拉格朗日中值定理的证明及其应用

龙源期刊网 http://www.qikan.com.cn

拉格朗日中值定理的证明及其应用

作者:马生勇

来源:《东方教育》2014年第13期

【摘要】拉格朗日中值定理是微积分中重要定理之一,其证明方法关键在于构造一个辅助函数,再应用罗尔中值定理推出拉格朗日中值定理的结论.本文从坐标旋转、分析表达式、向量运算、区间套定理四个方面分析构造辅助函数的思路和方法,利用该辅助函数证明了拉格朗日中值定理,并以具体实例说明如何应用拉格朗日中值定理.

【关键词】罗尔中值定理;拉格朗日中值定理;辅助函数

1 引言

拉格朗日中值定理是微分学的重要定理之一,它的证明通常以罗尔中值定理作为预备定理,其证明方法关键在于构造一个辅助函数,而辅助函数应满足罗尔中值定理的全部条件,证明的过程就是对辅助函数应用罗尔中值定理推出拉格朗日中值定理的结论.罗尔定理中 这个条件很特殊,它使罗尔定理的应用受到限制.如果把这个条件取消,但仍保留另外两个条件,并且相应改变结论,即得微分学中十分重要的拉格朗日中值定理.本文从坐标旋转、分析表达式、向量运算三种方法证明了拉格朗日中值定理,并从具体实例说明了如何应用拉格朗日中值定理.

2 拉格朗日中值定理证明

拉格朗日中值定理的证明过程就是对所构造的辅助函数(该辅助函数应满足罗尔中值定理的全部条件)应用罗尔中值定理.由于构造辅助函数的思路不同,拉格朗日中值定理的证法有多种.首先我们给出罗尔中值定理和拉格朗日中值定理[1]如下:

罗尔中值定理 若函数 满足以下条件:

(1)在 连续;

(2)在 可导;

(3) .

则至少存在一点 ,使 .

拉格朗日中值定理 若函数 满足以下条件:

(1)在 连续;

龙源期刊网 http://www.qikan.com.cn

拉格朗日中值定理的证明及其应用

作者:马生勇

来源:《东方教育》2014年第13期

【摘要】拉格朗日中值定理是微积分中重要定理之一,其证明方法关键在于构造一个辅助函数,再应用罗尔中值定理推出拉格朗日中值定理的结论.本文从坐标旋转、分析表达式、向量运算、区间套定理四个方面分析构造辅助函数的思路和方法,利用该辅助函数证明了拉格朗日中值定理,并以具体实例说明如何应用拉格朗日中值定理.

【关键词】罗尔中值定理;拉格朗日中值定理;辅助函数

1 引言

拉格朗日中值定理是微分学的重要定理之一,它的证明通常以罗尔中值定理作为预备定理,其证明方法关键在于构造一个辅助函数,而辅助函数应满足罗尔中值定理的全部条件,证明的过程就是对辅助函数应用罗尔中值定理推出拉格朗日中值定理的结论.罗尔定理中 这个条件很特殊,它使罗尔定理的应用受到限制.如果把这个条件取消,但仍保留另外两个条件,并且相应改变结论,即得微分学中十分重要的拉格朗日中值定理.本文从坐标旋转、分析表达式、向量运算三种方法证明了拉格朗日中值定理,并从具体实例说明了如何应用拉格朗日中值定理.

2 拉格朗日中值定理证明

拉格朗日中值定理的证明过程就是对所构造的辅助函数(该辅助函数应满足罗尔中值定理的全部条件)应用罗尔中值定理.由于构造辅助函数的思路不同,拉格朗日中值定理的证法有多种.首先我们给出罗尔中值定理和拉格朗日中值定理[1]如下:

罗尔中值定理 若函数 满足以下条件:

(1)在 连续;

(2)在 可导;

(3) .

则至少存在一点 ,使 .

拉格朗日中值定理 若函数 满足以下条件:

(1)在 连续;


相关文章

  • 拉格朗日的寂寞
  • 0 题记 阅读提示 本文主要讨论Lagrange中值定理的各种形式(简化形.标准形.参数形&加强形)及其应用: 求极限 证明恒等式 证明不等式 证明与中值ξ有关的命题 讨论函数性态 不定积分理论基础 1 拉格朗日中值定理 如果函数? ...查看


  • 微分中值定理学科的论文
  • 学科论文(设计) 题 目: 微分中值定理的应用 院 系: 数学与信息科学学院 专 业: 数学与应用数学 姓 名: 杨 恒 学 号: [1**********]1 指导教师: 姚 廷 富 教师职称: 讲 师 填写日期: 2012年 12 月 ...查看


  • 试讲拉格朗日中值定理
  • 讲 授 课 题 拉格朗日中值定理 1.熟练掌握中值定理,特别是拉格朗日中值定理的分析意 教 学 目 的 义和几何意义: 2.能应用拉格朗日中值定理证明不等式: 3.了解拉格朗日中值定理的推论 1 和推论 2: 1.拉格朗日中值定理,拉格朗日 ...查看


  • 拉格朗日中值定理的证明与应用
  • 拉格朗日中值定理的证明与应用 屈俊1,张锦花2 摘要:本文首先用辅助函数法,区间套法,参数变异法,巴拿赫不动点定理法,行列式法,旋转坐标法,面积法证明了拉格朗日中值定理.然后用具体的例子,说明了如何应用拉格朗日中值定理求极限,证明不等式,恒 ...查看


  • 拉格朗日中值定理的新证明
  • 第!&卷第%期 沈阳师范大学学报 (自然科学版) ,$%&/!&'%/%.12+! ! 文章编号:()& 拉格朗日中值定理的新证明 孟宪吉,王 瑾 (沈阳师范大学数学与系统科学学院,辽宁沈阳&)&am ...查看


  • 微分中值定理开题报告
  • -1-附件10:论文(设计)管理表一昌吉学院本科毕业论文(设计)开题报告论文(设计)题目微分中值定理的若干推广及其应用系(院)数学与应用数学专业班级07级数本(2)班学科理科学生姓名李娜指导教师姓名黄永峰学号0725809061职称助教 一 ...查看


  • 拉格朗日中值定理证明中若干辅助函数的构造
  • 第28卷第3期2011年6月广西民族师范学院学报 JOURNAL OF GUANGXI NORMAL UNIVERSITY FOR NATIONALITIES Vol.28No.3 Jun.2011 拉格朗日中值定理证明中若干辅助函数的构造 ...查看


  • 用五种方法证明柯西中值定理
  • 用五种方法证明柯西中值定理 黄德丽 (湖州师范学院理学院!! ! 摘&要:从多角度全方面介绍了微分中值定理中柯西中值定理的五种证明方法,其中有利用构造辅助函数,根据罗尔定理证明:利用闭区间套定理证明:借助引理,并应用反证法证明:用达 ...查看


  • 中值定理应用
  • 第三章 微分中值定理与导数的应用 §1内容提要 一.介值定理 1.定理1(零点定理) 设函数f(x)在闭区间[a,b]上连续,且f(a)f(b) ξ使f(ξ)=0 2.定理2(介值定理) 那么对于A与B之设函数f(x)在闭区间[a,b]上连 ...查看


热门内容