第3章部分习题解答
(1)试确定每个频率分量的功率 2解:
s (t )=⎡⎣20+2cos (3000πt )+10cos (6000πt )⎤⎦cos (2πf c t )=20cos (2πf c t )+cos (2π(f c +1500) t )+cos (2π(f c −1500) t )+5cos (2π(f c +3000) t )+5cos (2π(f c −3000) t )
s (t )的5个频率分量及其功率为:
200w f c +1500: 功率为0.5w f c −1500:功率为0.5w f c +3000: 功率为12.5w f c −3000: 功率为12.5w
(2)s (t )=⎡20+2cos (3000πt )+10cos (6000πt )⎤cos (2πf c t ) ⎣⎦
=20⎡1+0.1cos 3000πt +0.5cos 6000πt ⎤cos 2πf t ()()⎦(c )⎣
f c : 功率为
因此m (t )=0.1cos (3000πt )+0.5cos (6000πt )
调制指数βAM =max ⎡⎣m (t )⎤⎦=0.6。
(3)5
个频率分量的全部功率为:
P total =200+2×0.5+2×12.5=226w
边带功率为:P 边带=2×0.5+2×12.5=26w 边带功率与全部功率之比:
ηAM
26=≈0.115 226
3解:已调信号为AM 信号,调制指数为:
βAM =max ⎡⎣m (t )⎤⎦=A m
如果A m >1,即发生了过调制,包络检波器此时将无法恢复出m (t )。因此要想无失真通过包络检波器解出m (t ),则需要A m ≤1。
4解:根据单边带信号的时域表达式,可确定上边带信号:
11
ˆ(t )sin (ωc t ) S USB (t )=2m (t )cos (ωc t )−2m
14
cos 2000t cos 4000t cos 10=⎡π+ππt ) ⎤()()(⎣⎦214−⎡π+ππt ) sin 2000t sin 4000t sin 10⎤()()(⎣⎦211
=cos (12000πt )+cos (14000πt ) 22
1
S USB (f )=[δ(f +6000)+δ(f −6000)+δ(f +7000)+δ(f −7000)]
4
同理,下边带信号为:
11
ˆ(t )sin (ωc t ) S LSB (t )=m (t )cos (ωc t )+m
2214
cos 2000t cos 4000t cos 10=⎡π+ππt ⎤()()⎣⎦214+⎡π+ππt sin 2000t sin 4000t sin 10⎤()()⎣⎦211
=cos (8000πt )+cos (6000πt ) 22
()
()
1
S LSB (f )=[δ(f +4000)+δ(f −4000)+δ(f +3000)+δ(f −3000)]
4
两种单边带信号的频谱分别如下所示:
S USB (f )
S LSB (f )
f
6000
7000
3000
4000
f
ˆ(t )为其希11解:记m (t )为基带调制信号,m
尔伯特变换,不妨设载波幅度为2(2A c =2)。
ˆ(t )sin (2πf c t ) (1)A :s A (t )=m (t )cos (2πf c t )−m
ˆ(t )sin (91×104πt )=m (t )cos (91×104πt )−m
4
s t =s t cos 91×10πt ) ()()(B : B A
ˆ(t )sin (91×10πt )cos (91×10πt ) =m (t )cos (91×10πt )−m
2
4
4
4
=
m (t )
1
C : s C (t )=2m (t )
4
s t =s t sin 91×10πt ) ()()(D : D A
4⎡1+cos (182×10πt )⎤−sin 182×10πt )(⎣⎦22
4
ˆ(t )m
ˆ(t )sin 2(91×104πt )=m (t )sin (91×104πt )cos (91×104πt )−m
ˆ(t )m (t )m 4
