浅谈特种加工与超精密加工

目录

摘要 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ 3

前言 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ 4

1 特种加工及其新技术„„„„„„„„„„„„„„„„„„„„„„„„ 5

1.1 特种加工概述 „„„„„„„„„„„„„„„„„„„„„„„ 5

1.2 特种加工独到之处 „„„„„„„„„„„„„„„„„„„„„ 5

1.3 特种加工发展 „„„„„„„„„„„„„„„„„„„„„„„ 6

1.4 特种加工的应用 „„„„„„„„„„„„„„„„„„„„„„ 6

1.5 特种加工特点 „„„„„„„„„„„„„„„„„„„„„„„ 7

1.6 特种加工加工工艺 „„„„„„„„„„„„„„„„„„„„„ 7

1.7 特种加工新方法及其特点 „„„„„„„„„„„„„„„„„„ 8

1.7.1 电火花加工技术 „„„„„„„„„„„„„„„„„„„ 8

1.7.2 激光加工技术 „„„„„„„„„„„„„„„„„„„„ 12

1.7.3 电子束加工技术 „„„„„„„„„„„„„„„„„„„ 13

1.7.4 离子束及等离子体加工技术 „„„„„„„„„„„„„„ 14

1.7.5 电加工技术 „„„„„„„„„„„„„„„„„„„„„ 15

1.7.6 超声波加工技术 „„„„„„„„„„„„„„„„„„„ 16

1.8 特种加工发展方向及研究 „„„„„„„„„„„„„„„„„„ 17

1.8.1 激光加工技术 „„„„„„„„„„„„„„„„„„„„ 17

1.8.2 电子束加工技术 „„„„„„„„„„„„„„„„„„„ 17

1.8.3 离子束和等离子体加工技术 „„„„„„„„„„„„„„ 17

1.8.4 电加工技术 „„„„„„„„„„„„„„„„„„„„„ 18

2 超精密加工及其新技术 „„„„„„„„„„„„„„„„„„„„„„ 19

2.1 超精密加工概述 „„„„„„„„„„„„„„„„„„„„„„„ 19

2.2 超精密加工精度标准及档次 „„„„„„„„„„„„„„„„„„ 19

2.3 超精密加工应用 „„„„„„„„„„„„„„„„„„„„„„„ 20

2.4超精密加工主要研究内容 „„„„„„„„„„„„„„„„„„„ 20

2. 5 超精密加工条件 „„„„„„„„„„„„„„„„„„„„„„ 21

2.6 超精密加工新方法及其特点 „„„„„„„„„„„„„„„„ 23

2.6.1 砂带磨削 „„„„„„„„„„„„„„„„„„„„„ 23

2.6.2 超精密切削 „„„„„„„„„„„„„„„„„„„„ 23

2.6.3 超精密磨削 „„„„„„„„„„„„„„„„„„„„ 24

2.6.4 珩磨 „„„„„„„„„„„„„„„„„„„„„„„ 25

2.6.5 超精密研磨 „„„„„„„„„„„„„„„„„„„„ 25

2.6.6 抛光 „„„„„„„„„„„„„„„„„„„„„„„

2.6.7 超声波抛光 „„„„„„„„„„„„„„„„„„„„

2.6.8 化学抛光 „„„„„„„„„„„„„„„„„„„„„

2.6.9 电化学抛光 „„„„„„„„„„„„„„„„„„„„

2.7 超精密加工发展趋势 „„„„„„„„„„„„„„„„„„„

3 结论„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„

致谢 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„

参考文献 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„

26 27 27 27 28 30 32 31

特种加工亦称“非传统加工”或“现代加工方法”,泛指用电能、热能、光能、电化学能、化学能、声能及特殊机械能等能量达到去除或增加材料的加工方法,从而实现材料被去除、变形 、改变性能或被镀覆等„„„„„„„„„„„„„„„„

超精密加工的精度比传统的精密加工提高了一个以上的数量级。到20世纪80年代,加工尺寸精度可达10纳米(1×10-8米),表面粗糙度达1纳米。超精密加工对工件材质、加工设备、工具、测量和环境等条件都有特殊的要求,需要综合应用精密机械、精密测量、精密伺服系统、计算机控制以及其他先进技术„„„„„„„„„„„„„„„„ 关键词 特种加工 超精密加工 应用 发展

制造业是将制造资源(物料,能源,设备,工具,资金,技术,信息和人力等)通过制造过程转化为可供人们使用与利用的工业品和生活消费品的行业,是国民经济的基础,因此,从某种意义上说,制造技术水平的高低是衡量一个国家国民经济和综合国力的重要标志之一。制造技术的发展已有几千年的历史,从石器时代,青铜器时代,铁器时代到现代的高分子塑料时代;从手工制造,机器制造到现代的智能控制自动化制造;从一般精度加工,精密加工到现代的超精密加工机纳米加工。精密加工和特种加工是新世纪知识经济时代先进制造工艺技术的重要组成部分,代表了当前先进制造技术发展的重要方向,在制造业乃至社会发展进程中起着非常重要的作用。

由于现代科学技术的迅猛发展,机械、电子、航空和国防工业等各领域,要求尖端科学技术产品向高精度、高速度、大功率、小型化方向发展,以及要求在高温、高压、重负荷等极端条件下长期可靠的工作。为了适应这些要求,各种新结构,新材料和复杂形状的精密零件大量出现,其形状越来越复杂,材料的强韧性越来越高,零件表面精度,粗糙度和某些特殊要求也越来越高,因此对机械制造技术提出了下列新的课题。

(1)解决各种难加工材料的加工问题。如硬质合金,钛合金,耐热钢,不锈钢淬火钢,金刚石等各种高硬度,高强度,高韧性,高脆性的金属和非金属材料。

(2)解决各种特殊复杂型面的加工问题。如各种热锻模,冲裁模,冷拔模和注射模的模腔和型孔,整体涡轮,炮管内膛线等。

(3)解决各种超精密,光整或需要特殊要求零件的加工问题,如精密光学透镜,航空航天陀螺仪,伺服阀,高灵敏的红外传感器部件,大规模集成电路,微型机械和机器人零件等对表面精度和质量要求比较高的零件的加工。

要解决上述一系列问题,仅依靠传统的机械切削加工(包括磨削加工)方法是难以实现的,人们相继研发和开发各种新的加工方法,因此,超精密和特种加工技术就是在这种那个前提条件下产生和发展起来的。目前超精密和特种加工技术已成为零件制造的重要工艺技术手段,成为世界制造技术领域的制高点,是现代制造技术的前沿。

1 特种加工及其新技术

1.1 特种加工概述

特种加工亦称“非传统加工”或“现代加工方法”,泛指用电能、热能、光能、电化学能、化学能、声能及特殊机械能等能量达到去除或增加材料的加工方法,从而实现材料被去除、变形 、改变性能或被镀覆等。

特种加工是指那些不属于传统加工工艺范畴的加工方法,它不同于使用刀具、磨具等直接利用机械能切除多余材料的传统加工方法。特种加工是近几十年发展起来的新工艺,是对传统加工工艺方法的重要补充与发展,目前仍在继续研究开发和改进。直接利用电能、热能、声能、光能、化学能和电化学能,有时也结合机械能对工件进行的加工。特种加工中以采用电能为主的电火花加工和电解加工应用较广,泛称电加工。 特种加工亦称“非传统加工”或“现代加工方法”,泛指用电能、热能、光能、电化学能、化学能、声能及特殊机械能等能量达到去除或增加材料的加工方法,从而实现材料被去除、变形 、改变性能或被镀覆等。

