函数与方程思想 1

第19讲 函数与方程思想

考试说明指出:“高考把函数与方程的思想作为思想方法的重点来考查,使用填空题考查函数与方程思想的基本运算,而在解答题中,则从更深的层次,在知识网络的交汇处,从思想方法与相关能力相结合的角度进行深入考查.”

函数的思想就是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.

方程的思想就是分析数学问题中各个量及其关系,建立方程或方程组、不等式或不等式组或构造方程或方程组、不等式或不等式组,通过求方程或方程组、不等式或不等式组的解,使问题得以解决.

函数和方程的思想简单地说,就是学会用函数和变量来思考,学会转化已知与未知的关系,对函数和方程思想的考查,主要是考查能不能用函数和方程思想指导解题,一般情况下,凡是涉及未知数问题都可能用到函数与方程的思想.

函数与方程的思想在解题应用中主要体现在两个方面:(1) 借助有关初等函数的图象性质,解有关求值、解(证) 方程(等式) 或不等式,讨论参数的取值范围等问题;(2) 通过建立函数式或构造中间函数把所要研究的问题转化为相应的函数模型,由所构造的函数的性质、结论得出问题的解.

由于函数在高中数学中的举足轻重的地位,因而函数与方程的思想一直是高考要考查的重点,对基本初等函数的图象及性质要牢固掌握,另外函数与方程的思想在解析几何、立体几何、数列等知识中的广泛应用也要重视.

1. 设集合A ={-1,1,3},B ={a+2,a2+4},A ∩B ={3},则实数a =________.

2. 已知关于x 的方程sin2x +cosx +a =0有实根,则实数a 的取值范围是________.

3. 若a 、b 为正数,且ab =a +b +3,求a +b 的取值范围.

第19讲 函数与方程思想

考试说明指出:“高考把函数与方程的思想作为思想方法的重点来考查,使用填空题考查函数与方程思想的基本运算,而在解答题中,则从更深的层次,在知识网络的交汇处,从思想方法与相关能力相结合的角度进行深入考查.”

函数的思想就是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.

方程的思想就是分析数学问题中各个量及其关系,建立方程或方程组、不等式或不等式组或构造方程或方程组、不等式或不等式组,通过求方程或方程组、不等式或不等式组的解,使问题得以解决.

函数和方程的思想简单地说,就是学会用函数和变量来思考,学会转化已知与未知的关系,对函数和方程思想的考查,主要是考查能不能用函数和方程思想指导解题,一般情况下,凡是涉及未知数问题都可能用到函数与方程的思想.

函数与方程的思想在解题应用中主要体现在两个方面:(1) 借助有关初等函数的图象性质,解有关求值、解(证) 方程(等式) 或不等式,讨论参数的取值范围等问题;(2) 通过建立函数式或构造中间函数把所要研究的问题转化为相应的函数模型,由所构造的函数的性质、结论得出问题的解.

由于函数在高中数学中的举足轻重的地位,因而函数与方程的思想一直是高考要考查的重点,对基本初等函数的图象及性质要牢固掌握,另外函数与方程的思想在解析几何、立体几何、数列等知识中的广泛应用也要重视.

1. 设集合A ={-1,1,3},B ={a+2,a2+4},A ∩B ={3},则实数a =________.

2. 已知关于x 的方程sin2x +cosx +a =0有实根,则实数a 的取值范围是________.

3. 若a 、b 为正数,且ab =a +b +3,求a +b 的取值范围.


相关文章

  • 浅析函数与方程的思想在解题中的应用
  • 浅析函数与方程的思想在解题中的应用 摘要 函数与方程的思想是中学数学的基本思想.函数的思想,是用运动和变化的观点.集合与对应的思想,分析和研究数学问题中的数量关系,建立函数关系,或从题目的条件出发,通过联想,构造函数模型,利用函数的性质和图 ...查看


  • 函数与方程思想
  • 龙源期刊网 http://www.qikan.com.cn 函数与方程思想 作者:许少华 来源:<广东教育·高中>2015年第02期 第一篇:函数与方程思想概述 一.函数与方程思想的含义 函数,是用运动.变化的观点来分析.研究数 ...查看


  • 函数方程与转化思想
  • 函数方程与转化思想 一. 函数.方程思想 在解决数学问题时,对于一些从形式上看是以非函数和非方程的问题出现的,但经过一定的数学变换或构造,使这一非函数或非方程的问题转化为函数和方程的形式,并运用函数和方程的有关性质来处理,进而使原数学问题得 ...查看


  • "方程的根与函数的零点"教学反思
  • "方程的根与函数的零点"教学反思 方程的根与函数的零点是高中课程标准新增的内容,表面上看,这一内容的教学并不困难,但要让学生能够真正理解,教学还需要妥善处理其中的一些问题. (一)教材设置函数的零点这一内容的目的,就是为 ...查看


  • 函数思想在"直线与圆的方程"中的体现
  • 山东省胶南市第一中学 韩朝泉 函数思想渗透于高中数学的方方面面,在直线与圆的方程中,我们也不难找到它的身影. 一.求最值问题中的函数 最值问题是一种常见问题,求解往往可以转化为求函数的最值.在直线与圆的方程中,有些最值问题可以借助于圆的方程 ...查看


  • [方程的根与函数的零点]教学设计
  • <方程的根与函数的零点>教学设计 -哈密地区第三中学教师 李晓莹 一.[教学内容]: <方程的根与函数的零点>是必修1第三章<函数的应用>一章的开始,其目的是使学生学会用二分法求方程近似解的方法,从中体会 ...查看


  • 指数函数的图象及其性质
  • 指数函数的图象及其性质 教学内容分析 本节课是<普通高中课程标准实验教科书·数学(1)>(人教A 版)第二章第一节第二课(2.1.2)<指数函数及其性质>.根据我所任教的学生的实际情况,我将<指数函数及其性质& ...查看


  • 高中数学思想方法探究
  • 新课标下初高中数学思想方法探究 谷 帆 ( 梧州高级中学, 广西 梧州 543002 ) 摘要:广西市最后一个进入新课改的地区,初高中的数学教学存在诸多联系和差异,而初高中数学思想方法两者之间存在着密不可分的关系,初中遵循的思想方法是高中的 ...查看


  • 基于高考函数零点问题的教学方法
  • 南方论刊・2011年增刊第1期 欺理化生教学研宄 基于高考函数零点问题的教学方法 黄育梅 (吴川市第四中学广东吴川524500) [摘要]函数的零点体现了函数方程思想,利用函数零点解决函数问题.方程问题已成为高考命题的一个热点,成为新课程实 ...查看


热门内容