荷载计算

图 3-3 风荷载作用下的结构计算简图

3.4 地震作用计算

3.4.1 重力荷载代表值计算

作用于屋面梁及各层楼面梁处的重力荷载代表值为:

屋面梁处:GEW=结构和构件自重+50%雪荷载 楼面梁处:GE1=结构和构件自重+50%活荷载

其中结构和构件自重取楼面上下1/2层高范围内(屋面梁处取顶层一半)的

结构和构件自重,各质点的重力荷载代表值及质点高度如图3-4所示。

图 3-4 质点重力荷载代表值及质点高度

各层荷载为:

G4=屋面恒载+0.5屋面雪荷载+屋盖纵横梁自重+屋面下半层的柱及墙

体自重+女儿墙自重

G屋面板=4.476×42.24×17.04=3221.69kN

G女儿墙=0.24×1×(16.8+42)×2×5.5+0.02×(0.24+2)×(16.8+42)×

2×17=244.80kN

G雪=0.2×17.04×42.24=143.95kN

G柱=0.4×0.4×25×(1.8-0.1)×42=285.6kN

G梁=0.25×25×(0.6-0.1)×(7.02-0.4)×21+0.02×2×(0.6-0.1)×

(7.02-0.4)×21×17+0.25×25×(0.6-0.1)×(7.2-0.1-0.12)+ 0.02×2×(0.6-0.1)×(7.2-0.1-0.12)×17+0.25×25×(0.4-0.1)×(2.4-0.2)×11+0.02×2×(0.4-0.1)×(2.4-0.2)×11×17+0.25×25×(0.4-0.1)×(4.2-0.4)×28+0.02×2×(0.4-0.1)×(4.2-0.4)×17×28+0.25×25×(0.4-0.1)×(4.2-0.2-0.28)×8+0.02×2×(0.4-0.1)×(4.2-0.2-0.28)×8×17+0.25×25×(0.7-0.1)×(8.4-0.4)×2+0.02×2×(0.7-0.1)×(8.4-0.4)×2×17

=434.4375+47.2668+21.8125+2.3732+45.375+4.9368+199.5+21.7056+55.8+6.071+60+6.528

=905.80kN

G墙=0.2×(1.8-0.6)×(7.02-0.4)×11×5.5+0.02×2×(1.8-0.6)

×(7.02-0.4)×17×15+0.24×(1.8-0.6)×(7.02-0.4)×4×5.5+0.2×(1.8-0.6)×(7.2-0.1-0.12)×5.5+0.02×2×(1.8-0.6)×(7.2-0.1-0.12)×17+0.24×(1.8-0.4)×(4.2-0.4-2.4)×14×5.5+0.24×(1.8-0.4)×(4.2-0.2-2.4-0.28)×4×5.5+0.24×(1.8-0.4)×(2.4-0.2-1.5)×5.5×2+0.02×2×(1.8-0.4)×(2.4-0.2-1.5)×17×2+0.2×(1.8-0.4)×(4.2-0.4)×13×5.5+0.2×(1.8-0.4)×(4.2-0.2-0.28)×3×5.5+0.02×2×(1.8-0.4)×(4.2-0.4-2.4)×14×17+0.02×(1.8-0.4)×(4.2-0.2-0.28)×2×17×4+0.02×2×(1.8-0.4)×(4.2-0.4)×17×13+0.02×2×(1.8-0.4)×(4.2-0.2-0.28)×17×3+0.2×(1.8-0.7)×(8.4-0.4)×5.5+0.02×2×(1.8-0.7)×(8.4-0.4)×17+0.24×(1.8-0.7)×(8.4-0.4-4.8)×5.5+0.02×2×(1.8-0.7)×(8.4-0.4-4.8)×17

=96.122+81.029+41.944+9.214+5.696+36.221+9.757+76.076+17.186+18.659+14.166+47.029+10.624+9.68+5.984+4.646+2.394+2.587+1.333

=490.35kN

G4=G屋面板+G女儿墙+0.5G雪+G梁+G柱+G墙

=3221.69+244.80+0.5×143.95+905.8+285.6+490.35=5220.22kN 同理得:

G3=G2=5984.88kN

G1=6132.68kN

3.4.2 框架刚度计算

考虑到现浇楼板的作用,中框架梁I2I0,边框架梁I1.5I0(I0为不考虑楼板翼缘作用的梁截面惯性矩)。计算过程表3-2、3-3、3-4所示。

表 3-2 梁的刚度

注:ibEI/h 表 3-3 柱的刚度

表 3-4 框架总刚度

3.4.3 结构基本周期的计算

本楼的主体总高度为14.85m,且楼房的质量和刚度可采用底部剪力法计算水平地震作用,为此必须先确定其基本周期。现用能量法计算,并考虑非承重填充墙刚度的影响,取折减系数T0.6。其计算过程列于表3-5。

表 3-5 能量法计算基本周期

4

2i

4

得,T12T

Gu/Gu

i

i

i1

i1

i

=2×0.6×405.864/2968.755=0.444s

3.4.4 多遇水平地震作用标准值计算

7度第二组地震和Ⅲ类场地,max0.08,Tg0.4s。 1max(Tg/T1)0.90.08(0.4/0.444)0.90.0729 T1=0.444s

所以不考虑顶部附加水平地震作用,结构的总重力荷载为23322.7kN,所以底部剪力为

Fek1GeqG10.850.072923322.71445kN

各楼层水平地震作用标准值按下式计算

Fi

GiH

FEK(3-2)

j

GH

j

j1

4

楼层的地震作用标准值Fi 和地震剪力标准值Vi 的计算如表3-6。

表 3-6 地震作用标准值和地震剪力标准值

3.4.5 横向框架弹性变形验算

多遇地震作用下,横向框架层间的弹性验算结果列于表3-7,其中楼层间的地震剪力应取标准值。

从表中验算知uei/Hie,故多遇水平地震作用的变形验算满足要求。

第4章 内力计算

4.1 恒荷载作用下的内力计算

以一榀中框架为例,恒载作用下的内力计算采用分层法,这里以顶层为例说明分层法的计算过程,其他层(中间层、底层)计算过程与顶层相同。中柱的线刚度采用框架梁柱实际线刚度的0.9倍,按照固端弯矩相等的原则,先将梯形分布荷载及三角形分布荷载,化为等效为均布荷载。

顶层等效均布荷载为:

g边g4AB1(12a2a3)g4AB24.09(120.29920.2993)18.799

'

20.03kN/m

55'

g中g4BC1g4BC22.70411.6389.98kN/m

88

用弯矩分配法并利用结构的对称性取二分之一结构计算,各杆的固端弯矩为:

M4AB

1'21

m g边l边20.037.02282.26kN·

1212

1'21

m M4BGg中l中9.981.325.62kN·

331'21

m M4GBg中l中9.981.322.81kN·

66

标准层等效均布荷载为:

g边gAB1(12a2a3)gAB29.43(120.29920.2993)14.301

'

21.56kN/m

55'

g中gBC1gBC22.7048.8538.24kN/m

88

用弯矩分配法并利用结构的对称性取二分之一结构计算,各杆的固端弯

矩为:

MAB

1'21

m g边l边21.567.02288.54kN·

1212

1'21

m MBGg中l中8.241.324.64kN·

33

1'21

m MGBg中l中8.241.322.32kN·

66

表 4-1 分层法分配系数及恒载作用下固端弯矩计算结果(kN/m)