20世纪40年代发明的电火花加工开创了用软工具、不靠机械力来加工硬工件的方法。50年代以后先后出现电子束加工、等离子弧加工和激光加工。这些加工方法不用成型的工具,而是利用密度很高的能量束流进行加工。对于高硬度材料和复杂形状、精密微细的特殊零件,特种加工有很大的适用性和发展潜力,在模具、量具、刀具、仪器仪表、飞机、航天器和微电子元器件等制造中得到越来越广泛的应用。

特种加工的发展方向主要是:提高加工精度和表面质量,提高生产率和自动化程度,发展几种方法联合使用的复合加工,发展纳米级的超精密加工等。

1.2 特种加工加工工艺

特种加工工艺是直接利用各种能量,如电能、光能、化学能、电化学能、声能、热能及机械能等进行加工的方法。

(1)“以柔克刚”,特种加工的工具与被加工零件基本不接触,加工时不受工件的强度和硬度的制约,故可加工超硬脆材料和精密微细零件,甚至工具材料的硬度可低于工件材料的硬度。

(2)加工时主要用电、化学、电化学、声、光、热等能量去除多余材料,而不是主

要靠机械能量切除多余材料。

(3)加工机理不同于一般金属切削加工,不产生宏观切屑,不产生强烈的弹、塑性变形,故可获得很低的表面粗糙度,其残余应力、冷作硬化、热影响度等也远比一般金属切削加工小。

(4)加工能量易于控制和转换,故加工范围广,适应性强。

1.3 特种加工特点

1、不用机械能,与加工对象的机械性能无关,有些加工方法,如激光加工、电火花加工、等离子弧加工、电化学加工等,是利用热能、化学能、电化学能等,这些加工方法与工 电火花线切割加工件的硬度强度等机械性能无关,故可加工各种硬、软、脆、热敏、耐腐蚀、高熔点、高强度、特殊性能的金属和非金属材料。 2、非接触加工,不一定需要工具,有的虽使用工具,但与工件不接触,因此,工件不承受大的作用力,工具硬度可低于工件硬度,故使刚性极低元件及弹性元件得以加工。 3、微细加工,工件表面质量高,有些特种加工,如超声、电化学、水喷射、磨料流等,加工余量都是微细进行,故不仅可加工尺寸微小的孔或狭缝,还能获得高精度、极低粗糙度的加工表面。 4、不存在加工中的机械应变或大面积的热应变,可获得较低的表面粗糙度,其热应力、残余应力、冷作硬化等均比较小,尺寸稳定性好。 5、两种或两种以上的不同类型的能量可相互组合形成新的复合加工,其综合加工效果明显,且便于推广使用。 6、特种加工对简化加工工艺、变革新产品的设计及零件结构工艺性等产生积极的影响.

1.4 特种加工的应用

特种加工技术在国际上被称为21世纪的技术,对新型武器装备的研制和生产,起

到举足轻重的作用。随着新型武器装备的发展,国内外对特种加工技术的需求日益迫切。不论 飞机、导弹,还是其它作战平台都要求降低结构重量,提高飞行速度,增大航程,降低燃油消耗,达到战技性能高、结构寿命长、经济可承受性好。为此,上述武器系统和作战平台都要求采用整体结构、轻量化结构、先进冷却结构等新型结构,以及钛合金、复合材料、粉末材料、金属间化合物等新材料。 为此,需要采用特种加工技术,以解决武器装备制造中用常规加工方法无法实现的加工难题,所以特种加工技术的主要

应用领域是: 难加工材料,如钛合金、耐热不锈钢、高强钢、复合材料、工程陶瓷、金刚石、红宝石、硬化玻璃等高硬度、高韧性、高强度、高熔点材料。 难加工零件,如复杂零件三维型腔、型孔、群孔和窄缝等的加工。 低刚度零件,如薄壁零件、弹性元件等零件的加工。 以高能量密度束流实现焊接、切割、制孔、喷涂、表面改性、刻蚀和精细加工

1.7 特种加工新技术及其特点

1.7.1 电火花加工

利用电火花加工原理加工导电材料的特种加工。又称电蚀加工。电火花加工主要用

于加工各种高硬度的材料(如硬质合金和淬火钢等)和复杂形状的模具、零件,以及切割、开槽和去除折断在工件孔内的工具(如钻头和丝锥)等。

电火花加工时,脉冲电源的一极接工具电极,另一极接工件电极,两极均浸

入具有一定绝缘度的液体介质(常用煤油或矿物油或去离子水)中。工具电极由自动进给调节装置控制,以保证工具与工件在正常加工时维持一很小的放电间隙(0.01~0.05mm)。当脉冲电压加到两极之间,便将当时条件下极间最近点的液体介质击穿,形成放电通道。由于通道的截面积很小,放电时间极短,致使能量高度集中(10~107W/mm),放电区域产生的瞬时高温足以使材料熔化甚至蒸发,以致形成一个小凹坑。第一次脉冲放电结束之后,经过很短的间隔时间,第二个脉冲又在另一极间最近点击穿放电。如此周而复始高频率地循环下去,工具电极不断地向工件进给,它的形状最终就复制在工件上,形成所需要的加工表面。与此同时,总能量的一小部分也释放到工具电极上,从而造成工具损耗。

图1-1 电火花加工原理

1.7.1.4 电火花加工工艺

(1)电火花加工机床加工工艺单电极法: 用单个电极加工工件,一般用于形状简单、精度要求不高的工件。单电极加工也可用平动头摇动实现工件的粗、中、精加工。

(2)电火花加工机床加工工艺多电极法 : 同一个工件加工用多个电极,一般分为粗、中、细三次依次进行加工,用于精密型加工。

(3)电火花加工机床加工工艺分解电极法 : 根据工件的几何形状,把电极分解成若干个,用主型腔电极加工型腔主要部分,再用副型腔电极加工出尖角、窄缝型腔等部位。

(4)电火花加工机床加工规准 :

粗加工,一般采用较大的电流,较大的on time。 中加工,一般采用中等的电流,中等on time。

精加工,一般采用较小的电流、高频及较小的on time。电火花加工是直接利用电能对零件进行加工的一种方法。电火花加工设备应由以下部分组成:脉冲电源、间隙自动调节器、机床本体、工作液及其循环过滤系统。间隙自动调节器自动调节极间距离,使工具电极的进给速度与电蚀速度相适应。火花放电必须在绝缘液体介质中进行。

1.7.1.1 电火花成型加工

该方法是通过工具电极相对于工件作进给运动,将工件电极的形状和尺寸复制在工件上,从而加工出所需要的零件。它包括电火花型腔加工和穿孔加工两种。电火花型腔加工主要用于加工各类热锻模、压铸模、挤压模、塑料模和胶木膜的型腔。电火花穿孔加工主要用于型孔(圆孔、方孔、多边形孔、异形孔)、曲线孔(弯孔、螺旋孔)、小孔和微孔的加工。近年来,为了解决小孔加工中电极截面小、易变形、孔的深径比大、排屑困难等问题,在电火花穿孔加工中发展了高速小孔加工,取得良好的社会经济效益

1.7.1.2 电火花线切割加工

电火花线切割加工是电火花加工的一个分支,是一种直接利用电能和热能进行加工的工艺方法,它用一根移动着的导线(电极丝)作为工具电极对工件进行切割,故称线切割加工。线切割加工中,工件和电极丝的相对运动是由数字控制实现的,故又称为数控电火花线切割加工,简称线切割加工。

(1)按走丝速度分:可分为慢速走丝方式和高速走丝方式线切割机床。

(2)按加工特点分:可分为大、中、小型以及普通直壁切割型与锥度切割型线切割机床。

(3)按脉冲电源形式分:可分为RC电源、晶体管电源、分组脉冲电源及自适应控制电源线切割机床。

图1-2 线切割加工

1. 7.2激光加工技术

国外激光加工设备和工艺发展迅速,现已拥有100kW的大功率CO?2激光器、kW级高光束质量的Nd:YAG固体激光器,有的可配上光导纤维进行多工位、远距离工作。激光加工设备功率大、自动化程度高,已普遍采用CNC控制、多坐标联动,并装有激光功率监控、自动聚焦、工业电视显示等辅助系统。