⎡1−cos (182×104πt )⎤=sin (182×10πt )−⎦2⎣ 2
1
ˆ(t ) E : s E (t )=−2m
m (t )1ˆ
ˆ(t )= F : s F (t )=−2m 2
G : s G (t )=s C (t )+s F (t )=m (t )
⑵ 当A 点输入是下边带信号时,各点信号如下:
ˆ(t )sin (2πf c t ) A :s A (t )=m (t )cos (2πf c t )+m
ˆ(t )sin (91×104πt )=m (t )cos (91×104πt )+m
4
s t =s t cos 91×10πt ) ()()(B :B A
ˆ(t )sin (91×104πt )cos (91×104πt )=m (t )cos 2(91×104πt )+m
ˆ(t )m (t )m 44
⎡1+cos (182×10πt )⎤+sin 18210=×πt )(⎣⎦2 2
C :s C (t )=
1
m (t ) 2
4
s t =s t sin 91×10πt ()()D :D A
()
ˆ(t )sin 2(91×104πt )=m (t )sin (91×104πt )cos (91×104πt )+m
=
ˆ(t )m (t )m
⎡1−cos (182×104πt )⎤sin (182×104πt )+⎦22⎣
1
ˆ(t ) E :s E (t )=2m
m (t )1ˆ
ˆ(t )=− F :s F (t )=2m
2
G :s G (t )=s C (t )+s F (t )=0 如欲G 点输出,需将最末端的相加改为相减即可,如下图所示:
则G :s G (t )=s C (t )−s F (t )=m (t )
12解:⑴ 设DSB 已调信号为:
s D SB (t )=Am c (t )cos (ωc t ), 令A c =1 则接收机的输入信号功率:
121∞
S i =S t =m t =∫ℜm (f )df
22−∞f m N N 0f m f 10
=×2×∫⋅df =
022f m 4
2DSB
⑵ 相干解调(P80图3.1.7)之后,接收
1
机的输出信号m o (t )=2m (t ),则输出信号功率:
⑶ 解调器的输出信噪功率比:
22A ⋅m t S ⎛⎞c
(P 1033.3.12) ⎜⎟=
2N 0B m ⎝N ⎠o
N 0f m 12
s o (t )=m t =m t =
48
2
o
m 2t N 0f m 1===2N 0B m 4N 0f m 4
13解:⑴ 在DSB 方式中,解调增益G DEM _DSB =2,因此解调器输入信噪比:
20
S 1S 1⎛⎞⎛⎞10
10=⋅=×=50⎜⎟⎜⎟
⎝N ⎠i 2⎝N ⎠o 2
同时,在相干解调时
N i =N o =10W
−9
(入端噪声n i (t ) ,出端噪声n c (t ) 为n i (t ) 的正交分量)
因此解调器输入端的信号功率: S i =50N i =5×10−8W
考虑发射机输出端到解调器输入端之间的100dB 传输损耗,可得发射机输出功率:
S T =10
100
10
×S i =500W
⑵ 在SSB 方式中,解调增益G DEM _SSB =1
20
S S ⎛⎞⎛⎞10
10===100⎜⎟⎜⎟
⎝N ⎠i ⎝N ⎠o
因此,解调器输入端的信号功率:
S i =100N i =10−7W 发射机输出功率:
S T =1010×S i =1000W
15解:⑴ ① 解调输入信号可写为:
r (t )=A c m (t )cos (2πf c t )+n (t )
=A c m (t )cos (2πf c t )+n c (t )cos (2πf c t )−n s (t )sin (2πf c t )解调器输入信噪比为:
解调乘法器输出为:
A c 2P m
2A S ⎛⎞c P m =⎜⎟=
⎝N ⎠i 2N 0W 4N 0W
N i =N o =10−9W
r mul (t )=r (t )×2cos (2πf c t )
