《测电源电动势和内阻的误差分析》
伏安法测电电源电动势和内阻是高中物理教学的重点,其中对电动势和内阻误差分析是教学的难点,可见伏安法测电源的电动势和内阻的实验在电学实验里的重要性,并且对误差分析提出了更高的要求。下面用3种方法来分析此实验的误差情况。
一、公式法
伏安法测电源的电动势和内阻实验通常有两种可供选择的电路,如图1、图2所示,若采用图1电路,根据闭合电路欧姆定律,由两次测量列方程有
E 测=U 1+I 1r ,E 测=U 2+I 2
r
解得
E 测=
I 2U 1-I 1U 2
I 2-I 1
,r 测=
U 1-U 2I 2-I 1
若考虑电流表和电压表的内阻,应用闭合电路欧姆定律有:
⎛⎛U ⎫U ⎫
E 真=U 1+ I 1+1⎪r ,E 真=U 2+ I 2+2⎪r
R V ⎭R V ⎭⎝⎝
E 真=
I 2U 1-I 1U 2I 2-I 1-
U 1-U 2
R V
>E 测,r 真=
U 1-U 2
I 2-I 1-
U 1-U 2
R V
>r 测
解得
即测量值均偏小。若采用图2电路,若考虑电流表和电压表的内阻,应用闭
合电路欧姆定律有
E 真=U +I 1(r +R A ) ,E 真=U 2+I 2(r +R A )
-R A
解得
E 真=
I 2U 1-I 1U 2
I 2-I 1
=E 测,r 真=
U 1-U 2I 2-I 1
这种办法对计算要求比较高,很多学生容易搞错,一般不提倡用这种办法。 二、图象法
为了减少偶数误差,可采用图象法处理数据:不断改变阻器的阻值,从伏特表、安培表上读取多组路端电压U 和电源的电流I 的值,然后根据多组U 、I 值画出电源的U —I 图象,图线在纵轴上的截距就是电源的电动势E ,图线的斜率就是电池的内阻r 。
图1电路误差来源于伏特表的分流,导致电源电流的测量值I 测(即安培表
的示数)比真实值偏小,
I 真=I 测+
U R V
(U 为伏特表的示数,R V 为伏特表的内
∆I =I 真-I 测=
U R V
阻)。因对于任意一个U 值,总有I 真>I 测,其差值
,随U 的
减小而减小;当U =0时,△I =0。画出U 测-I 测图线AB 和修正后的电源真实
U 真-I 真
图线AC ,如图3所示,比较直线AB 和AC 纵轴截距和斜率,不难看
出E 测
图2电路误差来源于安培表的分压,致使路端电压的测量值U 测(即伏特表的示数)总比真实值偏小,其间差值∆U =U 真-U 测=IR A (I 为安培表的示数,
R A
为安培表的内阻)随电源电流I 的减小而减小;当I =0时,△U =0。根据以
上特点画出U 测-I 测图线PM 和修正后的电源的U 真-IR 图线PN ,比较直线MP 和NP 纵轴截距和斜率,显然E 测=E 真,r 测>r 真。
三、等效电源法
将图1中电源与电压表的并联看作等效电源,如图5中虚线框内所示,该等效电源的电动势就等于E 测,因电压表的分流作用,
E 测=
R V R V +r 真
E 真
,
故E 测
r 测=
R V r 真R V +r 真
并联值,即。
将图2中电源与电流表的串联看作等效电源,如图6中虚线框内所示,把电流表的电阻看作该等效电源内阻的一部分,即等效电源内阻为电流表的电阻和电源内阻之和,r 测=r 真+R A >r 真(因干电池的内电阻与电流表的内电阻很接近,用这种方法测量的干电池的内电阻误差很大,因此,在实验中并不选用图2电路。),该等效电源的电动势和被测电源的电动势相等,即E 测=E 真。
从以上分析可以看出,公式法较为繁琐,图象法和等效电源法较为简洁、直观。所以我们一般都是用后两种办法结合来让学生更容易理解伏安法测电源电动势和内阻的误差分析。