激光制孔的最小孔径已达0.002mm,已成功地应用自动化六坐标激光制孔专用设备加工航空发动机涡轮叶片、燃烧室气膜孔,达到无再铸层、无微裂纹的效果。激光切割适用于由耐热合金、钛合金、复合材料制成的零件。目前薄材切割速度可达15m/min,切缝窄,一般在0.1~1mm之间,热影响区只有切缝宽的10%~20%,最大切割厚度可

达45mm,已广泛应用于飞机三维蒙皮、框架、舰船船身板架、直升机旋翼、发动机燃烧室等。 激光焊接薄板已相当普遍,大部分用于汽车工业、宇航和仪表工业。激光精微焊接技术已成为航空电子设备、高精密机械设备中微型件封装结点的微型连接的重要手段。激光表面强化、表面重熔、合金化、非晶化处理技术应用越来越广,激光微细加工在电子、生物、医疗工程方面的应用已成为无可替代的特种加工技术。激光快速成型技术已从研究开发阶段发展到实际应用阶段,已显示出广阔的应用前景。

图1-3 激光加工原理

国内70年代初已开始进行激光加工的应用研究,但发展速度缓慢。在激光制孔、激光热处理、焊接等方面虽有一定的应用,但质量不稳定。目前已研制出具有光纤传输的固体激光加工系统,并实现光纤耦合三光束的同步焊接和石英表芯的激光焊接。完成了激光烧结快速成型原理样机研制,并采用环氧聚脂和树脂砂烧结粉末材料,快速成型出典型零件,如叶轮、齿轮。

激光加工技术今后几年应结合已取得的预研成果,针对需求,重点开展无缺陷气膜小孔的激光加工及实时检控技术、高强铝(含铝锂、铝镁)合金的激光焊接技术、金属零件的激光粉末烧结快速成型技术、激光精密加工及重要构件的激光冲击强化等项目的研究。实现高温涡轮发动机气膜孔无缺陷加工,可使叶片使用寿命达2000小时以上;以焊代替数控加工飞机次承力构件,以及带筋壁板的以焊代铆;实现重要零部件的表面强化,提高安全性、可靠性等,从而使先进的激光制造技术在军事工业中发挥更大的作用。

1.7.3电子束加工技术

电子束加工技术在国际上日趋成熟,应用范围广。国外定型生产的40kV~300kV的电子枪(以60kV、150kV为主),已普遍采用CNC控制,多坐标联动,自动化程度高。电子束焊接已成功地应用在特种材料、异种材料、空间复杂曲线、变截面焊接等方面。

目前正在研究焊缝自动跟踪、填丝焊接、非真空焊接等,最大焊接熔深可达300mm,焊缝深宽比20:1。

图1-4 电子束加工原理

电子束焊已用于运载火箭、航天飞机等主承力构件大型结构的组合焊接,以及飞机梁、框、起落架部件、发动机整体转子、机匣、功率轴等重要结构件和核动力装置压力容器的制造。如:F-22战斗机采用先进的电子束焊接,减轻了飞机重量,提高了整机的性能;“苏-27”及其它系列飞机中的大量承力构件,如起落架、承力隔框等,均采用了高压电子束焊接技术。 国内多种型号的飞机及发动机和多种型号的导弹壳体、油箱、尾喷管等结构件均已采用了电子束焊接。因此,电子束焊接技术的应用越来越广泛,对电子束焊接设备的需求量也越来越大。 国外的电子束焊机,以德国、美国、法国、乌克兰等为代表,已达到了工程化生产。其特点是采用变频电源,设备的体积、噪声、高压性能等方面都有很大提高;在控制系统方面,运用了先进的计算机技术,采用了先进的CNC及PLC技术,使设备的控制更可靠,操作更简便、直观。 国外真空电子束物理气相沉积技术,已用于航空发动机涡轮叶片高温防腐隔热陶瓷涂层,提高了涂层的抗热冲击性能及寿命。电子束刻蚀、电子束辐照固化树脂基复合材料技术正处于研究阶段。 电子束加工技术今后应积极拓展专业领域,紧密跟踪国际先进技术的发展,针对需求,重点开展电子束物理气相沉积关键技术研究、主承力结构件电子束焊接研究、电子束辐照固化技术研究、电子束焊机关键技术研究等。

1.7.4离子束及等离子体加工技术

表面功能涂层具有高硬度、耐磨、抗蚀功能,可显著提高零件的寿命,在工业上具有广泛用途。美国及欧洲国家目前多数用微波ECR等离子体源来制备各种功能涂层。

等离子体热喷涂技术已经进入工程化应用,已广泛应用在航空、航天、船舶等领域的产品关键零部件耐磨涂层、封严涂层、热障涂层和高温防护层等方面。

图1-5 离子束加工原理

等离子焊接已成功应用于18mm铝合金的储箱焊接。配有机器人和焊缝跟踪系统的等离子体焊在空间复杂焊缝的焊接也已实用化。微束等离子体焊在精密零部件的焊接中应用广泛。我国等离子体喷涂已应用于武器装备的研制,主要用于耐磨涂层、封严涂层、热障涂层和高温防护涂层等。

真空等离子体喷涂技术和全方位离子注入技术已开始研究,与国外尚有较大差距。等离子体焊接在生产中虽有应用,但焊接质量不稳定。离子束及等离子体加工技术今后应结合已取得的成果,针对需求,重点开展热障涂层及离子注入表面改性的新技术研究,同时,在已取得初步成果的基础上,进一步开展等离子体焊接技术研究。

1.7.5电加工技术

国外电解加工应用较广,除叶片和整体叶轮外已扩大到机匣、盘环零 激光雕刻加工件和深小孔加工,用电解加工可加工出高精度金属反射镜面。目前电解加工机床最大容量已达到5万安培,并已实现CNC控制和多参数自适应控制。电火花加工气膜孔采用多通道、纳秒级超高频脉冲电源和多电极同时加工的专用设备,加工效率2~3秒/孔,表面粗糙度Ra0.4μm,通用高档电火花成型及线切割已能提供微米级加工精度,可加

工3μm的微细轴和5μm的孔。精密脉冲电解技术已达10μm左右。电解与电火花复合加工,电解磨削、电火花磨削已用于生产。

图1-6 电解加工原理

1.7.6超声波加工技术

超声波加工基本原理:在工件和工具间加入磨料悬浮液, 由超声波发生器产生超声振荡波, 经换能器转换成超声机械振动, 使悬浮液中的磨粒不断地撞击加工表面, 把硬而脆的被加工材料局部破坏而撞击下来。在工件表面瞬间正负交替的正压冲击波和负压空化作用下强化了加工过程。因此,超声波加工实质上是磨料的机械冲击与超声波冲击及空化作用的综合结果。在传统超声波加工的基础上发展了旋转超声波加工, 即工具在不断振动的同时还以一定的速度旋转, 这将迫使工具中的磨粒不断地冲击和划擦工件表面, 把工件材料粉碎成很小的微粒去除, 以提高加工效率。

图1-7 超声波加工原理

超声波加工精度高, 速度快, 加工材料适应范围广, 可加工出复杂型腔及型面, 加工时工具和工件接触轻, 切削力小, 不会发生烧伤、变形、残余应力等缺陷, 而且超声加工机床的结构简单, 易于维护