=2A c m (t )cos 2(2πf c t )+2n c (t )cos 2(2πf c t )−2n s (t )sin (2πf c t )cos (2πf c t )=⎡⎣A c m (t )+n c (t )⎤⎦⎡⎣1+cos (4πf c t )⎤⎦−n s (t )sin (4πf c t )
解调输出为A c m (t )+n c (t ),输出信噪比为:
222A m t A ⎛S ⎞c c P m ==⎜⎟
2N 0W ⎝N ⎠o n c 2t
因此
② 解调器输入信噪比:
P t ×10−6P r ⎛S ⎞3
===P t 10⎜⎟−133
⎝N ⎠i 2N 0W 2×10×5×10
(S N )o S N i
=2
解调器输出信噪比:
⎛S ⎞⎛S ⎞3
2200010==P =t ⎜⎟⎜⎟N N ⎝⎠o ⎝⎠i
故发送功率P t =0.5W 。 ⑵ ① 解调输入信号可写为:
ˆ(t )sin (2πf c t )+n (t ) r (t )=A c m (t )cos (2πf c t )+A c m
ˆ(t )sin (2πf c t )+n c (t )cos (2πf c t )−n s (t )sin (2πf c t )=A c m (t )cos (2πf c t )+A c m
解调器输入信噪比为:
22
A m t S ⎛⎞c
⎜⎟=
N 0W ⎝N ⎠i
解调输出为A c m (t )+n c (t ),输出信噪比为: 22A m t A c 2P m S ⎛⎞c
=⎜⎟=2N 0W ⎝N ⎠o n c t
因此
② 解调器输入信噪比:
P t ×10−6P r ⎛S ⎞
=−13=2000P t ⎜⎟=3
⎝N ⎠i N 0W 10×5×10
(S N )o
S N i
=1
解调器输出信噪比:
⎛S ⎞⎛S ⎞3
==P =200010t ⎜⎟⎜⎟N N ⎝⎠o ⎝⎠i
故发送功率P t =0.5W 。
17
1212
(1)P s =s t =A c =⋅10=50 解:22
2
(2) θ(t )=10cos 2π×10t →Δθmax =10rad
3
()
1d θ(t )(3) f d (t )==−104sin (2π×103t )→Δf max =104Hz
2πdt
5
f =5×10Hz 19解:载频为:c
θ(t )=8cos (103πt )=2πK FM ∫m (t )dt
3
8×10π →m (t )=−sin (103πt )2πK FM
调制信号为:m (t )=−2000sin (103πt )
最大频偏为:Δf max =k FM m (t ) max =2×2000=4000Hz 调频指数为:βFM
Δf max 4000===8
500f m
21解:设调制信号m (t )=A m cos (2πf m t ) 对于PM :
s PM (t )=A c cos ⎡⎣2πf c t +k PM A m cos (2πf m t )⎤⎦
最大相偏:ΔθPM 最大频偏:
Δf PM
=k PM A m 与f m 无关;
={−k PM A m f m sin (2πf m t )}max =k PM A m f m
⎧1d ⎫
k PM A m cos (2πf m t )⎤=⎨⎡⎬⎣⎦
⎩2πdt ⎭max
故Δf PM 与f m 成正比。
(2)对于FM :
s FM (t )=A c cos ⎡2πf c t +2πk FM ∫A m cos (2πf m σ)d σ⎤
⎢⎥⎣⎦⎡⎤k FM A m
=A c cos ⎢2πf c t +sin (2πf m t )⎥
f m ⎣⎦k FM A m
最大相偏:ΔθFM =f m 与f m 成反比;
最大频偏:Δf FM
=k FM A m 与f m 无关。
26解:记到达接收机的已调信号为s (t ), 其功率为P s ,则
P s =40×103×10−8=4×10−4W
⑴ 采用SSB 时,不妨以下边带为例,接收机输入端的有用信号为:
ˆ(t )sin (2πf c t ) s (t )=A c m (t )cos (2πf c t )+A c m
接收机前端可采用频段为[f c −W , f c ]的理想BPF 限制噪声,于是输入到解调器输入端的噪声为:
n (t )=n c (t )cos (2πf 0t )−n s (t )sin (2πf 0t ) 其中n c (t ),n s (t ),n (t )的功率都是
P n =N 0W =2×10−10×104=2×10−6W
采用理想相干解调时的解调输出为A c m (t )+n c (t ),因此输出信噪比是:
A c 2P M ⎛S ⎞
=⎜⎟
P n ⎝N ⎠oSSB
(P 1043.3.18)
4×10−4
==200≈23dB −62×10
2−4
P =A P =4×10W 则s c M
⑵ 采用AM 调制时,解调器输入的有用信号为:
s (t )=A c ⎡⎣1+am n (t )⎤⎦cos (2πf c t ) 其中调制指数a =0.85
m n (t )的功率是:
P M m (t )max
2
,m n (t )=
m (t )m t max
(归一化)
,
接收机前端可采用频段为[f c −W , f c +W ]的理想BPF 限制噪声,于是输入到解调器输入端的噪声为:
n (t )=n c (t )cos (2πf c t )−n s (t )sin (2πf c t )
P M n =
1
==0.25
其中n c (t ),n s (t ),n (t )的功率都是:
P n =2N 0W =2×2×10−10×104=4×10−6W
采用理想的包络检波器得到的输出为A c ⎡⎣1+am n (t )⎤⎦+n c (t ),因此输出信噪比是:
⎛2
⎜S ⎞⎟=A c a 2P M n
⎝N ⎠oAM P n
由于
A 2
P c
s =2(1+a 2P M n )=4×10−4W 由此得
⎛⎜S ⎞A 22
c a P M n
⎝N ⎟⎠==2P s a 2P M n
oAM P n 1+a 2P ×
M n P n
=2P a 2P M n 2P 1
P ×1+a 2P =×
n M n P n 1+1/a 2P M n
−4
=2×4×10 4×10−6×⎛⎜⎝1+1⎞
0.852×0.2⎟⎠
≈25.25≈14.02dB
4-11
第3章部分习题解答
(1)试确定每个频率分量的功率 2解:
s (t )=⎡⎣20+2cos (3000πt )+10cos (6000πt )⎤⎦cos (2πf c t )=20cos (2πf c t )+cos (2π(f c +1500) t )+cos (2π(f c −1500) t )+5cos (2π(f c +3000) t )+5cos (2π(f c −3000) t )
s (t )的5个频率分量及其功率为:
200w f c +1500: 功率为0.5w f c −1500:功率为0.5w f c +3000: 功率为12.5w f c −3000: 功率为12.5w
(2)s (t )=⎡20+2cos (3000πt )+10cos (6000πt )⎤cos (2πf c t ) ⎣⎦
=20⎡1+0.1cos 3000πt +0.5cos 6000πt ⎤cos 2πf t ()()⎦(c )⎣
f c : 功率为
因此m (t )=0.1cos (3000πt )+0.5cos (6000πt )
调制指数βAM =max ⎡⎣m (t )⎤⎦=0.6。
(3)5
个频率分量的全部功率为:
P total =200+2×0.5+2×12.5=226w
边带功率为:P 边带=2×0.5+2×12.5=26w 边带功率与全部功率之比:
ηAM
26=≈0.115 226
3解:已调信号为AM 信号,调制指数为:
βAM =max ⎡⎣m (t )⎤⎦=A m
如果A m >1,即发生了过调制,包络检波器此时将无法恢复出m (t )。因此要想无失真通过包络检波器解出m (t ),则需要A m ≤1。
4解:根据单边带信号的时域表达式,可确定上边带信号:
11
ˆ(t )sin (ωc t ) S USB (t )=2m (t )cos (ωc t )−2m
14
cos 2000t cos 4000t cos 10=⎡π+ππt ) ⎤()()(⎣⎦214−⎡π+ππt ) sin 2000t sin 4000t sin 10⎤()()(⎣⎦211