《测电源电动势和内阻的误差分析》
伏安法测电电源电动势和内阻是高中物理教学的重点,其中对电动势和内阻误差分析是教学的难点,可见伏安法测电源的电动势和内阻的实验在电学实验里的重要性,并且对误差分析提出了更高的要求。下面用3种方法来分析此实验的误差情况。
一、公式法
伏安法测电源的电动势和内阻实验通常有两种可供选择的电路,如图1、图2所示,若采用图1电路,根据闭合电路欧姆定律,由两次测量列方程有
E 测=U 1+I 1r ,E 测=U 2+I 2
r
解得
E 测=
I 2U 1-I 1U 2
I 2-I 1
,r 测=
U 1-U 2I 2-I 1
若考虑电流表和电压表的内阻,应用闭合电路欧姆定律有:
⎛⎛U ⎫U ⎫
E 真=U 1+ I 1+1⎪r ,E 真=U 2+ I 2+2⎪r
R V ⎭R V ⎭⎝⎝
E 真=
I 2U 1-I 1U 2I 2-I 1-
U 1-U 2
R V
>E 测,r 真=
U 1-U 2
I 2-I 1-
U 1-U 2
R V
>r 测
解得
即测量值均偏小。若采用图2电路,若考虑电流表和电压表的内阻,应用闭
合电路欧姆定律有
E 真=U +I 1(r +R A ) ,E 真=U 2+I 2(r +R A )
-R A
解得
E 真=
I 2U 1-I 1U 2
I 2-I 1
=E 测,r 真=
U 1-U 2I 2-I 1
这种办法对计算要求比较高,很多学生容易搞错,一般不提倡用这种办法。 二、图象法
为了减少偶数误差,可采用图象法处理数据:不断改变阻器的阻值,从伏特表、安培表上读取多组路端电压U 和电源的电流I 的值,然后根据多组U 、I 值画出电源的U —I 图象,图线在纵轴上的截距就是电源的电动势E ,图线的斜率就是电池的内阻r 。
图1电路误差来源于伏特表的分流,导致电源电流的测量值I 测(即安培表
的示数)比真实值偏小,
I 真=I 测+
U R V
(U 为伏特表的示数,R V 为伏特表的内
∆I =I 真-I 测=
U R V
阻)。因对于任意一个U 值,总有I 真>I 测,其差值
,随U 的
减小而减小;当U =0时,△I =0。画出U 测-I 测图线AB 和修正后的电源真实
U 真-I 真
图线AC ,如图3所示,比较直线AB 和AC 纵轴截距和斜率,不难看
出E 测
图2电路误差来源于安培表的分压,致使路端电压的测量值U 测(即伏特表的示数)总比真实值偏小,其间差值∆U =U 真-U 测=IR A (I 为安培表的示数,
R A
为安培表的内阻)随电源电流I 的减小而减小;当I =0时,△U =0。根据以
上特点画出U 测-I 测图线PM 和修正后的电源的U 真-IR 图线PN ,比较直线MP 和NP 纵轴截距和斜率,显然E 测=E 真,r 测>r 真。
三、等效电源法
将图1中电源与电压表的并联看作等效电源,如图5中虚线框内所示,该等效电源的电动势就等于E 测,因电压表的分流作用,
E 测=
R V R V +r 真
E 真
,
故E 测
r 测=
R V r 真R V +r 真
并联值,即。
将图2中电源与电流表的串联看作等效电源,如图6中虚线框内所示,把电流表的电阻看作该等效电源内阻的一部分,即等效电源内阻为电流表的电阻和电源内阻之和,r 测=r 真+R A >r 真(因干电池的内电阻与电流表的内电阻很接近,用这种方法测量的干电池的内电阻误差很大,因此,在实验中并不选用图2电路。),该等效电源的电动势和被测电源的电动势相等,即E 测=E 真。
从以上分析可以看出,公式法较为繁琐,图象法和等效电源法较为简洁、直观。所以我们一般都是用后两种办法结合来让学生更容易理解伏安法测电源电动势和内阻的误差分析。