1.8特种加工发展方向及研究

根据上述现状,今后特种加工技术的发展方向应是: (1)不断改进、提高高能束源品质,并向大功率、高可靠性方向发展。 (2)高能束流加工设备向多功能、精密化和智能化方向发展,力求达到标准化、系列化和模块化的目的。扩大应用范围,向复合加工方向发展。 (3)不断推进高能束流加工新技术、新工艺、新设备的工程化和产业化工作。 为实现以上发展目标,必须开展下列加工工艺的技术研究:

1.8.1激光加工技术

无再铸层、无微裂纹涡轮叶片气膜孔激光高效加工技术研究; 铝合金、超强钢、钛合金、异种材料构件以及大型空间曲面零件的激光焊接工艺研究; 三维激光切割工艺规范及表面质量控制技术和在线测量控制技术研究; 提高高温合金、铝合金等重要部件抗疲劳性能的激光冲击技术研究; 激光快速成型技术研究; 大功率激光熔覆陶瓷涂层的工艺以及涂层组织结构和性能的研究。

1.8.2电子束加工技术

150kV、15kW高压电子枪及高压电源的技术研究; 电子束物理气相沉积技术的研究; 大厚度变截面钛合金的电子束焊接技术研究及质量评定; 典型复合材料飞机构件的电子束固化工艺研究及其工程化研究; 多功能电子束加工技术研究。

1.8.3离子束和等离子体加工技术

复杂零件“保形”离子注入与混合沉积技术研究,获得高密度等离子体方法研究; 空间结构焊接工艺参数自适应控制及焊缝自动跟踪系统研究,以及等离子弧焊过程中变形控制技术研究; 等离子喷涂陶瓷热障涂层结构、工艺及工程化研究; 层流湍流自动转换技术及轴向送粉、三维喷涂技术研究; 层流等离子体喷涂系统的研制及

其喷涂技术的研究。

1.8.4电加工技术

高品质深小孔电液束加工技术研究; 高效、优质照相电解加工群孔技术研究; 多轴、多通道电火花加工群孔、异形孔技术研究; 大容量(5000A及以上)精密电解加工技术研究; 电解—电火花复合加工技术研究。 研究上述技术的关键在于:提高高能束流的品质;开展特种加工过程的自动控制及计算机建模、仿真技术的研究;新材料加工特性研究;特种加工设备的研究等。

2 超精密加工及其新技术

2.1超精密加工概述

20世纪60年代为了适应核能、大规模集成电路、激光和航天等尖端技术的需要而发展起来的精度极高的加工技术。

超精密加工的精度比传统的精密加工提高了一个以上的数量级。到20世纪80年代,加工尺寸精度可达10纳米(1×10-8米),表面粗糙度达1纳米。超精密加工对工件材质、加工设备、工具、测量和环境等条件都有特殊的要求,需要综合应用精密机械、精密测量、精密伺服系统、计算机控制以及其他先进技术。

超精密加工的精度比传统的精密加工提高了一个以上的数量级,除需要采用新的加工方法或新的加工机理之外,对工件材质,加工设备、工具、测量和环境条件等都有特殊的要求。工件材质必须极为细致均匀,并经适当处理以消除内部残余应力,保证高度的尺寸稳定性,防止加工后发生变形。加工设备要有极高的运动精度,导轨直线性和主轴回转精度要达到0.1微米级,微量进给和定位精度要达到0.01微米级。对环境条件要求严格,须保持恒温、恒湿和空气洁净,并采取有效的防振措施。加工系统的系统误差和随机误差都应控制在 0.1微米级或更小。这些条件是靠综合应用精密机械、精密测量、精密伺服系统和计算机控制等各种先进技术获得的。

2. 2 超精密加工条件

精密加工技术是一项涉及内容广泛的综合性技术,实现精密加工,不仅需要精密的机床设备和工具、也需要稳定的环境条件,还需运用计算技术进行实时检测和反馈补偿,只有将各个领域的技术成果集应起来.才有可能实现和发展精密加工。 面对这些关键技术进行简要介绍。

(1) 精密加工机床 精密加工机床娃实现精密加工的首要条件,

(2) 金刚石刀具 精密切削加工必须能够均匀地切极薄的金属层,微量切除是精密加工的重要特征之一。金刚石刀具是精密切削中的重要手段。

(3) 精密切削机理 精密切削是微量切削,微量切削过程中许多机理方面的问题部有其特殊性,必须对这些切削机理方面的问题进行深入研究,掌握变化规律.以便更好地利用精密加工技术提高零件的加工精度和表面质量。

(4) 稳定的加工环境 精密加工必须在稳定的加工环境下进行,主要包括恒温、防振和宁气净化3个方

面的条件。

(5) 误差补偿 当加工精度高于一定程度后,若仍然采用提高机床的制造精度,保让加工环境的稳定性等误差预防措施提高加工精度,这将会使所花费的成本大幅度增加。这时应采取另一种所谓的谈趁补偿措施,即是通过消除或抵消误差本身的影响.达到提高加工精度的日的。国外的一些著名精密机床,采用

了误差补偿的方法,取得了很好的效果。

(6)精密测量技术 精密加工技术离不开精密测量技术,精密加工要求测量精度比加工精度度高1个数量级。超精密切削加工对机床设备,金刚石刀具使用技术,在绥检测与误差补偿技术,以及加工环境拧制技术等关镀技术方面比稻密加工要求更高。实现超精密加工基本条件

为了能实现超精密加工并获得预期的加工效果,必须具备下述基本条件:

(1) 被加工工件的材质要密实;各向的同一性要好(最好为单晶);表层硬度和弹性模量要恒定一致;可加工性要好;材料的化学成份与机械物理性能对标准值的偏差不应超过0.1%。

(2) 选用的超精密加工工艺方法要与被加工材料相匹配。例如,有色金属材料(如铜、铝合金)宜用单点金刚石刀具进行车削或铣削加工;黑色金属材料(如钢等)则宜选磨削与研、抛等工艺,否则得不到预期的加工效果等。

(3)加工环境要严格恒温、隔振和净化。恒温室(第一分隔区)中的温度波动不得大于±0.1°C;加工区(第二分隔区)中则不应超过±0.01°C;环境的相对湿度要保持在40%±10%以内;大气压力(如用激光测量仪时)应保持1MPa±0.1%;机床地基的隔振系统固有频率

(4)具有能实现纳米级(1nm ~10nm)增量进给的机床和分辨力优于0.1nm的测量设备,如激光干涉仪,扫描隧道显微镜和原子力显微镜等。

2.3超精密加工应用

目前,精密、超精密技术在我国的应用已不再局限于国防尖端和航空航天等少数部门,它已扩展到了国民经济的许多领域,应用规模也有较大增长。计算机、现代通信、影视传播等行业,现都需要精密、超精密加工设备,作为其迅速发展的支撑条件。计算机磁盘、录像机磁头、激光打印机的多面棱镜、复印机的感光筒等零部件的精密、超精密加工,采用的都是高效的大批量自动化生产方式。

美国、英国、日本、德国、荷兰等发达国家的精密、超精密加工技术居世界前列。这方面的技术不仅用于军事部门,也大量用于民品的生产。 今后一段时期,我国将以高效、超精密加工车床、CNC超精密复合加工机床、超精密平面和外圆磨床为重点,开发超精密加工技术及应用工程,带动一批精密、超精密的基础功能元器件,如超精密主轴轴系、超精密伺服进给系统、超精密测量系统和误差自动补偿系统的开发,以满足航天、航空及计算机等高技术产业的发展需求。

精密、超精密加工,可采用 二次加工机床;铣扁机机床;剖槽机机床;钻孔机机床;铣边机机床;铣十字槽机;铣槽机机床;倒角机机床;缩口机;攻牙机;剖沟机机床;铣槽机;铣面机机床;铣方机机床;铣平面机机床;铣台阶机;多功能加工机;组合加工机床;分度铣槽机;轴类加工机床; 扁位与槽位平行垂直,孔位与扁位槽位平行垂直成角度的均可加工,不同的产品可以根据需要设计相关的机器,而有的机器可以加工多种产品。效率高,精度可达+/-0.015MM。主要适用于各种类项的轴心(直径2-25MM),电位器,散热器,插头,灯饰配件等领域,铜,铁,铝,不锈钢,非金属类材质均可,形状可圆可方,依据要求量身定做