弯矩分配法计算过程如图4-1,计算所得结构顶层弯矩图见图4-2。

图 4-1 弯矩分配法计算过程

图 4-2 顶层弯矩图

将各层分层法求得的弯矩图叠加,可得整个框架在恒载作用下的弯矩图。叠加后框架内各节点弯矩不一定达到平衡,为提高精度,可将节点不平衡弯矩再分配一次进行修正,修正后恒载作用下的弯矩图如图4-3所示。并求得框架各梁柱的剪力和轴力如图4-4所示。

考虑弯矩调幅,并将梁端节点弯矩换算至梁端柱边弯矩值,跨中弯矩乘以1.1的系数,以备内力组合时用。

图 4-3 弯矩图(单位:kN·m)

图 4-4 梁剪力、柱轴力图(单位:kN)

4.2 活荷载作用下的内力计算

以一榀中框架为例,用分层法计算。 顶层等效均布荷载为:

g边(12a2a3)p4AB(120.29920.2993)2.11.78kN/m

'

g中

'

55

g4BC1.30.81kN/m 88

用弯矩分配法并利用结构的对称性取二分之一结构计算,各杆的固端弯矩为:

M4AB

1'21

m g边l边1.787.0227.31kN·

1212

1'21

m M4BGg中l中0.811.320.46kN·

331'21

m M4GBg中l中0.811.320.23kN·

66

标准层等效均布荷载为:

g边(12a2a3)pAB(120.29920.2993)8.47.12kN/m

'

g中

'

55

gBC6.54.06kN/m 88

用弯矩分配法并利用结构的对称性取二分之一结构计算,各杆的固端弯矩为:

MAB

1'21

m g边l边7.127.02229.24kN·

1212

1'21

m MBGg中l中4.061.322.29kN·

331'21

m MGBg中l中4.061.321.14kN·

66

将各层分层法求得的弯矩图叠加,可得整个框架在恒载作用下的弯矩图。叠加后框架内各节点弯矩不一定达到平衡,为提高精度,可将节点不平衡弯矩再分配一次进行修正,修正后恒载作用下的弯矩图如图4-5所示。并求得框架各梁柱的剪力和轴力如图4-6所示。

考虑弯矩调幅,并将梁端节点弯矩换算至梁端柱边弯矩值,跨中弯矩乘以1.1的系数,以备内力组合时用。

图 4-5 弯矩图(单位:kN·m)

图 4-6 梁剪力、柱轴力图(单位:kN)

4.3 风荷载作用下的内力计算

以一榀中框架为例,内力计算采用D值法,以左风为例计算,右风符号相反。计算过程如表4-2、4-3、4-4所示。

表 4-2 风荷载作用下边柱的弯矩和剪力

表 4-3 风荷载作用下中柱的弯矩和剪力

表 4-4 梁端弯矩和柱轴向力标准值

注:弯矩单位为(kN·m),力的单位为(kN)

最后绘制风荷载作用下框架的弯矩图(图4-7)及风荷载作用下的框架梁剪力、柱轴力图(图4-8)。

图 4-7 风荷载作用下的框架弯矩图(kN·m)

图 4-8 风荷载作用下的框架梁剪力、柱轴力图(kN)

4.4 水平地震作用下的内力分析

一般情况下,只按楼层地震剪力标准值分析求得梁的柱内力标准值即可,但也可采用楼层剪力标准值直接分析求出内力标准值,供以后内力组合之用,现采用后一方法。

以一榀中框架为例,将楼层地震剪力标准值按各柱的D值分配求得各柱的剪力标准值,近似按各楼层水平地震作用为倒三角形分布情形确定各柱的反弯点,计算柱端的弯矩标准值。根据节点平衡条件,将节点处逐段弯矩之和按节点两侧梁的线刚度按比例分配,求得梁端标准值。然后计算梁端的地震剪力标准值,并由节点两侧梁端剪力标准值之差求得柱的地震轴向力标准值,计算结果分别列于表4-5、4-6、4-7。以左震为例计算,右震符号相反。

表 4-5 水平地震作用下边柱的弯矩和剪力

表 4-6 水平地震作用下中柱的弯矩和剪力

表 4-7 梁端地震弯矩和柱地震轴向力的标准值

注:弯矩单位为(kN·m),力的单位为(kN)

最后绘制地震作用下的框架弯矩图(4-9)及地震作用下的框架梁剪力、柱轴力图(4-10)。

图 4-9 地震作用下的框架弯矩图(kN·m)

图 4-10 地震作用下的框架梁剪力、柱轴力图(kN)

第5章 内力组合

根据上节内力计算结果,即可进行框架各梁柱各控制截面上的内力组合,其中梁的控制截面为梁端柱边及跨中由于对称性,每层有五个控制截面,即图5-1所示梁中的1、2、3、4、5号截面。柱则分为边柱和中柱(即A柱、B柱),每个柱每层有两个控制截面,故柱的控制截面编号为1、2、3、4、5、6、7、8号截面,如图5-1所示。内力组合表见附录。

图 5-1 框架梁柱各控制截面

第6章 截面设计

根据内力组合结果,即可选择各截面的最不利内力进行截面配筋计算。

6.1 梁的配筋计算

混凝土C25,钢筋HRB335级,11.0,fc11.9N/mm2,

ft1.27N/mm2,fy300N/mm2,b0.550。混凝土保护层厚度25mm,

S35mm。以第四层为例。

6.1.1 边跨梁配筋计算 6.1.1.1 跨中正截面

MAB113.69kNm,跨中截面为T形,T形截面翼缘宽度b'f取值如下:

按跨度考虑 b'fl/37200/32400mm

按梁间距考虑 b'fbsn250(4200250)4200mm 按翼缘厚度考虑 h0hs60035565mm

h'f/h0100/5650.1770.1,此种情况不起控制作用。

故取b'f2400mm。

1fcb'fh'f(h0h'f/2)1.011.92400100(565100/2) 1470.84kNm113.69kNm 属于第一类T形截面。

M113.69106s0.012 '22

1fcbfh01.011.92400565

12s120.0120.013

As

1fcb'fh0

fy

1.011.924000.013565

699mm2

300

选用416,As804mm2。

Asft804

0.57%minmin0.2%,0.450.19%

bh0250565fy

6.1.1.2 支座正截面

A支座截面处:MA-73.34kNm

REM0.7573.34106

s0.058

1fcbh021.011.9250565212s120.0580.060

As

1fcbh0

fy

1.011.92500.060565

336mm2

300

选用218,As509mm2。

Asft509

0.36%minmin0.25%,0.550.23%

bh0250565fy

6.1.1.3 支座斜截面 梁强剪弱弯要求

Vbvb

l

MbMbr1.1(89.2516.43)

VGb84.3796.47kN ln6.62

由内力组合表查知 Vmax105kN 取 V105kN

REV89.25KN

AsvREV0.42ftbh089.250.421.27250565

0.094 s1.25fyvh01.25210565

实配双支箍8@100,则

Asv250.3

1.0060.094,满足要求。 s100

配箍率 sv

nAsv1250.30.40% bs250100

ft1.27

0.260.157%sv0.40% fyv210

最小配箍率 svmin0.26故满足要求。

6.1.2 中跨梁配筋计算

中跨梁与边跨梁的计算过程相同,故略。

6.2 框架柱配筋计算

柱采用对称配筋,纵筋采用HRB335级钢筋,柱箍筋采用HPB235,混凝土保护层厚度取30mm,S40mm。设计采用M标的三组内力进行计算,以首层中柱为例。

6.2.1 框架柱的纵向受力钢筋计算 6.2.1.1 轴压比验算 Nmax1020.74kN 则轴压比

N1020.74103

0.54[0.9] 故满足要求。 N2fcA11.9400

max

,Nmax,Nmin为组合目

6.2.1.2 框架柱正截面承载力计算 强柱弱梁的要求调整弯矩 组合M

max

,M141.73kNm,N810.24kN

柱计算长度l01.0H4150mm 附加偏心距ea

h400

13mm20mm,取ea20mm 3030

e0

M141.73174.92mm N810.24

eie0ea172.9220194.92mm

0.5fcA0.511.94002

11.21.0,取11.0

N810.24103l0/h4150/40010.37515,取21.0

1l0

110.37521.01.01.142 121

eh194.92

14001400i

360h0

1

2

REN0.8810.24103x136.17mmbh00.55360198mm

1fcb1.011.9400故属于大偏心受压。

eei

h400

as'1.142194.9240382.60mm 22

AsAs'