=cos (12000πt )+cos (14000πt ) 22
1
S USB (f )=[δ(f +6000)+δ(f −6000)+δ(f +7000)+δ(f −7000)]
4
同理,下边带信号为:
11
ˆ(t )sin (ωc t ) S LSB (t )=m (t )cos (ωc t )+m
2214
cos 2000t cos 4000t cos 10=⎡π+ππt ⎤()()⎣⎦214+⎡π+ππt sin 2000t sin 4000t sin 10⎤()()⎣⎦211
=cos (8000πt )+cos (6000πt ) 22
()
()
1
S LSB (f )=[δ(f +4000)+δ(f −4000)+δ(f +3000)+δ(f −3000)]
4
两种单边带信号的频谱分别如下所示:
S USB (f )
S LSB (f )
f
6000
7000
3000
4000
f
ˆ(t )为其希11解:记m (t )为基带调制信号,m
尔伯特变换,不妨设载波幅度为2(2A c =2)。
ˆ(t )sin (2πf c t ) (1)A :s A (t )=m (t )cos (2πf c t )−m
ˆ(t )sin (91×104πt )=m (t )cos (91×104πt )−m
4
s t =s t cos 91×10πt ) ()()(B : B A
ˆ(t )sin (91×10πt )cos (91×10πt ) =m (t )cos (91×10πt )−m
2
4
4
4
=
m (t )
1
C : s C (t )=2m (t )
4
s t =s t sin 91×10πt ) ()()(D : D A
4⎡1+cos (182×10πt )⎤−sin 182×10πt )(⎣⎦22
4
ˆ(t )m
ˆ(t )sin 2(91×104πt )=m (t )sin (91×104πt )cos (91×104πt )−m
ˆ(t )m (t )m 4
⎡1−cos (182×104πt )⎤=sin (182×10πt )−⎦2⎣ 2
1
ˆ(t ) E : s E (t )=−2m
m (t )1ˆ
ˆ(t )= F : s F (t )=−2m 2
G : s G (t )=s C (t )+s F (t )=m (t )
⑵ 当A 点输入是下边带信号时,各点信号如下:
ˆ(t )sin (2πf c t ) A :s A (t )=m (t )cos (2πf c t )+m
ˆ(t )sin (91×104πt )=m (t )cos (91×104πt )+m
4
s t =s t cos 91×10πt ) ()()(B :B A
ˆ(t )sin (91×104πt )cos (91×104πt )=m (t )cos 2(91×104πt )+m
ˆ(t )m (t )m 44
⎡1+cos (182×10πt )⎤+sin 18210=×πt )(⎣⎦2 2
C :s C (t )=
1
m (t ) 2
4
s t =s t sin 91×10πt ()()D :D A
()
ˆ(t )sin 2(91×104πt )=m (t )sin (91×104πt )cos (91×104πt )+m
=
ˆ(t )m (t )m
⎡1−cos (182×104πt )⎤sin (182×104πt )+⎦22⎣
1
ˆ(t ) E :s E (t )=2m
m (t )1ˆ
ˆ(t )=− F :s F (t )=2m
2
G :s G (t )=s C (t )+s F (t )=0 如欲G 点输出,需将最末端的相加改为相减即可,如下图所示:
则G :s G (t )=s C (t )−s F (t )=m (t )
12解:⑴ 设DSB 已调信号为:
s D SB (t )=Am c (t )cos (ωc t ), 令A c =1 则接收机的输入信号功率:
121∞
S i =S t =m t =∫ℜm (f )df
22−∞f m N N 0f m f 10
=×2×∫⋅df =
022f m 4
