激光技术在材料制备与加工中的应用
激光技术发展概述
激光最大的应用领域之一就是材料加工,,主要是1kW级到10kW级CO2激光器和百瓦到千瓦级YAG激光器实现对各种材料的切割、焊接、打孔、刻划和热处理及微加工等,激光器已成为一种不可缺少的工业工具,CO2、Nd:YAG和准分子激光器是当前用于材料加工的三种主要激光器。半导体激光技术的迅速发展使得二极管激光器、二极管泵浦全固态激光器、光纤激光器和超短脉冲激光器在工业应用中有了光明的前景。除了材料加工外,医用激光器是国外第二大应用。激材料加工用激光器常采用气体激光器和固体激光器两类,如表1所示。
表 1用于材料加工的激光光束的基本特征
类别
激光名称 CO2激光器 XeCl激光器
气体激光器
XeF激光器 ArF激光器 KrF激光器
固体激光器
YAG激光器
波长 10.6μm 308μm 351μm 193μm 248μm 1.06μm
光子能量 0.117ev 4.03ev 3.53ev 6.42ev 5.00ev 1.17ev
能量范围 1~105W 1~102W 1~102W 1~102W 1~102W 1~10W
3
激活介质 CO2 XeCl XeF ArF KrF Nd
3+
工作方式 连续、脉冲
脉冲 脉冲 脉冲 脉冲 连续、脉冲
激光是一种亮度高、方向性好、单色性好的相干光。由于激光发散角小和单色性好,理论上可通过一系列装置把激光聚焦成直径与光的波长相近的极小光斑,在焦点处达到很高的能量密度(焦点处的功率密度可达107~1011w/cm2),其光热效应产生极高的高温,在此温度下任何坚硬或难加工的材料都将瞬时急剧熔化和气化,并产生强烈的冲击波,使熔化的物质爆炸式地喷射出去。激光加工是将激光束照射到工件的表面,利用激光束与物质相互作用的特性,以激光的高能量来切除、熔化材料以及改变物体表面性能,实现对材料的切割、焊接、表面处理、打孔及微加工等的一系列的加工,是一门涉及到光、机、电、材料及检测等多门学科的综合技术。与传统加工方法相比,采用激光加工具有如下特点:
(1)激光加工为无接触加工,且激光束的能量高及移动速度可调,工艺集成性好,同一台机床可完成切割、打孔、焊接、表面处理等多种加工;
(2)适应性强,激光可对多种金属、非金属材料进行加工,特别是高硬度、高熔点、高强度及脆性材料;
(3)激光加工过程中激光头与工件表面不接触,不存在加工工具磨损问题,工件不受应力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音,还可以通过透明介质对密闭容器内的工件进行各种加工;
(4)激光束易于导向 、 聚焦实现各方向的变换,极易与数控系统配合对复杂工件进行加工,实现加工的高度自动化和达到很高的加工精度,是一种极为灵活的加工方法; (5)激光束的发散角可小于1毫弧,光斑直径可小到微米量级,作用时间可以短到纳秒和皮秒,同时大功率激光器的连续输出功率又可达千瓦至十千瓦量级,因而激光既适于精密微细加工,又适于大型材料加工。
(6)加工效率高,加工质量好、精度高,经济效益好,可降低材料的加工费用。
激光技术在材料制备与加工中的应用
激光技术发展概述
激光最大的应用领域之一就是材料加工,,主要是1kW级到10kW级CO2激光器和百瓦到千瓦级YAG激光器实现对各种材料的切割、焊接、打孔、刻划和热处理及微加工等,激光器已成为一种不可缺少的工业工具,CO2、Nd:YAG和准分子激光器是当前用于材料加工的三种主要激光器。半导体激光技术的迅速发展使得二极管激光器、二极管泵浦全固态激光器、光纤激光器和超短脉冲激光器在工业应用中有了光明的前景。除了材料加工外,医用激光器是国外第二大应用。激材料加工用激光器常采用气体激光器和固体激光器两类,如表1所示。
表 1用于材料加工的激光光束的基本特征
类别
激光名称 CO2激光器 XeCl激光器
气体激光器
XeF激光器 ArF激光器 KrF激光器
固体激光器
YAG激光器
波长 10.6μm 308μm 351μm 193μm 248μm 1.06μm
光子能量 0.117ev 4.03ev 3.53ev 6.42ev 5.00ev 1.17ev
能量范围 1~105W 1~102W 1~102W 1~102W 1~102W 1~10W
3
激活介质 CO2 XeCl XeF ArF KrF Nd
3+
工作方式 连续、脉冲
脉冲 脉冲 脉冲 脉冲 连续、脉冲
激光是一种亮度高、方向性好、单色性好的相干光。由于激光发散角小和单色性好,理论上可通过一系列装置把激光聚焦成直径与光的波长相近的极小光斑,在焦点处达到很高的能量密度(焦点处的功率密度可达107~1011w/cm2),其光热效应产生极高的高温,在此温度下任何坚硬或难加工的材料都将瞬时急剧熔化和气化,并产生强烈的冲击波,使熔化的物质爆炸式地喷射出去。激光加工是将激光束照射到工件的表面,利用激光束与物质相互作用的特性,以激光的高能量来切除、熔化材料以及改变物体表面性能,实现对材料的切割、焊接、表面处理、打孔及微加工等的一系列的加工,是一门涉及到光、机、电、材料及检测等多门学科的综合技术。与传统加工方法相比,采用激光加工具有如下特点:
(1)激光加工为无接触加工,且激光束的能量高及移动速度可调,工艺集成性好,同一台机床可完成切割、打孔、焊接、表面处理等多种加工;
(2)适应性强,激光可对多种金属、非金属材料进行加工,特别是高硬度、高熔点、高强度及脆性材料;
(3)激光加工过程中激光头与工件表面不接触,不存在加工工具磨损问题,工件不受应力,所以激光加工的速度极快、加工对象受热影响的范围较小而且不会产生噪音,还可以通过透明介质对密闭容器内的工件进行各种加工;
(4)激光束易于导向 、 聚焦实现各方向的变换,极易与数控系统配合对复杂工件进行加工,实现加工的高度自动化和达到很高的加工精度,是一种极为灵活的加工方法; (5)激光束的发散角可小于1毫弧,光斑直径可小到微米量级,作用时间可以短到纳秒和皮秒,同时大功率激光器的连续输出功率又可达千瓦至十千瓦量级,因而激光既适于精密微细加工,又适于大型材料加工。
(6)加工效率高,加工质量好、精度高,经济效益好,可降低材料的加工费用。