渗透系数与抗渗标号的换算
抗渗性是混凝土的一项重要指标,我们在抗渗混凝土施工前需要对混凝土进行抗渗试验。抗渗试验就是对试件定时逐级加压,即从0.1MPa开始,每隔8h增加0.1MPa,直至6个试件中有3个端面渗水为止。这样,进行一次试验,需要连续进行数十小时至上百小时。这么长时间的试验,如果 发生停电现象,会给试验带来影响,使试验无法继续进行,影响对抗渗性能的评估。研究表明,混凝土的渗水高度Dm与其所受压力水头H及施压时间T的乘积(TH)的平方根成正比。
式中:K——混凝土渗透系数;m——混凝土空隙率,通常取m=0.03。
国内科研单位还据此给出了混凝土抗渗标号与渗透系数的换算关系。根据以上成果,我们在长期试验实践中,摸索出在停电状况下,通过测试水压衰减曲线,继续进行抗渗试验的新方法,有效地解决了停电或无电情况下的抗渗试验问题。
1 水压衰减曲线
所谓水压衰减曲线,就是在加压试验过程中停止加压,此时试验水在已有压力作用下,将会继续向试件上部渗透,随着时间的推移,水压逐渐衰减。这种衰减是有规律的,如以时间为横坐标,水压为纵坐标,绘制两者的关系图,可得一条比较光滑的曲线,称作水压衰减曲线。根据试验过程中的供电情况,水压衰减曲线有以下几种类型:
(1)进行抗渗标号试验过程中,停电时间较长,未能恢复正常试验的,为分级加压—衰减型(图1-a)。
(2)进行抗渗标号试验过程中,停电时间较短,供电后又恢复正常试验的,为分级加压—衰减—分级加压型(图1-b)。
(3)无电时,人工加压—衰减型(图1-c)。 (4)无电时,人工数次加压—衰减型(图1-d)。
抗渗混凝土试验间断的处理
2 水压衰减曲线测绘及计算
(1)停电时,立即记录下停电时间及当时水压(P0),并切断电源,防止来电时人不在场,无法记录继续加压情况。
(2)停电2h内,因水压衰减较快,每隔10min左右观测一次水压衰减情况,做好记录;2h后,水压衰减变缓,可半小时或更长一些时间观测一次,直至恢复正常试验。
(3)绘制水压衰减曲线。根据测试结果,绘制水压衰减曲线图。
(4)计算停电观测期间水压(P)与加压时间(T)的乘积之和。
ΣTP=T1P1+T2P2+……+TnPn
式中:T1,T2,……,Tn分别为第1,2,……,n次观测的时间间隔;P1,P2,……,Pn为与之对应的观测时间段内的平均水压。这里的平均水压是个变量,但由于各个观测段的时间比较短,每个观测段内的水压变化可认为近似一条直线,所以,该段的平均水压近似等于其上、下两个测点水压的平均值。
P1=(P0+P1)/2 P2=(P1+P2)/2
…… Pn=(P n-1+Pn)/2
当n个观测段的时间间隔相同时: Σni=1TP=T(P0/
2+P1+P2+……+Pn-1+Pn/2)
为换算方便,式中的水压单位以取兆帕、时间单位以取小时为宜。 3 渗透系数的计算
多数时间供电正常,偶尔出现短时间停电的,可在来电后继续进行逐级加压试验(如图1-b)。但应扣除停电期间已经施加的水压、时间乘积之和。
试验结束后,立即将试件卸下,沿轴线方向从中间劈开,测得其平均渗水高度Dm,而后计算渗透系数K。
K=(mDm)/2ΣTH(cm/s)
式中:m——混凝土空隙率;Dm——平均渗透高度(cm);T——渗水时间(S);H——压力水头,压强为1MPa时的压力水头H≈104(cm)
2 2
根据算得的渗透系数将其换算成抗渗标号。
4 渗透系数与抗渗标号的换算
根据理论计算,渗透系数与抗渗标号的换算关系见表。
表1 混凝土抗渗标号与渗透系数的关系数
实际工作中,会发现按表1换算出来的抗渗标号偏高。原因是,表中的K值是按平均渗水高度为15cm计算的,实际上,混凝土的渗水线是条不规则的曲线,按抗渗标号试验要求,试件端部渗水,即行停止试验,而此时最大渗水高度为15cm。通过大量试验获得,平均渗水高度与最大渗水高度关系:
Dm=(Dmax-1.22)/1.02 当Dmax为15cm时,Dm≈13.5cm。 按实测平均渗水高度计算所得的渗透系数,相对应的抗渗标号约比表1低一个等级。
抗渗等级P8,是表示所能承受的水压力是0.8MPa,而C45,C35表示的是承受的抗压强度是45MPa,35MPa,
我国现行抗渗等级(抗渗标号)的确定。是以龄期为28d的圆柱体试件(高150mm、底端直径155mm、顶端直径145mm)来做抗渗试验,并定出抗渗标号。抗渗圆柱体试件每组为六个,试验时,当试件只有两个试件表面开始发现渗水现象时的水压力值(以MPa计),就称为该混凝土的抗渗标号,用符号Sn来表示。抗渗标号一般不低于S6,因低于S6的防水混凝土常由于水泥用量较少、水灰比大、密实性差等原因,容易出现分 3
层离析等施工质量问题,抗渗性能难以保证。重要工程的防水混凝土的抗渗标号宜定为S8~S20。
防水混凝土抗渗标号选用表
抗渗测式需三天,8个小时记录一次是否渗透,并加0.1MPa水压,六个试块中有三个渗透则不合格。
混凝土 标号:混凝土标号是指按标准方法制作、养护的边长为20 cm 的立方体标准试件,在28 d 龄期用标准试验方法所测得的抗压极限强度,以kgf/ cm2 计。如500 号混凝土,其试件抗压极限强度为500 kgf/ cm2 。当采用非标准尺寸的试件时,应换算成标准试件的强度,换算系数分别是:边长15 cm 的立方体试件为0. 95 ,边长10 cm 的立方体试件为0. 90 。混凝土的标号通常采用150、200、250、300、350、400、450、500、550、600。《铁路混凝土及砌石工程施工规范》(TBJ210 86) (此标准于1997 年7 月1 日废止) 和《铁路桥涵设计规范》(TBJ2 85) (此标准于2000 年2月1 日废止) 均作如此规定。 强度等级:混凝土的强度等级按立方体试件抗压强度标准值划分。立方体试件抗压强度标准值则是指按标准方法制作、养护的边长为150 mm的立方体标准试件,在28 d 龄期用标准试验方法所测得的抗压强度总体分 4
布中的一个值,强度低于该值的百分率不得超过5 % ,亦即保证率为95 %。混凝土的强度等级采用混凝土(concrete)的代号C 与其立方体试件抗压强度标准值的兆帕数表示,如立方体试件抗压强度标准值为50 MPa 的混凝土,其强度等级以“C50”表示。当采用非标准尺寸的试件时,应换算成标准试件的强度,换算系数分别是:边长200 mm的立方体试件为1. 05 ,边长100 mm的立方体试件为0. 95 。《铁路混凝土强度检验评定标准》(TB10425 94) (此标准于1994 年4 月1 日起实施) 中关于强度分级的规定即如此,该标准与国家标准《混凝土强度检验评定标准》(GBJ107 87)和国际标准《混凝土———按强度的分级标准》( ISO3893)是一致的。混凝土的强度等级通常采用C15、C20、C25、C30、C35、C40、C45、C50、C55、C60。强度等级为C60 及其以上的混凝土属高强混凝土。
标号与强度等级:两者主要差别在两个方面,一是所用标准试件尺寸不同,标号和强度等级所用立方体试件边长分别是 200 mm和150 mm;二是取值方法的不同,强度等级有明确的统计概念,即强度标准值是强度总体分布中的平均值减去1. 645 倍标准差(从而使保证率为95 %) ,而标号则没有明确的数理统计概念,据推算其保证率约在85 %的水平上。考虑标准试件尺寸的变化和强度等级的数理统计定义,混凝土标号可近似换算为如表1 所示的强度等级。
5