2.6 超精密加工新方法及特点

2.6.1砂带磨削

是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。国外在砂带材料及制作工艺上取得了很大的成就,有了适应于不同场合的砂带系列,生产出通用和专用的砂带磨床,而且自动化程度不断提高(已有全自动和自适应控制的砂带磨床),但国内砂带品种少,质量也有待提高,对机床还处于改造阶段。

图2-1 砂带磨削机

2.6.2超精密切削

也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1"2个等级。例如用精密车削加工的液压马达转子柱塞孔圆柱度为0.5"1μm,尺寸精度1"2μm;红外反光镜的表面粗糙度Ra0.01"0.02μm,还具有较好的光学性质。

图2-2 超精密切削中切削力与背吃刀量的关系

从成本上看,用精密切削加工的光学反射镜,与过去用镀铬经磨削加工的产品相比,成本大约是后者的一半或几分之一。但许多因素对精密切削的效果有影响,所以要达到预期的效果很不容易。同时,金刚石刀具切削较硬的材料时磨损较快,如切削黑色金属

时磨损速度比切削铜快104倍,而且加工出的工件的表面粗糙度和 几何形状精度均不理想。

2.6.3超精密磨削

用精确修整过的砂轮在精密磨床上进行的微量磨削加工,金属的去除量可在亚微米级甚至更小,可以达到很高的尺寸精度、形位精度和很低的表面粗糙度值。尺寸精度0.1"0.3μm,表面粗糙度Ra0.2"0.05μm,效率高。应用范围广泛,从软金属到淬火钢、不锈钢、高速钢等难切削材料,及半导体、玻璃、陶瓷等硬脆非金属材料,几乎所有的材料都可利用磨削进行加工。 但磨削加工后,被加工的表面在磨削力及磨削热的作用下金相组织要发生变化,易产生加工硬化、淬火硬化、热应力层、残余应力层和磨削裂纹等缺陷。

图2-3 平面磨削情况下切屑形状

2.6.4珩磨

用镶嵌在珩磨头上的油石砂条对工件表面施加一定压力,珩磨工具或工件同时作相对旋转、轴向直线往复运动和一定量的径向运动,切除工件上极小余量的精加工方法。加工后的表面粗糙度可达Ra0.4~0.1μm,最好可到Ra0.025μm,主要用来 加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。

珩磨余量一般不超过0.2毫米。珩磨的圆周速度,对钢材加工约为15~30米/分,对铸铁或有色金属加工可提高到50米/分以上;珩磨的往复速度不宜超过15~20米/分。油石对孔壁的压力一般为0.3~0.5兆帕,粗珩时可达1兆帕左右,精珩可小于0.1兆帕。由于珩磨时油石与工件是面接触,每颗磨粒对工件表

面的垂直压力只有磨削时的1/50~1/100,加上珩磨速度低,故切削区的温度可保持在50~150℃范围内,有利于减小加工表面的残余应力,提高表面质量。为了冲刷切屑,避免堵塞油石,同时降低切削区温度和降低表面粗糙度,珩磨时采用的切削液要有一定的工作压力并经过滤。切削液大都采用煤油,或煤油加锭子油,也有采用极压乳化液的。

图2-4 挤压珩磨加工原理

2.6.5精密研磨

通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。

精密研磨对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025μm加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工 但精密研磨的效率较低,如干研速度一般为10"30m/min,湿研速度为20"120m/min。对加工环境要求严格,如有大磨料或异物混入时,将使表面产生很难去除的划伤。

图2-5 螺旋振动研磨机工作原理图

2.6.6抛光

是利用机械、化学、电化学的方法对工件表面进行的一种微细加工,主要用来降低工件表面粗糙度,常用的方法有:手工或机械抛光、超声波抛光、化学抛光、电化学抛光及电化学机械复合加工等。

图2-6 离心抛光机工作原理

手工或机械抛光是用涂有磨膏的抛光器,在一定的压力下,与工件表面做相对运动,以实现对工件表面的光整加工。加工后工件表面粗糙度Ra≤0.05μm,可用于平面、柱面、曲面及模具型腔的抛光加工。手工抛光的加工效果与操作者的熟练程度有关。

2.6.7超声波抛光

是利用工具端面做超声振动,通过磨料悬浮液对硬脆材料进行光整加工,加工精度 0.01"0.02μm,表面粗糙度Ra0.1μm。

超声抛光设备简单,操作、维修方便,工具可用较软的材料制作,而且不需作复杂的运动,主要用来加工硬脆材料,如不导电的非金属材料,当加工导电的硬质金属材料时,生产率较低.

2.6.8化学抛光

是通过硝酸和磷酸等氧化剂,在一定的条件下,使被加工的金属表面氧化,使表面平整化和光泽化。

化学抛光设备简单,可以加工各种形状的工件,效率较高,加工的表面粗糙度一般为Ra≤0.2μm,但腐蚀液对人体和设备有损伤,污染环境,需妥善处理。主要用来对不锈钢、铜、铝及其合金的光亮修饰加工。

2.6.9电化学抛光

是利用电化学反应去除切削加工所残留的微观不平度,以提高零件表面光亮度的方法。它比机械抛光具有较高的生产率和小的表面粗糙度:一般可达Ra0.2μm,若原始表面为Ra0.4"0.2μm,则 抛光后可提高到Ra0.1"0.08μm,加工后工件具有较好的物理机械性能,使用寿命长,但电化学抛光只能加工导电的材料。随着电化学加工技术的发展,还产生了多种新型的复合加工方法,例如超精密电解磨削、电化学机械复合光整加工、电化学超精加工等。它们主要以降低工件的表面粗糙度值为目的,加工去除量很小,一般在 0.01"0.1mm,对于表面粗糙度达到Ra0.8"1.6μm的外圆,平面、内孔及自由曲面均可一道工序加工到镜面,表面粗糙度Ra0.05μm,甚至更低。

图2-7 电化学抛光原理

电化学机械加工属于一种加工单位极小的精密加工方法,从原理上讲加工精度可以达到原子级,所以加工精度具有大的潜力,但由于左右其加工精度的因素目前还不是很清楚,所以在实际应用中,其加工表现出一定的不稳定性,这在很大程度上限制了它在工业生产中的应用。

2.7超精密加工的发展趋势

超精密加工技术是一门综合性的系统工程,它的发展综合地利用了机床、工具、计量、环境技术、微电子技术、计算机技术、数控技术等的进步。

超精密加工技术随着时间的推延,精度、难度、复杂性等都在向更高层次发展,使加工技术也随之需要不断加以更新,来与之相适应。

时代对超精密加工技术仍在不断地提出更新的需求,从大到天体望远镜的透镜,小到微机械的微纳米尺寸零件。不论体积大小,其最高尺寸精度都趋近于毫微米;形状也日益复杂化,各种非球面已是当前非常典型的几何形状;70年代,始于日本的产品短薄轻小的战略思想,引发了仪表的小型化、轻便化,从而导致仪表零件的薄壁、低刚度、易变形的特点,也造成超精密加工的更大难度。

在当前必然也会谈到的是微机械技术的诞生,为超精密制造技术引来一种崭新的态势,它的微细程度使传统的制造技术面临一种新的挑战。尽管它的诞生时间只是近期的事。人们已公认为它是21世纪的前沿技术。它的发展极为神速,受到全世界的关注,我国也不例外,仅几年时间,许多单位已生产出各种产品,甚至完成了将原子迁移,构成图形或字体等的各种创举。1996年,上海交通大学展示了直径为2mm的微电机,而今天瑞士TECHSTAR GmbH已经将直径3mm电机,转速为100,000r/min的产品作为商品销售,其最小的滚珠轴承外径只有3mm。微机械的发展如此迅速,确实惊人!