RENe(h00.5x)1fcbx

f(h0a)

'

y

's

0.8810.24103382.6(3600.5136.17)1.011.9400136.17

300(36040)

612mm2 选配416(AsAs'804mm2)

配筋率 

As8040.50%0.2% 满足要求。 bh400400

组合Nmax,M-15.11kNm,N1020.74kN 柱计算长度l01.0H4150mm 附加偏心距ea

h40013mm20mm,取ea20mm 3030

e0

M15.1114.80mm N1020.74

eie0ea34.802034.80mm

0.5fcA0.511.94002

10.93,取11.0

N1020.74103l0/h4150/40010.37515,取21.0

1l0

110.37520.931.01.742 121

eh34.80

14001400i

360h0

1

2

REN1.01020.74103x214.44mmbh00.55360198mm

1fcb1.011.9400故属于小偏心受压。

eei

h400

as'1.74234.8040220.62mm 22



Nb1fcbh0

b

Ne0.431fcbh02

1fcbh0`

(1b)(h0as)

1020.741030.551.011.9400360

1020.74103220.620.431.011.94003602

1.011.9400360

(0.80.55)(36040)

0.550.62

Ne(10.5)1fcbh02

AsA

fy'(h0as')

's

1020.74103220.620.62(10.50.62)1.011.94003602

0 

300(36040)

按构造要求,选配416(AsAs'804mm2) 配筋率 

As8040.50%0.2%,满足要求。 bh400400

组合Nmin,M130.84kNm,N790.32kN 计算过程与上述过程相同,故略。 6.2.2 斜截面受剪承载力计算 柱强剪弱弯要求

MctMcb1.1(130.84141.73)

Vc1.184.46kN

Hn3.35

由内力组合表查知 Vmax59.53kN 取 V84.46kN

因为剪跨比



Hn3550

4.933 所以 取3 2h02360

又因为 0.3fcA0.311.94002571.2kNN810.24kN 故取N571.2kN,则

Asv

s

REV0.056N

fyvh0

1.05ftbh0

1

0.8584.4610000.056571.21000210360

故按构造配箍,取8@200。 

1.051.27400360

0

梁柱配筋见下表。

第7章 楼板设计与计算

7.1 屋面板计算

7.1.1 荷载计算

恒荷载标准值 gk4.476kN/m2 恒荷载设计值 g1.2gk1.24.4765.371kN/m2 活荷载设计值 q1.40.50.7kN/m2 荷载设计值合计 gq5.3710.76.071kN/m2 7.1.2 按弹性理论计算 7.1.2.1 计算跨度

各区格板的计算跨度见表7-1。 7.1.2.2 弯矩计算

在求各区格板跨内正弯矩时,按恒荷载满布及活荷载棋盘式布置计算。取荷载 g'gq/25.3710.7/25.721kN/m2

q'q/20.7/20.35kN/m2

该结构采用现浇框架结构,故各支座均可视为固定。则跨中最大正弯矩值为在gq/2作用下的跨中弯矩值,与支座简支时在q/2作用下的跨中弯矩值之和。在求各支座最大负弯矩时,按恒荷载及活荷载均满布各区格板计算。

整个楼盖可分为A、B两种区格板。两区格板计算的弯矩值如表7-1所示。

表 7-1 按弹性理论计算的弯矩值

7.2 楼面板计算

7.2.1 荷载计算

恒荷载标准值 gk3.405kN/m2 恒荷载设计值 g1.2gk1.23.4054.086kN/m2 活荷载设计值 q1.42.02.8kN/m2 荷载设计值合计 gq4.0862.86.886kN/m2 7.2.2 按弹性理论计算 7.2.2.1 计算跨度

各区格板的计算跨度见表7-2。

7.2.2.2 弯矩计算

在求各区格板跨内正弯矩时,按恒荷载满布及活荷载棋盘式布置计算。取荷载 g'gq/24.0862.825.486kN/m2

q'q/22.821.4kN/m2

该结构采用现浇框架结构,故各支座均可视为固定。则跨中最大正弯矩值为在gq/2作用下的跨中弯矩值,与支座简支时在q/2作用下的跨中弯矩值之和。在求各支座最大负弯矩时,按恒荷载及活荷载均满布各区格板计算。

整个楼盖可分为A、B两种区格板。两区格板计算的弯矩值如表7-2所示。

表 7-2 按弹性理论计算的弯矩值

7.2.3 截面设计

假定选用8级钢筋,则l01方向跨中截面有效高度为

h01h201002080mm

l02方向跨中截面有效高度为h02h301003070mm

支座截面有效高度为 h080mm

截面设计用的弯矩均减少20%,为便于计算取As筋计算结果见表7-3。

表 7-3 截面配筋

m

。则截面配

0.95fyh0

中国石油大学(华东)毕业设计(论文)

东营市华凌科技公司办公楼

学生姓名:

学 号:

专业班级:土木工程03-1班

指导教师:

2007年6月18日

中国石油大学(华东)本科毕业设计(论文)

摘 要

本课题为东营市华凌科技办公楼的设计,4层,建筑面积约3000m2,长42m,宽16.8m,高14.95m。采用钢筋混凝土框架结构。首先,根据设计出的建筑方案及所选用的建筑材料及做法,确定结构计算简图,进行荷载和内力计算,绘制了相应的内力图;其次,进行结构内力组合,确定结构控制截面的弯矩、剪力和轴力设计值。最后,根据已经计算出的结构控制截面的内力值,对梁、板、柱、基础等进行配筋计算,并绘制了相应的结构施工图。同时,本文采用PKPM软件进行电算,以保证计算结果的可靠性,并达到同手算结果对比、分析的目的。

关键词:框架结构;内力;配筋;控制截面

中国石油大学(华东)本科毕业设计(论文)

ABSTRACT

The topic is the design of Hua Ling technology office building in DongYing city, four layers, the area of construction is about 3000m2, the length of the building is 42m, the width is 16.8m and the height is 14.95m. This building is reinforced concrete frame structure. First of all, according to architectural drawing of design, building material and method, determine schematic calculation, thus completing the load and internal forces calculation, drawing a map corresponding to the internal forces; Secondly, proceed the structure internal force combination, determine the structure control sectional bending moment, shearing force and ax force design value. Finally, according to already calculate structure control sectional internal force value, the beam, slab and columns, the foundation being reinforced, and the mapping of the corresponding structure construction plan. At the same time, we used the software PKPM to ensure the reliability of results, and achieve the purpose of analysis, contrast the result which was calculated by hand.

