勾股定理的发现和证明

勾股定理的发现和证明

中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:

周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩’的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的啊。”

从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了。稍懂平面几何的读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。如图所示,

我们用勾(a )和股(b )分别表示直角三角形得到两条直角边,用弦(c )来表示斜边,则可得:

勾2+股2=弦2

亦即:

a 2+b2=c2

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代的人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。 在稍后一点的《九章算术》一书中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说:“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:

弦=(勾2+股2)(1/2)

亦即:

c=(a +b)22(1/2)

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE 是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a ,则面积为(b-a )2。

于是便可得如下的式子:

4×(ab/2)+(b-a )2=c2

化简后便可得:

a 2+b2=c2

亦即:

c=(a 2+b2)(1/2)

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。

中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的...... 十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”

——《自然辨证法通讯》1990年第4期

勾股定理的发现和证明

中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:

周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形‘矩’的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的啊。”

从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了。稍懂平面几何的读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方。如图所示,

我们用勾(a )和股(b )分别表示直角三角形得到两条直角边,用弦(c )来表示斜边,则可得:

勾2+股2=弦2

亦即:

a 2+b2=c2

勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代的人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。 在稍后一点的《九章算术》一书中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说:“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:

弦=(勾2+股2)(1/2)

亦即:

c=(a +b)22(1/2)

中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合的方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE 是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a ,则面积为(b-a )2。

于是便可得如下的式子:

4×(ab/2)+(b-a )2=c2

化简后便可得:

a 2+b2=c2

亦即:

c=(a 2+b2)(1/2)

赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且代有发展。例如稍后一点的刘徽在证明勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已。

中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。事实上,“形数统一”的思想方法正是数学发展的一个极其重要的条件。正如当代中国数学家吴文俊所说:“在中国的传统数学中,数量关系与空间形式往往是形影不离地并肩发展着的...... 十七世纪笛卡儿解析几何的发明,正是中国这种传统思想与方法在几百年停顿后的重现与继续。”

——《自然辨证法通讯》1990年第4期


相关文章

  • 勾股定理的多种证法
  • 勾股定理,是几何学中一颗璀璨的明珠,是几何学的奠基定理,在高等数学和其他学科学领域有着极为广泛的应用.勾股定理发现最早的人是我国公元前1100年左右的西周时期的数学家商高,根据记载,商高曾经和周公讨论过"勾3股4弦5"的 ...查看


  • 高中立体几何教案
  • 高中立体几何教案 第一章 直线和平面 两个平面平行的性质教案 教学目标 1.使学生掌握两个平面平行的性质定理及应用: 2.引导学生自己探索与研究两个平面平行的性质定理,培养和发展学生发现问题解决问题的能力. 教学重点和难点 重点:两个平面平 ...查看


  • 中学生数学小论文
  • 论文题目: <勾股定理的发现和证明 > 学 校: 平舆县第三高级中学 组别: 初中 班 级:8(1) 学生姓名:何娅 指导教师:刘涛 联系电话(手机) :[1**********] 完成日期:2014.3.27 勾股定理的发现和 ...查看


  • 探究:关于勾股定理的那点事(勾股的历史.证明,勾股数探究等)
  • 探究:关于勾股定理的证明的那点事 在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,这个定理在中国又称为"商高定理",在外国称为"毕达哥拉斯定理"(Pythagor ...查看


  • 勾股定理的再发现
  • 四川省中学青年数学教师优秀课展评活动 <勾股定理的再发现> --探索直角三角形三边的关系 遂宁高级实验学校 侯 可 一.教材分析 ●1.教学内容:义务教育课程标准实验教材华东师大版八年级上册第十四章第1节. ●2.教材的地位及作 ...查看


  • 世界十大数学难题
  • 世界十大数学难题 几何尺规作图问题 "几何尺规作图问题"是指做图限制只能用直尺.圆规,而这里的直尺是指没有刻度只能画直线的尺."几何尺规作图问题"包括以下四个问题 1. 化圆为方-求作一正方形使其面积 ...查看


  • 初中数学课堂精彩的瞬间感悟浅析
  • 浅析初中数学课堂精彩瞬间 独山县第一中学 韦仁剑 摘要:每一节数学课精彩予否不只是老师的实力问题,更是老师的用心问题,数学课不精彩对于学生而言简直就是活受罪,如坐针毡.数学课的精彩得从推开教室门的那一刻起,老师必须精神饱满,眼神,姿态都要能 ...查看


  • 勾股定理论文
  • 勾股定理论文 一.勾股定理的简介 勾股定律是初等几何的著名定理之一.直角三角形两直角边上正方形面积的和等于斜边上正方形的面积,即如果直角三角形两直角边长度为a 和b ,斜边长度为c ,那么a^2+b^2=c^2.此定理很早已被发现.古埃及人 ...查看


  • 最小二乘法 1
  • 已知P=a+bF P=(200,170,150) F=(100,80,70) 用最小二乘法算a,b得值 最小二乘法是一种数学优化技术,它通过最小化误差的平方和找到一组数据的最佳函数匹配. 最小二乘法是用最简的方法求得一些绝对不可知的真值,而 ...查看


热门内容