超精密加工技术一直是制造技术的前沿技术,每前进一步,都需付出很大的代价,而且对其要求也是随着时间的推延而不断提高,这就必须广泛的收集信息,虽然工艺信息往往是被视作Know-How而加以保密,所以更增加了它的收集难度,但是信息的渠道是多方面的,另外,得到的信息,大部分仍然需要经过大量筛选,择其有用的为我所用。而信息的收集必须先行,并且需要及时。

超精密加工技术发展趋势是:向更高精度、更高效率方向发展;向大型化、微型化方向发展;向加工检测一体化方向发展;机床向多功能模块化方向发展;不断探讨适合于超精密加工的新原理、新方法、新材料。21世纪初十年将是超精密加工技术达到和完成纳米加工技术的关键十年。

3 结论

经过两个多月的努力,浅谈特种加工与超精密加工的论文终于完成了在整个设计过程中,出现过很多的难题,但都在老师和同学的帮助下顺利解决了,在不断的学习过程中我体会到:

写论文是一个不断学习的过程,从最初刚写论文时对特种加工与超精密加工的问题的模糊认识到最后能够对该问题有深刻的认识,我体会到实践对于学习的重要性,以前只是明白理论,没有经过实践考察,对知识的理解不够明确,通过这次的做,真正做到理论与实践相结合。

总之,通过毕业设计,我深刻体会到要做好一个完整的事情,需要有系统的思维方式和方法,对待要解决的问题,要耐心、要善于运用已有的资源来充实自己。同时我也深刻的认识到,在对待一个新事物时,一定要从整体考虑,完成一步之后再作下一步,这样才能更加有效。

致 谢

时光匆匆如流水,转眼便是大学毕业时节,春梦秋云,聚散真容易。在这个美好的季节里,我在电脑上敲出了最后一个字,心中涌现的不是想象已久的欢欣,却是难以言喻的失落。是的,随着论文的终结,意味着我生命中最纯美的学生时代即将结束,尽管百般不舍,这一天终究会在熙熙攘攘的喧嚣中决绝的来临。

三年寒窗,所收获的不仅仅是愈加丰厚的知识,更重要的是在阅读、实践中所培养的思维方式、表达能力和广阔视野。很庆幸这些年来我遇到了许多恩师益友,无论在学习上、生活上还是工作上都给予了我无私的帮助和热心的照顾,让我在诸多方面都有所成长。感恩之情难以用语言量度,谨以最朴实的话语致以最崇高的敬意。

还要感谢我的父母,给予我生命并竭尽全力给予了我接受教育的机会,养育之恩没齿难忘; 他们不仅培养了我对中国传统文化的浓厚的兴趣,让我在漫长的人生旅途中使心灵有了虔敬的归依,而且也为我能够顺利的完成毕业论文提供了巨大的支持与帮助。在未来的日子里,我会更加努力的学习和工作,不辜负父母对我的殷殷期望!我一定会好好孝敬和报答他们!,

还有许多人,也许他们只是我生命中匆匆的过客,但他们对我的支持和帮助依然在我记忆中留底了深刻的印象。在此无法一一罗列,但对他们我始终心怀感激。最后,我要向在百忙之中抽时间对本文进行审阅、评议和参加本人论文答辩的各位师长表示感谢!

参考文献

1 《特种加工》 刘晋春 赵家齐 机械工业出版社 2 《精密与特种加工技术》 袁根福 祝锡晶 北京大学出版社 3 《精密和超精密加工技术》 袁哲俊 王先逵 机械工业出版社 4 《新世纪高校机械工程规划教材》 张建化 机械工业出版社 5 《现代加工技术》 张辽远

6 《精密与特种共加工》 王贵成 张银喜

7 《先进制造技术》 张大涌

8 《特种加工技术》 周旭光

机械工业出版社 武汉理工大学出版社 机械工业出版社 西安电子科技大学出版社

目录

摘要 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ 3

前言 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ 4

1 特种加工及其新技术„„„„„„„„„„„„„„„„„„„„„„„„ 5

1.1 特种加工概述 „„„„„„„„„„„„„„„„„„„„„„„ 5

1.2 特种加工独到之处 „„„„„„„„„„„„„„„„„„„„„ 5

1.3 特种加工发展 „„„„„„„„„„„„„„„„„„„„„„„ 6

1.4 特种加工的应用 „„„„„„„„„„„„„„„„„„„„„„ 6

1.5 特种加工特点 „„„„„„„„„„„„„„„„„„„„„„„ 7

1.6 特种加工加工工艺 „„„„„„„„„„„„„„„„„„„„„ 7

1.7 特种加工新方法及其特点 „„„„„„„„„„„„„„„„„„ 8

1.7.1 电火花加工技术 „„„„„„„„„„„„„„„„„„„ 8

1.7.2 激光加工技术 „„„„„„„„„„„„„„„„„„„„ 12

1.7.3 电子束加工技术 „„„„„„„„„„„„„„„„„„„ 13

1.7.4 离子束及等离子体加工技术 „„„„„„„„„„„„„„ 14

1.7.5 电加工技术 „„„„„„„„„„„„„„„„„„„„„ 15

1.7.6 超声波加工技术 „„„„„„„„„„„„„„„„„„„ 16

1.8 特种加工发展方向及研究 „„„„„„„„„„„„„„„„„„ 17

1.8.1 激光加工技术 „„„„„„„„„„„„„„„„„„„„ 17

1.8.2 电子束加工技术 „„„„„„„„„„„„„„„„„„„ 17

1.8.3 离子束和等离子体加工技术 „„„„„„„„„„„„„„ 17

1.8.4 电加工技术 „„„„„„„„„„„„„„„„„„„„„ 18

2 超精密加工及其新技术 „„„„„„„„„„„„„„„„„„„„„„ 19

2.1 超精密加工概述 „„„„„„„„„„„„„„„„„„„„„„„ 19

2.2 超精密加工精度标准及档次 „„„„„„„„„„„„„„„„„„ 19

2.3 超精密加工应用 „„„„„„„„„„„„„„„„„„„„„„„ 20

2.4超精密加工主要研究内容 „„„„„„„„„„„„„„„„„„„ 20

2. 5 超精密加工条件 „„„„„„„„„„„„„„„„„„„„„„ 21

2.6 超精密加工新方法及其特点 „„„„„„„„„„„„„„„„ 23

2.6.1 砂带磨削 „„„„„„„„„„„„„„„„„„„„„ 23

2.6.2 超精密切削 „„„„„„„„„„„„„„„„„„„„ 23

2.6.3 超精密磨削 „„„„„„„„„„„„„„„„„„„„ 24

2.6.4 珩磨 „„„„„„„„„„„„„„„„„„„„„„„ 25

2.6.5 超精密研磨 „„„„„„„„„„„„„„„„„„„„ 25

2.6.6 抛光 „„„„„„„„„„„„„„„„„„„„„„„

2.6.7 超声波抛光 „„„„„„„„„„„„„„„„„„„„

2.6.8 化学抛光 „„„„„„„„„„„„„„„„„„„„„

2.6.9 电化学抛光 „„„„„„„„„„„„„„„„„„„„

2.7 超精密加工发展趋势 „„„„„„„„„„„„„„„„„„„

3 结论„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„

致谢 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„

参考文献 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„

26 27 27 27 28 30 32 31

特种加工亦称“非传统加工”或“现代加工方法”,泛指用电能、热能、光能、电化学能、化学能、声能及特殊机械能等能量达到去除或增加材料的加工方法,从而实现材料被去除、变形 、改变性能或被镀覆等„„„„„„„„„„„„„„„„