Keywords:frame construction; internal force; reinforcement; control section

中国石油大学(华东)本科毕业设计(论文)

目 录

前 言 ···················································································································· 1

第1章 设计资料 ·································································································· 2

1.1 工程概况 ······································································································ 2

1.2 设计标高 ······································································································ 2

1.3 气象资料 ······································································································ 2

1.4 工程地质资料 ······························································································ 2

1.5 抗震烈度 ······································································································ 2

1.6 墙身做法 ······································································································ 2

1.7 门窗做法 ······································································································ 2

1.8 所用材料 ······································································································ 2

第2章 结构布置和计算简图 ·············································································· 3

第3章 荷载计算 ·································································································· 5

3.1 恒载计算 ······································································································ 5

3.1.1 屋面框架梁线荷载标准值 ··································································· 5

3.1.2 楼面框架梁线荷载标准值 ··································································· 5

3.1.3 屋面框架节点集中荷载标准值 ··························································· 6

3.1.4 楼面框架节点集中荷载标准值 ··························································· 6

3.2 活荷载计算 ·································································································· 8

3.2.1 屋面活荷载 ··························································································· 8

3.2.2 楼面活荷载 ··························································································· 8

3.3 风荷载计算 ·································································································· 9

3.4 地震作用计算 ···························································································· 10

3.4.1 重力荷载代表值计算 ········································································· 10

3.4.2 框架刚度计算 ····················································································· 12

中国石油大学(华东)本科毕业设计(论文)

3.4.3 结构基本周期的计算 ········································································· 14

3.4.4 多遇水平地震作用标准值计算 ························································· 14

3.4.5 横向框架弹性变形验算 ····································································· 15

第4章 内力计算 ································································································ 16

4.1 恒荷载作用下的内力计算 ········································································ 16

4.2 活荷载作用下的内力计算 ········································································ 21

4.3 风荷载作用下的内力计算 ········································································ 24

4.4 水平地震作用下的内力分析 ···································································· 27

第5章 内力组合 ································································································ 30

第6章 截面设计 ································································································ 31

6.1 梁的配筋计算 ···························································································· 31

6.1.1 边跨梁配筋计算 ················································································· 31

6.1.2 中跨梁配筋计算 ················································································· 33

6.2 框架柱配筋计算 ························································································ 33

6.2.1 框架柱的纵向受力钢筋计算 ····························································· 33

6.2.2 斜截面受剪承载力计算 ····································································· 35

第7章 楼板设计与计算 ···················································································· 41

7.1 屋面板计算 ································································································ 41

7.1.1 荷载计算 ····························································································· 41

7.1.2 按弹性理论计算 ················································································· 41

7.2 楼面板计算 ································································································ 42

7.2.1 荷载计算 ····························································································· 42

7.2.2 按弹性理论计算 ················································································· 42

7.2.3 截面设计 ····························································································· 44

第8章 楼梯设计 ································································································ 45

8.1 梯段板计算 ································································································ 45

中国石油大学(华东)本科毕业设计(论文)

8.1.1 荷载计算 ····························································································· 45

8.1.2 截面设计 ····························································································· 45

8.2 平台板计算 ································································································ 46

8.2.1 荷载计算 ····························································································· 46

8.2.2 截面设计 ····························································································· 46

8.3 平台梁计算 ································································································ 47

8.3.1 荷载计算 ····························································································· 47

8.3.2 内力计算 ····························································································· 47

8.3.3 截面计算 ····························································································· 47

第9章 基础设计 ································································································ 49

9.1 设计资料 ···································································································· 49

9.2 基础梁配筋计算 ························································································ 49

9.3 翼板的承载力计算 ···················································································· 55

9.3.1 边基础翼板的承载力计算 ································································· 55

9.3.2 中基础翼板的承载力计算 ································································· 55 结 论 ·················································································································· 57 致 谢 ·················································································································· 58 参考文献 ·············································································································· 59 附 录 ·················································································································· 60

前言

前 言

毕业设计大学四年最后的实践性演练,对我们的综合素质和毕业后实际工作能力、适应社会能力的提高有着不可忽视的作用。在毕业设计过程中,能系统化的运用头脑里的知识框架,充分调动工作积极性,以及操作制图能力等。

本次设计为钢筋混凝土框架结构,其中主要包括建筑设计和结构设计。遵循由建筑到结构,再到基础的设计过程。

建筑设计根据地形及周边环境,合理布置建筑总平面,综合考虑各个部分的具体使用要求,统筹相互间的关系和位置,使建筑各部分人流组织通畅,建筑流线简捷、明确,以取得良好的使用效果、景观效果和经济效果。然后进行立面造型、剖面设计。

结构设计包括确定结构体系与结构布置、根据经验对构件初估、确定计算单元计算模型及计算简图、荷载计算、内力计算、基础设计等内容。框架结构设计的计算工作量很大,在计算过程中以手算为主,辅以一些计算软件如PKPM的校正。设计时尽量做到安全、经济、适用的要求。

通过本次毕业设计,涉猎了大量的知识,查阅资料的能力大大提高,手工绘图,上机制图的能力也逐渐巩固,由于时间相对紧张,让自己能够更加充分合理的利用时间,使自己能更加有信心面对将来的工作和学习,做好迎接未来挑战的准备。

1

设计资料

第1章 设计资料

1.1 工程概况

山东东营华凌科技公司办公楼,建筑总面积约为3000m2。采用钢筋混凝土框架结构,四层。

1.2 设计标高

室内设计标高±0.00m,相当于绝对标高6.00m,室内外高差450mm。

1.3 气象资料

夏季室外计算温度:34.5℃,绝对最高温度:40℃,冬季室外计算温度:-9℃,绝对最高温度:-22℃,最大降雨量:300mm,基本风压:0.45kN/m2,主导风向:冬季:西北,夏季:东南。基本雪压:0.2kN/m2 ,最大冻深:500mm。

1.4 工程地质资料

地基允许承载力R=90kN/m2,土类型为粉质粘土,Ⅱ类场地,最高地下水位:自然地面以下1.2m;地下水性质:有弱硫酸盐侵蚀。

1.5 抗震烈度

抗震设防烈度为7度,设计基本地震加速度值为0.10g,Ⅱ类场地,设计地震分组为第二组。

1.6 墙身做法

外墙采用蒸压粉煤灰加气混凝土砌块:厚240mm;内墙采用蒸压粉煤灰加气混凝土砌块:厚200mm。

1.7 门窗做法

门厅处为铝合金门窗,其他均为木门、铝合金窗。

1.8 所用材料

混凝土C25:fc11.9N/mm2,ft1.27N/mm2;HPB235级钢筋:fy210N/mm2;HRB335级钢筋:fy300N/mm2,b=0.55。

2

结构布置和计算简图

第2章 结构布置和计算简图

结构平面布置如图2-1所示。各梁柱截面尺寸如下:

图 2-1 结构平面布置 边跨梁:hl7200600mm,取h600mm,b250mm。 1212

中跨梁:hl2400200mm,取h400mm,b250mm。 1212

l4200350mm,取h400mm,b250mm。 1212纵向框架梁:h

N柱:ANfc=124(3.61.2)4.210001.2108423.5mm2, 11.90.9

取bh400mm400mm。 板厚:hl4200105mm,取h100mm。 4040

结构计算简图如图2-2所示。底层层高为4.15m,各梁柱构件的线刚度经计算后列于图2-2。其中在求梁截面惯性矩时考虑到现浇楼板的作用,取I2I0(I0为不考虑楼板翼缘作用的梁截面惯性矩)。