2DSB
⑵ 相干解调(P80图3.1.7)之后,接收
1
机的输出信号m o (t )=2m (t ),则输出信号功率:
⑶ 解调器的输出信噪功率比:
22A ⋅m t S ⎛⎞c
(P 1033.3.12) ⎜⎟=
2N 0B m ⎝N ⎠o
N 0f m 12
s o (t )=m t =m t =
48
2
o
m 2t N 0f m 1===2N 0B m 4N 0f m 4
13解:⑴ 在DSB 方式中,解调增益G DEM _DSB =2,因此解调器输入信噪比:
20
S 1S 1⎛⎞⎛⎞10
10=⋅=×=50⎜⎟⎜⎟
⎝N ⎠i 2⎝N ⎠o 2
同时,在相干解调时
N i =N o =10W
−9
(入端噪声n i (t ) ,出端噪声n c (t ) 为n i (t ) 的正交分量)
因此解调器输入端的信号功率: S i =50N i =5×10−8W
考虑发射机输出端到解调器输入端之间的100dB 传输损耗,可得发射机输出功率:
S T =10
100
10
×S i =500W
⑵ 在SSB 方式中,解调增益G DEM _SSB =1
20
S S ⎛⎞⎛⎞10
10===100⎜⎟⎜⎟
⎝N ⎠i ⎝N ⎠o
因此,解调器输入端的信号功率:
S i =100N i =10−7W 发射机输出功率:
S T =1010×S i =1000W
15解:⑴ ① 解调输入信号可写为:
r (t )=A c m (t )cos (2πf c t )+n (t )
=A c m (t )cos (2πf c t )+n c (t )cos (2πf c t )−n s (t )sin (2πf c t )解调器输入信噪比为:
解调乘法器输出为:
A c 2P m
2A S ⎛⎞c P m =⎜⎟=
⎝N ⎠i 2N 0W 4N 0W
N i =N o =10−9W
r mul (t )=r (t )×2cos (2πf c t )
=2A c m (t )cos 2(2πf c t )+2n c (t )cos 2(2πf c t )−2n s (t )sin (2πf c t )cos (2πf c t )=⎡⎣A c m (t )+n c (t )⎤⎦⎡⎣1+cos (4πf c t )⎤⎦−n s (t )sin (4πf c t )
解调输出为A c m (t )+n c (t ),输出信噪比为:
222A m t A ⎛S ⎞c c P m ==⎜⎟
2N 0W ⎝N ⎠o n c 2t
因此
② 解调器输入信噪比:
P t ×10−6P r ⎛S ⎞3
===P t 10⎜⎟−133
⎝N ⎠i 2N 0W 2×10×5×10
(S N )o S N i
=2
解调器输出信噪比:
⎛S ⎞⎛S ⎞3
2200010==P =t ⎜⎟⎜⎟N N ⎝⎠o ⎝⎠i
故发送功率P t =0.5W 。 ⑵ ① 解调输入信号可写为:
ˆ(t )sin (2πf c t )+n (t ) r (t )=A c m (t )cos (2πf c t )+A c m
ˆ(t )sin (2πf c t )+n c (t )cos (2πf c t )−n s (t )sin (2πf c t )=A c m (t )cos (2πf c t )+A c m
解调器输入信噪比为:
22
A m t S ⎛⎞c
⎜⎟=
N 0W ⎝N ⎠i
解调输出为A c m (t )+n c (t ),输出信噪比为: 22A m t A c 2P m S ⎛⎞c
=⎜⎟=2N 0W ⎝N ⎠o n c t
因此
② 解调器输入信噪比:
P t ×10−6P r ⎛S ⎞
=−13=2000P t ⎜⎟=3
⎝N ⎠i N 0W 10×5×10
(S N )o
S N i
=1
解调器输出信噪比:
⎛S ⎞⎛S ⎞3
==P =200010t ⎜⎟⎜⎟N N ⎝⎠o ⎝⎠i
故发送功率P t =0.5W 。
17
1212
(1)P s =s t =A c =⋅10=50 解:22
2
(2) θ(t )=10cos 2π×10t →Δθmax =10rad
3
()