超精密加工的精度比传统的精密加工提高了一个以上的数量级。到20世纪80年代,加工尺寸精度可达10纳米(1×10-8米),表面粗糙度达1纳米。超精密加工对工件材质、加工设备、工具、测量和环境等条件都有特殊的要求,需要综合应用精密机械、精密测量、精密伺服系统、计算机控制以及其他先进技术„„„„„„„„„„„„„„„„ 关键词 特种加工 超精密加工 应用 发展

制造业是将制造资源(物料,能源,设备,工具,资金,技术,信息和人力等)通过制造过程转化为可供人们使用与利用的工业品和生活消费品的行业,是国民经济的基础,因此,从某种意义上说,制造技术水平的高低是衡量一个国家国民经济和综合国力的重要标志之一。制造技术的发展已有几千年的历史,从石器时代,青铜器时代,铁器时代到现代的高分子塑料时代;从手工制造,机器制造到现代的智能控制自动化制造;从一般精度加工,精密加工到现代的超精密加工机纳米加工。精密加工和特种加工是新世纪知识经济时代先进制造工艺技术的重要组成部分,代表了当前先进制造技术发展的重要方向,在制造业乃至社会发展进程中起着非常重要的作用。

由于现代科学技术的迅猛发展,机械、电子、航空和国防工业等各领域,要求尖端科学技术产品向高精度、高速度、大功率、小型化方向发展,以及要求在高温、高压、重负荷等极端条件下长期可靠的工作。为了适应这些要求,各种新结构,新材料和复杂形状的精密零件大量出现,其形状越来越复杂,材料的强韧性越来越高,零件表面精度,粗糙度和某些特殊要求也越来越高,因此对机械制造技术提出了下列新的课题。

(1)解决各种难加工材料的加工问题。如硬质合金,钛合金,耐热钢,不锈钢淬火钢,金刚石等各种高硬度,高强度,高韧性,高脆性的金属和非金属材料。

(2)解决各种特殊复杂型面的加工问题。如各种热锻模,冲裁模,冷拔模和注射模的模腔和型孔,整体涡轮,炮管内膛线等。

(3)解决各种超精密,光整或需要特殊要求零件的加工问题,如精密光学透镜,航空航天陀螺仪,伺服阀,高灵敏的红外传感器部件,大规模集成电路,微型机械和机器人零件等对表面精度和质量要求比较高的零件的加工。

要解决上述一系列问题,仅依靠传统的机械切削加工(包括磨削加工)方法是难以实现的,人们相继研发和开发各种新的加工方法,因此,超精密和特种加工技术就是在这种那个前提条件下产生和发展起来的。目前超精密和特种加工技术已成为零件制造的重要工艺技术手段,成为世界制造技术领域的制高点,是现代制造技术的前沿。

1 特种加工及其新技术

1.1 特种加工概述

特种加工亦称“非传统加工”或“现代加工方法”,泛指用电能、热能、光能、电化学能、化学能、声能及特殊机械能等能量达到去除或增加材料的加工方法,从而实现材料被去除、变形 、改变性能或被镀覆等。

特种加工是指那些不属于传统加工工艺范畴的加工方法,它不同于使用刀具、磨具等直接利用机械能切除多余材料的传统加工方法。特种加工是近几十年发展起来的新工艺,是对传统加工工艺方法的重要补充与发展,目前仍在继续研究开发和改进。直接利用电能、热能、声能、光能、化学能和电化学能,有时也结合机械能对工件进行的加工。特种加工中以采用电能为主的电火花加工和电解加工应用较广,泛称电加工。 特种加工亦称“非传统加工”或“现代加工方法”,泛指用电能、热能、光能、电化学能、化学能、声能及特殊机械能等能量达到去除或增加材料的加工方法,从而实现材料被去除、变形 、改变性能或被镀覆等。

20世纪40年代发明的电火花加工开创了用软工具、不靠机械力来加工硬工件的方法。50年代以后先后出现电子束加工、等离子弧加工和激光加工。这些加工方法不用成型的工具,而是利用密度很高的能量束流进行加工。对于高硬度材料和复杂形状、精密微细的特殊零件,特种加工有很大的适用性和发展潜力,在模具、量具、刀具、仪器仪表、飞机、航天器和微电子元器件等制造中得到越来越广泛的应用。

特种加工的发展方向主要是:提高加工精度和表面质量,提高生产率和自动化程度,发展几种方法联合使用的复合加工,发展纳米级的超精密加工等。

1.2 特种加工加工工艺

特种加工工艺是直接利用各种能量,如电能、光能、化学能、电化学能、声能、热能及机械能等进行加工的方法。

(1)“以柔克刚”,特种加工的工具与被加工零件基本不接触,加工时不受工件的强度和硬度的制约,故可加工超硬脆材料和精密微细零件,甚至工具材料的硬度可低于工件材料的硬度。

(2)加工时主要用电、化学、电化学、声、光、热等能量去除多余材料,而不是主

要靠机械能量切除多余材料。

(3)加工机理不同于一般金属切削加工,不产生宏观切屑,不产生强烈的弹、塑性变形,故可获得很低的表面粗糙度,其残余应力、冷作硬化、热影响度等也远比一般金属切削加工小。

(4)加工能量易于控制和转换,故加工范围广,适应性强。

1.3 特种加工特点

1、不用机械能,与加工对象的机械性能无关,有些加工方法,如激光加工、电火花加工、等离子弧加工、电化学加工等,是利用热能、化学能、电化学能等,这些加工方法与工 电火花线切割加工件的硬度强度等机械性能无关,故可加工各种硬、软、脆、热敏、耐腐蚀、高熔点、高强度、特殊性能的金属和非金属材料。 2、非接触加工,不一定需要工具,有的虽使用工具,但与工件不接触,因此,工件不承受大的作用力,工具硬度可低于工件硬度,故使刚性极低元件及弹性元件得以加工。 3、微细加工,工件表面质量高,有些特种加工,如超声、电化学、水喷射、磨料流等,加工余量都是微细进行,故不仅可加工尺寸微小的孔或狭缝,还能获得高精度、极低粗糙度的加工表面。 4、不存在加工中的机械应变或大面积的热应变,可获得较低的表面粗糙度,其热应力、残余应力、冷作硬化等均比较小,尺寸稳定性好。 5、两种或两种以上的不同类型的能量可相互组合形成新的复合加工,其综合加工效果明显,且便于推广使用。 6、特种加工对简化加工工艺、变革新产品的设计及零件结构工艺性等产生积极的影响.