3

结构布置和计算简图

AB、CD跨梁:i2E10.250.63/7.0212.82104E(m3) 12

BC跨梁:i2E10.250.43/2.610.26104E(m3) 12

10.44/3.65.93104E(m3) 12上部各层柱:iE

底层柱:i

E10.44/4.155.14104E(m3) 12

注:图中数字为线刚度,单位:10

图 2-2 结构计算简图 4Em3

4

第3章 荷载计算

3.1 恒载计算

3.1.1 屋面框架梁线荷载标准值

4厚高聚物改性沥青防水卷材防水层 0.004×10=0.04kN/m2

20厚1:3水泥砂浆保护层 20×0.02=0.4kN/m2 水泥珍珠岩(最薄40mm)2%找坡 0.124×4=0.496kN/m2100厚憎水膨胀珍珠岩 0.1×4=0.4kN/m2 100厚现浇楼板 25×0.1=2.5kN/m2 20厚1:3水泥砂浆找平层 20×0.02=0.4kN/m2 15mm厚纸筋石灰抹灰 0.015×16=0.24kN/m2 屋面恒载 4.476kN/m2 边跨框架梁自重 0.25×0.6×25=3.75kN/m 梁侧粉刷 2×(0.6-0.1)×0.02×17=0.34kN/m 边跨框架梁总重 4.09kN/m 边跨框架梁自重 0.25×0.4×25=2.5kN/m 梁侧粉刷 2×(0.4-0.1)×0.02×17=0.204kN/m 中跨框架梁总重 2.704kN/m 因此作用在顶层框架梁的线荷载为:

g4AB1g4CD14.09kN/m g4BC12.704kN/m g4AB2g4CD24.4764.218.799kN/m g4BC24.4762.611.638kN/m

3.1.2 楼面框架梁线荷载标准值

水磨石地面 0.65kN/m2 100厚钢筋混凝土楼板 0.1×25=2.5kN/m2 15mm厚纸筋石灰抹底 0.015×17=0.255kN/m2

楼面恒载 3.405kN/m2 边跨框架梁及梁侧粉刷 4.09kN/m2 边跨填充墙自重 0.2×5.5×(3.6-0.6)=3.3kN/m 填充墙粉刷自重 (3.6-0.6)×0.02×2×17=2.04kN/m 中跨框架梁及梁侧粉刷 2.704kN/m 因此作用在中间层框架梁的线荷载为:

gAB1gCD14.093.32.049.43kN/m gBC12.704kN/m gAB2gCD23.4054.214.301kN/mgBC23.4052.68.853kN/m

3.1.3 屋面框架节点集中荷载标准值

边柱纵向框架梁自重 0.25×0.4×4.2×25=10.5kN

边柱纵向框架梁粉刷 (0.4-0.1)×2×0.02×4.2×17=0.8568kN

1000高女儿墙自重 1×0.24×4.2×5.5=5.544kN 1000高女儿墙粉刷 4.2×0.02×17×2=2.856kN

框架梁传来屋面自重 4.2×2.1×4.476×0.5=19.739kN 顶层边节点集中荷载 G4AG4D39.50kN 中柱纵向框架梁自重 0.25×0.4×4.2×25=10.5kN 中柱纵向框架梁粉刷 0.8568kN 纵向框架梁传来屋面自重 0.5×4.2×4.2/2×4.476=19.739kN 0.5×(4.2+4.2-2.6)×1.3×4.476=16.875kN 顶层中节点集中荷载: G4BG4C47.97kN3.1.4 楼面框架节点集中荷载标准值

边柱纵向框架梁自重 10.5kN

边柱纵向框架梁粉刷 0.8568kN 铝合金窗自重 2.4×2.3×0.5=2.76kN 窗下墙体自重 0.9×3.8×0.24×5.5=4.5144kN

窗下墙体粉刷 0.9×0.02×2×17×3.8=2.3256kN 窗边墙体自重 1.4×2.3×0.24×5.5=4.2504kN 窗边墙体粉刷 1.4×0.02×2×2.3×17=2.1896kN 框架柱自重 0.4×0.4×3.6×25=14.4kN 框架柱粉刷 0.92×0.02×3.6×17=1.1261kN 纵向框架梁传来楼面自重 0.5×4.2×4.2/2×3.405=15.016kN 中间层边节点集中荷载 GAGD57.94kN 中柱纵向框架梁自重 10.5kN 中柱纵向框架梁粉刷 0.8568kN

内纵墙自重 (3.6-0.4)×0.2×4.2×5.5= 14.784kN 墙粉刷 (3.6-0.4)×0.02×2×17×4.2=9.1392kN 扣除门洞重加上门重 -2.1×1×(1.78-0.2)=-3.318kN 框架柱自重 14.4kN 框架柱粉刷 0.02×1×17×3.6=1.224kN 纵向框架梁传来楼面自重 0.5×4.2×4.2/2×3.405=15.016kN 0.5×(4.2+4.2-2.6)×1.3×3.405=12.837kN

中间间层中节点集中荷载 GBGC47.97kN 恒载作用下的计算简图如图3-1所示。

图 3-1 恒载作用下的计算简图

3.2 活荷载计算

3.2.1 屋面活荷载

P4ABP4CD0.54.22.1kN/m P4BC0.52.61.3kN/m

P4AP4D0.54.24.2/20.52.205kN

P4BP4C0.54.24.2/20.50.5(4.24.2-2.6)1.30.54.09kN

3.2.2 楼面活荷载

PABPCD2.04.28.4kN/m PBC2.52.66.5kN/m

PAPD0.54.24.2/22.08.82kN

PBPC0.54.24.2/22.00.5(4.24.2-2.6)1.32.518.245kN

活荷载作用下的结构计算简图如图3-2所示。

图 3-2 活载作用下的计算简图

3.3 风荷载计算

风压标准值计算公式为ZSZ0(3-1)

因结构高度H=14.85m

表3-1 风荷载计算

图 3-3 风荷载作用下的结构计算简图

3.4 地震作用计算

3.4.1 重力荷载代表值计算

作用于屋面梁及各层楼面梁处的重力荷载代表值为:

屋面梁处:GEW=结构和构件自重+50%雪荷载 楼面梁处:GE1=结构和构件自重+50%活荷载

其中结构和构件自重取楼面上下1/2层高范围内(屋面梁处取顶层一半)的

结构和构件自重,各质点的重力荷载代表值及质点高度如图3-4所示。

图 3-4 质点重力荷载代表值及质点高度

各层荷载为:

G4=屋面恒载+0.5屋面雪荷载+屋盖纵横梁自重+屋面下半层的柱及墙

体自重+女儿墙自重

G屋面板=4.476×42.24×17.04=3221.69kN

G女儿墙=0.24×1×(16.8+42)×2×5.5+0.02×(0.24+2)×(16.8+42)×

2×17=244.80kN

G雪=0.2×17.04×42.24=143.95kN

G柱=0.4×0.4×25×(1.8-0.1)×42=285.6kN

G梁=0.25×25×(0.6-0.1)×(7.02-0.4)×21+0.02×2×(0.6-0.1)×

(7.02-0.4)×21×17+0.25×25×(0.6-0.1)×(7.2-0.1-0.12)+ 0.02×2×(0.6-0.1)×(7.2-0.1-0.12)×17+0.25×25×(0.4-0.1)×(2.4-0.2)×11+0.02×2×(0.4-0.1)×(2.4-0.2)×11×17+0.25×25×(0.4-0.1)×(4.2-0.4)×28+0.02×2×(0.4-0.1)×(4.2-0.4)×17×28+0.25×25×(0.4-0.1)×(4.2-0.2-0.28)×8+0.02×2×(0.4-0.1)×(4.2-0.2-0.28)×8×17+0.25×25×(0.7-0.1)×(8.4-0.4)×2+0.02×2×(0.7-0.1)×(8.4-0.4)×2×17