1d θ(t )(3) f d (t )==−104sin (2π×103t )→Δf max =104Hz
2πdt
5
f =5×10Hz 19解:载频为:c
θ(t )=8cos (103πt )=2πK FM ∫m (t )dt
3
8×10π →m (t )=−sin (103πt )2πK FM
调制信号为:m (t )=−2000sin (103πt )
最大频偏为:Δf max =k FM m (t ) max =2×2000=4000Hz 调频指数为:βFM
Δf max 4000===8
500f m
21解:设调制信号m (t )=A m cos (2πf m t ) 对于PM :
s PM (t )=A c cos ⎡⎣2πf c t +k PM A m cos (2πf m t )⎤⎦
最大相偏:ΔθPM 最大频偏:
Δf PM
=k PM A m 与f m 无关;
={−k PM A m f m sin (2πf m t )}max =k PM A m f m
⎧1d ⎫
k PM A m cos (2πf m t )⎤=⎨⎡⎬⎣⎦
⎩2πdt ⎭max
故Δf PM 与f m 成正比。
(2)对于FM :
s FM (t )=A c cos ⎡2πf c t +2πk FM ∫A m cos (2πf m σ)d σ⎤
⎢⎥⎣⎦⎡⎤k FM A m
=A c cos ⎢2πf c t +sin (2πf m t )⎥
f m ⎣⎦k FM A m
最大相偏:ΔθFM =f m 与f m 成反比;
最大频偏:Δf FM
=k FM A m 与f m 无关。
26解:记到达接收机的已调信号为s (t ), 其功率为P s ,则
P s =40×103×10−8=4×10−4W
⑴ 采用SSB 时,不妨以下边带为例,接收机输入端的有用信号为:
ˆ(t )sin (2πf c t ) s (t )=A c m (t )cos (2πf c t )+A c m
接收机前端可采用频段为[f c −W , f c ]的理想BPF 限制噪声,于是输入到解调器输入端的噪声为:
n (t )=n c (t )cos (2πf 0t )−n s (t )sin (2πf 0t ) 其中n c (t ),n s (t ),n (t )的功率都是
P n =N 0W =2×10−10×104=2×10−6W
采用理想相干解调时的解调输出为A c m (t )+n c (t ),因此输出信噪比是:
A c 2P M ⎛S ⎞
=⎜⎟
P n ⎝N ⎠oSSB
(P 1043.3.18)
4×10−4
==200≈23dB −62×10
2−4
P =A P =4×10W 则s c M
⑵ 采用AM 调制时,解调器输入的有用信号为:
s (t )=A c ⎡⎣1+am n (t )⎤⎦cos (2πf c t ) 其中调制指数a =0.85
m n (t )的功率是:
P M m (t )max
2
,m n (t )=
m (t )m t max
(归一化)
,
接收机前端可采用频段为[f c −W , f c +W ]的理想BPF 限制噪声,于是输入到解调器输入端的噪声为:
n (t )=n c (t )cos (2πf c t )−n s (t )sin (2πf c t )
P M n =
1
==0.25
其中n c (t ),n s (t ),n (t )的功率都是:
P n =2N 0W =2×2×10−10×104=4×10−6W
采用理想的包络检波器得到的输出为A c ⎡⎣1+am n (t )⎤⎦+n c (t ),因此输出信噪比是:
⎛2
⎜S ⎞⎟=A c a 2P M n
⎝N ⎠oAM P n
由于
A 2
P c
s =2(1+a 2P M n )=4×10−4W 由此得
⎛⎜S ⎞A 22
c a P M n
⎝N ⎟⎠==2P s a 2P M n
oAM P n 1+a 2P ×
M n P n
=2P a 2P M n 2P 1
P ×1+a 2P =×
n M n P n 1+1/a 2P M n
−4
=2×4×10 4×10−6×⎛⎜⎝1+1⎞
0.852×0.2⎟⎠
≈25.25≈14.02dB
4-11