渗透系数与抗渗标号的换算
抗渗性是混凝土的一项重要指标,我们在抗渗混凝土施工前需要对混凝土进行抗渗试验。抗渗试验就是对试件定时逐级加压,即从0.1MPa开始,每隔8h增加0.1MPa,直至6个试件中有3个端面渗水为止。这样,进行一次试验,需要连续进行数十小时至上百小时。这么长时间的试验,如果 发生停电现象,会给试验带来影响,使试验无法继续进行,影响对抗渗性能的评估。研究表明,混凝土的渗水高度Dm与其所受压力水头H及施压时间T的乘积(TH)的平方根成正比。
式中:K——混凝土渗透系数;m——混凝土空隙率,通常取m=0.03。
国内科研单位还据此给出了混凝土抗渗标号与渗透系数的换算关系。根据以上成果,我们在长期试验实践中,摸索出在停电状况下,通过测试水压衰减曲线,继续进行抗渗试验的新方法,有效地解决了停电或无电情况下的抗渗试验问题。
1 水压衰减曲线
所谓水压衰减曲线,就是在加压试验过程中停止加压,此时试验水在已有压力作用下,将会继续向试件上部渗透,随着时间的推移,水压逐渐衰减。这种衰减是有规律的,如以时间为横坐标,水压为纵坐标,绘制两者的关系图,可得一条比较光滑的曲线,称作水压衰减曲线。根据试验过程中的供电情况,水压衰减曲线有以下几种类型:
(1)进行抗渗标号试验过程中,停电时间较长,未能恢复正常试验的,为分级加压—衰减型(图1-a)。
(2)进行抗渗标号试验过程中,停电时间较短,供电后又恢复正常试验的,为分级加压—衰减—分级加压型(图1-b)。
(3)无电时,人工加压—衰减型(图1-c)。 (4)无电时,人工数次加压—衰减型(图1-d)。
抗渗混凝土试验间断的处理
2 水压衰减曲线测绘及计算
(1)停电时,立即记录下停电时间及当时水压(P0),并切断电源,防止来电时人不在场,无法记录继续加压情况。
(2)停电2h内,因水压衰减较快,每隔10min左右观测一次水压衰减情况,做好记录;2h后,水压衰减变缓,可半小时或更长一些时间观测一次,直至恢复正常试验。
(3)绘制水压衰减曲线。根据测试结果,绘制水压衰减曲线图。
(4)计算停电观测期间水压(P)与加压时间(T)的乘积之和。
ΣTP=T1P1+T2P2+……+TnPn
式中:T1,T2,……,Tn分别为第1,2,……,n次观测的时间间隔;P1,P2,……,Pn为与之对应的观测时间段内的平均水压。这里的平均水压是个变量,但由于各个观测段的时间比较短,每个观测段内的水压变化可认为近似一条直线,所以,该段的平均水压近似等于其上、下两个测点水压的平均值。
P1=(P0+P1)/2 P2=(P1+P2)/2
…… Pn=(P n-1+Pn)/2
当n个观测段的时间间隔相同时: Σni=1TP=T(P0/
2+P1+P2+……+Pn-1+Pn/2)
为换算方便,式中的水压单位以取兆帕、时间单位以取小时为宜。 3 渗透系数的计算
多数时间供电正常,偶尔出现短时间停电的,可在来电后继续进行逐级加压试验(如图1-b)。但应扣除停电期间已经施加的水压、时间乘积之和。
试验结束后,立即将试件卸下,沿轴线方向从中间劈开,测得其平均渗水高度Dm,而后计算渗透系数K。
K=(mDm)/2ΣTH(cm/s)
式中:m——混凝土空隙率;Dm——平均渗透高度(cm);T——渗水时间(S);H——压力水头,压强为1MPa时的压力水头H≈104(cm)
2 2
根据算得的渗透系数将其换算成抗渗标号。
4 渗透系数与抗渗标号的换算
根据理论计算,渗透系数与抗渗标号的换算关系见表。
表1 混凝土抗渗标号与渗透系数的关系数
实际工作中,会发现按表1换算出来的抗渗标号偏高。原因是,表中的K值是按平均渗水高度为15cm计算的,实际上,混凝土的渗水线是条不规则的曲线,按抗渗标号试验要求,试件端部渗水,即行停止试验,而此时最大渗水高度为15cm。通过大量试验获得,平均渗水高度与最大渗水高度关系:
Dm=(Dmax-1.22)/1.02 当Dmax为15cm时,Dm≈13.5cm。 按实测平均渗水高度计算所得的渗透系数,相对应的抗渗标号约比表1低一个等级。
抗渗等级P8,是表示所能承受的水压力是0.8MPa,而C45,C35表示的是承受的抗压强度是45MPa,35MPa,
我国现行抗渗等级(抗渗标号)的确定。是以龄期为28d的圆柱体试件(高150mm、底端直径155mm、顶端直径145mm)来做抗渗试验,并定出抗渗标号。抗渗圆柱体试件每组为六个,试验时,当试件只有两个试件表面开始发现渗水现象时的水压力值(以MPa计),就称为该混凝土的抗渗标号,用符号Sn来表示。抗渗标号一般不低于S6,因低于S6的防水混凝土常由于水泥用量较少、水灰比大、密实性差等原因,容易出现分 3
层离析等施工质量问题,抗渗性能难以保证。重要工程的防水混凝土的抗渗标号宜定为S8~S20。
防水混凝土抗渗标号选用表
抗渗测式需三天,8个小时记录一次是否渗透,并加0.1MPa水压,六个试块中有三个渗透则不合格。
混凝土 标号:混凝土标号是指按标准方法制作、养护的边长为20 cm 的立方体标准试件,在28 d 龄期用标准试验方法所测得的抗压极限强度,以kgf/ cm2 计。如500 号混凝土,其试件抗压极限强度为500 kgf/ cm2 。当采用非标准尺寸的试件时,应换算成标准试件的强度,换算系数分别是:边长15 cm 的立方体试件为0. 95 ,边长10 cm 的立方体试件为0. 90 。混凝土的标号通常采用150、200、250、300、350、400、450、500、550、600。《铁路混凝土及砌石工程施工规范》(TBJ210 86) (此标准于1997 年7 月1 日废止) 和《铁路桥涵设计规范》(TBJ2 85) (此标准于2000 年2月1 日废止) 均作如此规定。 强度等级:混凝土的强度等级按立方体试件抗压强度标准值划分。立方体试件抗压强度标准值则是指按标准方法制作、养护的边长为150 mm的立方体标准试件,在28 d 龄期用标准试验方法所测得的抗压强度总体分 4
布中的一个值,强度低于该值的百分率不得超过5 % ,亦即保证率为95 %。混凝土的强度等级采用混凝土(concrete)的代号C 与其立方体试件抗压强度标准值的兆帕数表示,如立方体试件抗压强度标准值为50 MPa 的混凝土,其强度等级以“C50”表示。当采用非标准尺寸的试件时,应换算成标准试件的强度,换算系数分别是:边长200 mm的立方体试件为1. 05 ,边长100 mm的立方体试件为0. 95 。《铁路混凝土强度检验评定标准》(TB10425 94) (此标准于1994 年4 月1 日起实施) 中关于强度分级的规定即如此,该标准与国家标准《混凝土强度检验评定标准》(GBJ107 87)和国际标准《混凝土———按强度的分级标准》( ISO3893)是一致的。混凝土的强度等级通常采用C15、C20、C25、C30、C35、C40、C45、C50、C55、C60。强度等级为C60 及其以上的混凝土属高强混凝土。
标号与强度等级:两者主要差别在两个方面,一是所用标准试件尺寸不同,标号和强度等级所用立方体试件边长分别是 200 mm和150 mm;二是取值方法的不同,强度等级有明确的统计概念,即强度标准值是强度总体分布中的平均值减去1. 645 倍标准差(从而使保证率为95 %) ,而标号则没有明确的数理统计概念,据推算其保证率约在85 %的水平上。考虑标准试件尺寸的变化和强度等级的数理统计定义,混凝土标号可近似换算为如表1 所示的强度等级。
5