=434.4375+47.2668+21.8125+2.3732+45.375+4.9368+199.5+21.7056+55.8+6.071+60+6.528

=905.80kN

G墙=0.2×(1.8-0.6)×(7.02-0.4)×11×5.5+0.02×2×(1.8-0.6)

×(7.02-0.4)×17×15+0.24×(1.8-0.6)×(7.02-0.4)×4×5.5+0.2×(1.8-0.6)×(7.2-0.1-0.12)×5.5+0.02×2×(1.8-0.6)×(7.2-0.1-0.12)×17+0.24×(1.8-0.4)×(4.2-0.4-2.4)×14×5.5+0.24×(1.8-0.4)×(4.2-0.2-2.4-0.28)×4×5.5+0.24×(1.8-0.4)×(2.4-0.2-1.5)×5.5×2+0.02×2×(1.8-0.4)×(2.4-0.2-1.5)×17×2+0.2×(1.8-0.4)×(4.2-0.4)×13×5.5+0.2×(1.8-0.4)×(4.2-0.2-0.28)×3×5.5+0.02×2×(1.8-0.4)×(4.2-0.4-2.4)×14×17+0.02×(1.8-0.4)×(4.2-0.2-0.28)×2×17×4+0.02×2×(1.8-0.4)×(4.2-0.4)×17×13+0.02×2×(1.8-0.4)×(4.2-0.2-0.28)×17×3+0.2×(1.8-0.7)×(8.4-0.4)×5.5+0.02×2×(1.8-0.7)×(8.4-0.4)×17+0.24×(1.8-0.7)×(8.4-0.4-4.8)×5.5+0.02×2×(1.8-0.7)×(8.4-0.4-4.8)×17

=96.122+81.029+41.944+9.214+5.696+36.221+9.757+76.076+17.186+18.659+14.166+47.029+10.624+9.68+5.984+4.646+2.394+2.587+1.333

=490.35kN

G4=G屋面板+G女儿墙+0.5G雪+G梁+G柱+G墙

=3221.69+244.80+0.5×143.95+905.8+285.6+490.35=5220.22kN 同理得:

G3=G2=5984.88kN

G1=6132.68kN

3.4.2 框架刚度计算

考虑到现浇楼板的作用,中框架梁I2I0,边框架梁I1.5I0(I0为不考虑楼板翼缘作用的梁截面惯性矩)。计算过程表3-2、3-3、3-4所示。

表 3-2 梁的刚度

注:ibEI/h 表 3-3 柱的刚度

表 3-4 框架总刚度

3.4.3 结构基本周期的计算

本楼的主体总高度为14.85m,且楼房的质量和刚度可采用底部剪力法计算水平地震作用,为此必须先确定其基本周期。现用能量法计算,并考虑非承重填充墙刚度的影响,取折减系数T0.6。其计算过程列于表3-5。

表 3-5 能量法计算基本周期

4

2i

4

得,T12T

Gu/Gu

i

i

i1

i1

i

=2×0.6×405.864/2968.755=0.444s

3.4.4 多遇水平地震作用标准值计算

7度第二组地震和Ⅲ类场地,max0.08,Tg0.4s。 1max(Tg/T1)0.90.08(0.4/0.444)0.90.0729 T1=0.444s

所以不考虑顶部附加水平地震作用,结构的总重力荷载为23322.7kN,所以底部剪力为

Fek1GeqG10.850.072923322.71445kN

各楼层水平地震作用标准值按下式计算

Fi

GiH

FEK(3-2)

j

GH

j

j1

4

楼层的地震作用标准值Fi 和地震剪力标准值Vi 的计算如表3-6。

表 3-6 地震作用标准值和地震剪力标准值

3.4.5 横向框架弹性变形验算

多遇地震作用下,横向框架层间的弹性验算结果列于表3-7,其中楼层间的地震剪力应取标准值。

从表中验算知uei/Hie,故多遇水平地震作用的变形验算满足要求。

第4章 内力计算

4.1 恒荷载作用下的内力计算

以一榀中框架为例,恒载作用下的内力计算采用分层法,这里以顶层为例说明分层法的计算过程,其他层(中间层、底层)计算过程与顶层相同。中柱的线刚度采用框架梁柱实际线刚度的0.9倍,按照固端弯矩相等的原则,先将梯形分布荷载及三角形分布荷载,化为等效为均布荷载。

顶层等效均布荷载为:

g边g4AB1(12a2a3)g4AB24.09(120.29920.2993)18.799

'

20.03kN/m

55'

g中g4BC1g4BC22.70411.6389.98kN/m

88

用弯矩分配法并利用结构的对称性取二分之一结构计算,各杆的固端弯矩为:

M4AB

1'21

m g边l边20.037.02282.26kN·

1212

1'21

m M4BGg中l中9.981.325.62kN·

331'21

m M4GBg中l中9.981.322.81kN·

66

标准层等效均布荷载为:

g边gAB1(12a2a3)gAB29.43(120.29920.2993)14.301

'

21.56kN/m

55'

g中gBC1gBC22.7048.8538.24kN/m

88

用弯矩分配法并利用结构的对称性取二分之一结构计算,各杆的固端弯

矩为:

MAB

1'21

m g边l边21.567.02288.54kN·

1212

1'21

m MBGg中l中8.241.324.64kN·

33

1'21

m MGBg中l中8.241.322.32kN·

66

表 4-1 分层法分配系数及恒载作用下固端弯矩计算结果(kN/m)

弯矩分配法计算过程如图4-1,计算所得结构顶层弯矩图见图4-2。

图 4-1 弯矩分配法计算过程

图 4-2 顶层弯矩图

将各层分层法求得的弯矩图叠加,可得整个框架在恒载作用下的弯矩图。叠加后框架内各节点弯矩不一定达到平衡,为提高精度,可将节点不平衡弯矩再分配一次进行修正,修正后恒载作用下的弯矩图如图4-3所示。并求得框架各梁柱的剪力和轴力如图4-4所示。

考虑弯矩调幅,并将梁端节点弯矩换算至梁端柱边弯矩值,跨中弯矩乘以1.1的系数,以备内力组合时用。

图 4-3 弯矩图(单位:kN·m)

图 4-4 梁剪力、柱轴力图(单位:kN)

4.2 活荷载作用下的内力计算

以一榀中框架为例,用分层法计算。 顶层等效均布荷载为:

g边(12a2a3)p4AB(120.29920.2993)2.11.78kN/m

'

g中

'

55

g4BC1.30.81kN/m 88

用弯矩分配法并利用结构的对称性取二分之一结构计算,各杆的固端弯矩为:

M4AB

1'21

m g边l边1.787.0227.31kN·

1212

1'21

m M4BGg中l中0.811.320.46kN·

331'21

m M4GBg中l中0.811.320.23kN·

66

标准层等效均布荷载为:

g边(12a2a3)pAB(120.29920.2993)8.47.12kN/m

'

g中

'

55

gBC6.54.06kN/m 88

用弯矩分配法并利用结构的对称性取二分之一结构计算,各杆的固端弯矩为:

MAB

1'21

m g边l边7.127.02229.24kN·

1212

1'21

m MBGg中l中4.061.322.29kN·

331'21

m MGBg中l中4.061.321.14kN·

66

将各层分层法求得的弯矩图叠加,可得整个框架在恒载作用下的弯矩图。叠加后框架内各节点弯矩不一定达到平衡,为提高精度,可将节点不平衡弯矩再分配一次进行修正,修正后恒载作用下的弯矩图如图4-5所示。并求得框架各梁柱的剪力和轴力如图4-6所示。

考虑弯矩调幅,并将梁端节点弯矩换算至梁端柱边弯矩值,跨中弯矩乘以1.1的系数,以备内力组合时用。

图 4-5 弯矩图(单位:kN·m)

图 4-6 梁剪力、柱轴力图(单位:kN)

4.3 风荷载作用下的内力计算

以一榀中框架为例,内力计算采用D值法,以左风为例计算,右风符号相反。计算过程如表4-2、4-3、4-4所示。

表 4-2 风荷载作用下边柱的弯矩和剪力

表 4-3 风荷载作用下中柱的弯矩和剪力

表 4-4 梁端弯矩和柱轴向力标准值

注:弯矩单位为(kN·m),力的单位为(kN)

最后绘制风荷载作用下框架的弯矩图(图4-7)及风荷载作用下的框架梁剪力、柱轴力图(图4-8)。

图 4-7 风荷载作用下的框架弯矩图(kN·m)

图 4-8 风荷载作用下的框架梁剪力、柱轴力图(kN)

4.4 水平地震作用下的内力分析

一般情况下,只按楼层地震剪力标准值分析求得梁的柱内力标准值即可,但也可采用楼层剪力标准值直接分析求出内力标准值,供以后内力组合之用,现采用后一方法。

以一榀中框架为例,将楼层地震剪力标准值按各柱的D值分配求得各柱的剪力标准值,近似按各楼层水平地震作用为倒三角形分布情形确定各柱的反弯点,计算柱端的弯矩标准值。根据节点平衡条件,将节点处逐段弯矩之和按节点两侧梁的线刚度按比例分配,求得梁端标准值。然后计算梁端的地震剪力标准值,并由节点两侧梁端剪力标准值之差求得柱的地震轴向力标准值,计算结果分别列于表4-5、4-6、4-7。以左震为例计算,右震符号相反。

表 4-5 水平地震作用下边柱的弯矩和剪力

表 4-6 水平地震作用下中柱的弯矩和剪力

表 4-7 梁端地震弯矩和柱地震轴向力的标准值

注:弯矩单位为(kN·m),力的单位为(kN)

最后绘制地震作用下的框架弯矩图(4-9)及地震作用下的框架梁剪力、柱轴力图(4-10)。

图 4-9 地震作用下的框架弯矩图(kN·m)

图 4-10 地震作用下的框架梁剪力、柱轴力图(kN)

第5章 内力组合

根据上节内力计算结果,即可进行框架各梁柱各控制截面上的内力组合,其中梁的控制截面为梁端柱边及跨中由于对称性,每层有五个控制截面,即图5-1所示梁中的1、2、3、4、5号截面。柱则分为边柱和中柱(即A柱、B柱),每个柱每层有两个控制截面,故柱的控制截面编号为1、2、3、4、5、6、7、8号截面,如图5-1所示。内力组合表见附录。

图 5-1 框架梁柱各控制截面

第6章 截面设计

根据内力组合结果,即可选择各截面的最不利内力进行截面配筋计算。

6.1 梁的配筋计算

混凝土C25,钢筋HRB335级,11.0,fc11.9N/mm2,

ft1.27N/mm2,fy300N/mm2,b0.550。混凝土保护层厚度25mm,

S35mm。以第四层为例。

6.1.1 边跨梁配筋计算 6.1.1.1 跨中正截面

MAB113.69kNm,跨中截面为T形,T形截面翼缘宽度b'f取值如下:

按跨度考虑 b'fl/37200/32400mm

按梁间距考虑 b'fbsn250(4200250)4200mm 按翼缘厚度考虑 h0hs60035565mm

h'f/h0100/5650.1770.1,此种情况不起控制作用。

故取b'f2400mm。

1fcb'fh'f(h0h'f/2)1.011.92400100(565100/2) 1470.84kNm113.69kNm 属于第一类T形截面。

M113.69106s0.012 '22

1fcbfh01.011.92400565

12s120.0120.013

As

1fcb'fh0

fy

1.011.924000.013565

699mm2

300

选用416,As804mm2。

Asft804

0.57%minmin0.2%,0.450.19%

bh0250565fy

6.1.1.2 支座正截面

A支座截面处:MA-73.34kNm

REM0.7573.34106

s0.058

1fcbh021.011.9250565212s120.0580.060

As

1fcbh0

fy

1.011.92500.060565

336mm2

300

选用218,As509mm2。

Asft509

0.36%minmin0.25%,0.550.23%

bh0250565fy

6.1.1.3 支座斜截面 梁强剪弱弯要求

Vbvb

l

MbMbr1.1(89.2516.43)

VGb84.3796.47kN ln6.62

由内力组合表查知 Vmax105kN 取 V105kN

REV89.25KN

AsvREV0.42ftbh089.250.421.27250565

0.094 s1.25fyvh01.25210565

实配双支箍8@100,则

Asv250.3

1.0060.094,满足要求。 s100

配箍率 sv

nAsv1250.30.40% bs250100

ft1.27

0.260.157%sv0.40% fyv210

最小配箍率 svmin0.26故满足要求。

6.1.2 中跨梁配筋计算

中跨梁与边跨梁的计算过程相同,故略。

6.2 框架柱配筋计算

柱采用对称配筋,纵筋采用HRB335级钢筋,柱箍筋采用HPB235,混凝土保护层厚度取30mm,S40mm。设计采用M标的三组内力进行计算,以首层中柱为例。

6.2.1 框架柱的纵向受力钢筋计算 6.2.1.1 轴压比验算 Nmax1020.74kN 则轴压比

N1020.74103

0.54[0.9] 故满足要求。 N2fcA11.9400

max

,Nmax,Nmin为组合目

6.2.1.2 框架柱正截面承载力计算 强柱弱梁的要求调整弯矩 组合M

max

,M141.73kNm,N810.24kN

柱计算长度l01.0H4150mm 附加偏心距ea

h400

13mm20mm,取ea20mm 3030

e0

M141.73174.92mm N810.24

eie0ea172.9220194.92mm

0.5fcA0.511.94002

11.21.0,取11.0

N810.24103l0/h4150/40010.37515,取21.0

1l0

110.37521.01.01.142 121

eh194.92

14001400i

360h0

1

2

REN0.8810.24103x136.17mmbh00.55360198mm

1fcb1.011.9400故属于大偏心受压。

eei

h400

as'1.142194.9240382.60mm 22

AsAs'

RENe(h00.5x)1fcbx

f(h0a)

'

y

's

0.8810.24103382.6(3600.5136.17)1.011.9400136.17

300(36040)

612mm2 选配416(AsAs'804mm2)

配筋率 

As8040.50%0.2% 满足要求。 bh400400

组合Nmax,M-15.11kNm,N1020.74kN 柱计算长度l01.0H4150mm 附加偏心距ea

h40013mm20mm,取ea20mm 3030

e0

M15.1114.80mm N1020.74

eie0ea34.802034.80mm

0.5fcA0.511.94002

10.93,取11.0

N1020.74103l0/h4150/40010.37515,取21.0

1l0

110.37520.931.01.742 121

eh34.80

14001400i

360h0

1

2

REN1.01020.74103x214.44mmbh00.55360198mm

1fcb1.011.9400故属于小偏心受压。

eei

h400

as'1.74234.8040220.62mm 22



Nb1fcbh0

b

Ne0.431fcbh02

1fcbh0`

(1b)(h0as)

1020.741030.551.011.9400360

1020.74103220.620.431.011.94003602

1.011.9400360

(0.80.55)(36040)

0.550.62

Ne(10.5)1fcbh02

AsA

fy'(h0as')

's

1020.74103220.620.62(10.50.62)1.011.94003602

0 

300(36040)

按构造要求,选配416(AsAs'804mm2) 配筋率 

As8040.50%0.2%,满足要求。 bh400400

组合Nmin,M130.84kNm,N790.32kN 计算过程与上述过程相同,故略。 6.2.2 斜截面受剪承载力计算 柱强剪弱弯要求

MctMcb1.1(130.84141.73)

Vc1.184.46kN

Hn3.35

由内力组合表查知 Vmax59.53kN 取 V84.46kN

因为剪跨比



Hn3550

4.933 所以 取3 2h02360

又因为 0.3fcA0.311.94002571.2kNN810.24kN 故取N571.2kN,则

Asv

s

REV0.056N

fyvh0

1.05ftbh0

1

0.8584.4610000.056571.21000210360

故按构造配箍,取8@200。 

1.051.27400360

0

梁柱配筋见下表。

第7章 楼板设计与计算

7.1 屋面板计算

7.1.1 荷载计算

恒荷载标准值 gk4.476kN/m2 恒荷载设计值 g1.2gk1.24.4765.371kN/m2 活荷载设计值 q1.40.50.7kN/m2 荷载设计值合计 gq5.3710.76.071kN/m2 7.1.2 按弹性理论计算 7.1.2.1 计算跨度

各区格板的计算跨度见表7-1。 7.1.2.2 弯矩计算

在求各区格板跨内正弯矩时,按恒荷载满布及活荷载棋盘式布置计算。取荷载 g'gq/25.3710.7/25.721kN/m2

q'q/20.7/20.35kN/m2

该结构采用现浇框架结构,故各支座均可视为固定。则跨中最大正弯矩值为在gq/2作用下的跨中弯矩值,与支座简支时在q/2作用下的跨中弯矩值之和。在求各支座最大负弯矩时,按恒荷载及活荷载均满布各区格板计算。

整个楼盖可分为A、B两种区格板。两区格板计算的弯矩值如表7-1所示。

表 7-1 按弹性理论计算的弯矩值

7.2 楼面板计算

7.2.1 荷载计算

恒荷载标准值 gk3.405kN/m2 恒荷载设计值 g1.2gk1.23.4054.086kN/m2 活荷载设计值 q1.42.02.8kN/m2 荷载设计值合计 gq4.0862.86.886kN/m2 7.2.2 按弹性理论计算 7.2.2.1 计算跨度

各区格板的计算跨度见表7-2。

7.2.2.2 弯矩计算

在求各区格板跨内正弯矩时,按恒荷载满布及活荷载棋盘式布置计算。取荷载 g'gq/24.0862.825.486kN/m2

q'q/22.821.4kN/m2

该结构采用现浇框架结构,故各支座均可视为固定。则跨中最大正弯矩值为在gq/2作用下的跨中弯矩值,与支座简支时在q/2作用下的跨中弯矩值之和。在求各支座最大负弯矩时,按恒荷载及活荷载均满布各区格板计算。

整个楼盖可分为A、B两种区格板。两区格板计算的弯矩值如表7-2所示。

表 7-2 按弹性理论计算的弯矩值

7.2.3 截面设计

假定选用8级钢筋,则l01方向跨中截面有效高度为

h01h201002080mm

l02方向跨中截面有效高度为h02h301003070mm

支座截面有效高度为 h080mm

截面设计用的弯矩均减少20%,为便于计算取As筋计算结果见表7-3。

表 7-3 截面配筋

m

。则截面配

0.95fyh0


相关文章

  • 对少量剪力墙的框架结构的认识
  • [摘 要] 由于布置少量剪力墙在框架结构再设计原则以及具体设计中存在诸多不确定因素,给结构设计和施工图审查带来很多困难,所以在结构设计中应尽量避免采用,尽可能采用概念清晰.便于操作且抗震性能较好的框架剪力墙结构. 中国论文网 http:// ...查看


  • 框架结构毕业设计开题报告
  • 开题报告 题 目:朔州市政府办公楼建筑结构设计(框架结构 4) 文献综述: 填写说明:指根据研究内容查阅大量的参考文献,通过文献的阅读写清 该课题内容的国内外研究现状.基本研究方法.当前存在的 问题.发展动向,进而引出开展本设计(论文)研究 ...查看


  • 框架结构文献综述
  • 框架结构设计 建筑是人类最早的生产活动之一,是在一定的历史条件下,随着社会生产力发展而形成发展的.由于经济的发展.土地的减少,现代建筑趋向于多高层建筑 [1],而砌体结构存在自重大.砌筑工作相当繁重.抗拉抗弯性能低.粘土砖用量很大,往往占用 ...查看


  • 建筑框架结构设计的原则及设计方法
  • 建筑框架结构设计的原则及设计方法 [摘要]随着我国建筑行业的不断发展,当前钢筋混凝土组合结构在建筑行业中得到了广泛的应用,满足了人们对建筑造型和功能日趋多样化的要求,随着这一建筑技术应用范围的增大,应用过程中也开始逐渐出现各种问题,这其中大 ...查看


  • 层次分析数学建模案例
  • 基于层次分析法的护岸框架最优方案选择 [摘要]长期以来,四面六边透水框架在河道整治等工程中,因其取材方便.自身稳定性.透水性.阻水性好.适合地形变化等特性优点而被广泛的应用.但是,在抛投和使用过程中,存在被水流冲击而翻滚移位.结构强度的不足 ...查看


  • 浅谈多层框架结构特点
  • 浅谈多层框架结构特点 摘要:在我国,框架结构是目前应用较多的结构形式之一.本文主要说明了框架结构的特点和适用范围,对多层框架结构的布置原则及方法.框架设计中的梁柱截面.配筋率和梁裂缝宽度的调整等问题进行了分析. 关键词:框架结构:配筋率: ...查看


  • 大跨度复杂异形钢框架结构设计与承载力性能研究*
  • 大跨度复杂异形钢框架结构设计与承载力性能研究* 大跨度复杂异形钢框架结构设计与承载力性能研究* 刘学春1 林 娜1 腾 伟1 张艳霞2 王艺蒙1 张爱林1 (1.北京工业大学北京市高层和大跨度预应力钢结构工程技术研究中心, 北京 10002 ...查看


  • 混凝土框架结构开题报告
  • 毕业设计(论文)开题报告 题 目: 河北省某单位行政办公楼 开题报告填写要求 1.开题报告(含"文献综述")作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一.此报告应在指导教师指导下,由学生在毕业设计(论文 ...查看


  • 藤椅设计和制作要点
  • 藤椅沙发 在进行藤家具的设计时,提前考虑到藤家具的结构特点来进行,藤家具才能达到造型美观.结构稳定.使用寿命长,也更能配合家居风格,达到更好的室内装修效果. 藤家具框架结构设计 藤家具多为框架结构,在框架基础之上附设其它装配结构,因而,框架 ...查看


  • 结构问题.doc
  • 关于"楼层位移比"和"层间位移角"问题 常有人问起"楼层位移比"和"层间位移角"的相关问题,此处一并答复: 1."楼层位移比" 1)定义-- ...查看


热门内容