1.4 特种加工的应用

特种加工技术在国际上被称为21世纪的技术,对新型武器装备的研制和生产,起

到举足轻重的作用。随着新型武器装备的发展,国内外对特种加工技术的需求日益迫切。不论 飞机、导弹,还是其它作战平台都要求降低结构重量,提高飞行速度,增大航程,降低燃油消耗,达到战技性能高、结构寿命长、经济可承受性好。为此,上述武器系统和作战平台都要求采用整体结构、轻量化结构、先进冷却结构等新型结构,以及钛合金、复合材料、粉末材料、金属间化合物等新材料。 为此,需要采用特种加工技术,以解决武器装备制造中用常规加工方法无法实现的加工难题,所以特种加工技术的主要

应用领域是: 难加工材料,如钛合金、耐热不锈钢、高强钢、复合材料、工程陶瓷、金刚石、红宝石、硬化玻璃等高硬度、高韧性、高强度、高熔点材料。 难加工零件,如复杂零件三维型腔、型孔、群孔和窄缝等的加工。 低刚度零件,如薄壁零件、弹性元件等零件的加工。 以高能量密度束流实现焊接、切割、制孔、喷涂、表面改性、刻蚀和精细加工

1.7 特种加工新技术及其特点

1.7.1 电火花加工

利用电火花加工原理加工导电材料的特种加工。又称电蚀加工。电火花加工主要用

于加工各种高硬度的材料(如硬质合金和淬火钢等)和复杂形状的模具、零件,以及切割、开槽和去除折断在工件孔内的工具(如钻头和丝锥)等。

电火花加工时,脉冲电源的一极接工具电极,另一极接工件电极,两极均浸

入具有一定绝缘度的液体介质(常用煤油或矿物油或去离子水)中。工具电极由自动进给调节装置控制,以保证工具与工件在正常加工时维持一很小的放电间隙(0.01~0.05mm)。当脉冲电压加到两极之间,便将当时条件下极间最近点的液体介质击穿,形成放电通道。由于通道的截面积很小,放电时间极短,致使能量高度集中(10~107W/mm),放电区域产生的瞬时高温足以使材料熔化甚至蒸发,以致形成一个小凹坑。第一次脉冲放电结束之后,经过很短的间隔时间,第二个脉冲又在另一极间最近点击穿放电。如此周而复始高频率地循环下去,工具电极不断地向工件进给,它的形状最终就复制在工件上,形成所需要的加工表面。与此同时,总能量的一小部分也释放到工具电极上,从而造成工具损耗。

图1-1 电火花加工原理

1.7.1.4 电火花加工工艺

(1)电火花加工机床加工工艺单电极法: 用单个电极加工工件,一般用于形状简单、精度要求不高的工件。单电极加工也可用平动头摇动实现工件的粗、中、精加工。

(2)电火花加工机床加工工艺多电极法 : 同一个工件加工用多个电极,一般分为粗、中、细三次依次进行加工,用于精密型加工。

(3)电火花加工机床加工工艺分解电极法 : 根据工件的几何形状,把电极分解成若干个,用主型腔电极加工型腔主要部分,再用副型腔电极加工出尖角、窄缝型腔等部位。

(4)电火花加工机床加工规准 :

粗加工,一般采用较大的电流,较大的on time。 中加工,一般采用中等的电流,中等on time。

精加工,一般采用较小的电流、高频及较小的on time。电火花加工是直接利用电能对零件进行加工的一种方法。电火花加工设备应由以下部分组成:脉冲电源、间隙自动调节器、机床本体、工作液及其循环过滤系统。间隙自动调节器自动调节极间距离,使工具电极的进给速度与电蚀速度相适应。火花放电必须在绝缘液体介质中进行。

1.7.1.1 电火花成型加工

该方法是通过工具电极相对于工件作进给运动,将工件电极的形状和尺寸复制在工件上,从而加工出所需要的零件。它包括电火花型腔加工和穿孔加工两种。电火花型腔加工主要用于加工各类热锻模、压铸模、挤压模、塑料模和胶木膜的型腔。电火花穿孔加工主要用于型孔(圆孔、方孔、多边形孔、异形孔)、曲线孔(弯孔、螺旋孔)、小孔和微孔的加工。近年来,为了解决小孔加工中电极截面小、易变形、孔的深径比大、排屑困难等问题,在电火花穿孔加工中发展了高速小孔加工,取得良好的社会经济效益

1.7.1.2 电火花线切割加工

电火花线切割加工是电火花加工的一个分支,是一种直接利用电能和热能进行加工的工艺方法,它用一根移动着的导线(电极丝)作为工具电极对工件进行切割,故称线切割加工。线切割加工中,工件和电极丝的相对运动是由数字控制实现的,故又称为数控电火花线切割加工,简称线切割加工。

(1)按走丝速度分:可分为慢速走丝方式和高速走丝方式线切割机床。

(2)按加工特点分:可分为大、中、小型以及普通直壁切割型与锥度切割型线切割机床。

(3)按脉冲电源形式分:可分为RC电源、晶体管电源、分组脉冲电源及自适应控制电源线切割机床。

图1-2 线切割加工

1. 7.2激光加工技术

国外激光加工设备和工艺发展迅速,现已拥有100kW的大功率CO?2激光器、kW级高光束质量的Nd:YAG固体激光器,有的可配上光导纤维进行多工位、远距离工作。激光加工设备功率大、自动化程度高,已普遍采用CNC控制、多坐标联动,并装有激光功率监控、自动聚焦、工业电视显示等辅助系统。

激光制孔的最小孔径已达0.002mm,已成功地应用自动化六坐标激光制孔专用设备加工航空发动机涡轮叶片、燃烧室气膜孔,达到无再铸层、无微裂纹的效果。激光切割适用于由耐热合金、钛合金、复合材料制成的零件。目前薄材切割速度可达15m/min,切缝窄,一般在0.1~1mm之间,热影响区只有切缝宽的10%~20%,最大切割厚度可

达45mm,已广泛应用于飞机三维蒙皮、框架、舰船船身板架、直升机旋翼、发动机燃烧室等。 激光焊接薄板已相当普遍,大部分用于汽车工业、宇航和仪表工业。激光精微焊接技术已成为航空电子设备、高精密机械设备中微型件封装结点的微型连接的重要手段。激光表面强化、表面重熔、合金化、非晶化处理技术应用越来越广,激光微细加工在电子、生物、医疗工程方面的应用已成为无可替代的特种加工技术。激光快速成型技术已从研究开发阶段发展到实际应用阶段,已显示出广阔的应用前景。

图1-3 激光加工原理

国内70年代初已开始进行激光加工的应用研究,但发展速度缓慢。在激光制孔、激光热处理、焊接等方面虽有一定的应用,但质量不稳定。目前已研制出具有光纤传输的固体激光加工系统,并实现光纤耦合三光束的同步焊接和石英表芯的激光焊接。完成了激光烧结快速成型原理样机研制,并采用环氧聚脂和树脂砂烧结粉末材料,快速成型出典型零件,如叶轮、齿轮。

激光加工技术今后几年应结合已取得的预研成果,针对需求,重点开展无缺陷气膜小孔的激光加工及实时检控技术、高强铝(含铝锂、铝镁)合金的激光焊接技术、金属零件的激光粉末烧结快速成型技术、激光精密加工及重要构件的激光冲击强化等项目的研究。实现高温涡轮发动机气膜孔无缺陷加工,可使叶片使用寿命达2000小时以上;以焊代替数控加工飞机次承力构件,以及带筋壁板的以焊代铆;实现重要零部件的表面强化,提高安全性、可靠性等,从而使先进的激光制造技术在军事工业中发挥更大的作用。

1.7.3电子束加工技术

电子束加工技术在国际上日趋成熟,应用范围广。国外定型生产的40kV~300kV的电子枪(以60kV、150kV为主),已普遍采用CNC控制,多坐标联动,自动化程度高。电子束焊接已成功地应用在特种材料、异种材料、空间复杂曲线、变截面焊接等方面。

目前正在研究焊缝自动跟踪、填丝焊接、非真空焊接等,最大焊接熔深可达300mm,焊缝深宽比20:1。

图1-4 电子束加工原理

电子束焊已用于运载火箭、航天飞机等主承力构件大型结构的组合焊接,以及飞机梁、框、起落架部件、发动机整体转子、机匣、功率轴等重要结构件和核动力装置压力容器的制造。如:F-22战斗机采用先进的电子束焊接,减轻了飞机重量,提高了整机的性能;“苏-27”及其它系列飞机中的大量承力构件,如起落架、承力隔框等,均采用了高压电子束焊接技术。 国内多种型号的飞机及发动机和多种型号的导弹壳体、油箱、尾喷管等结构件均已采用了电子束焊接。因此,电子束焊接技术的应用越来越广泛,对电子束焊接设备的需求量也越来越大。 国外的电子束焊机,以德国、美国、法国、乌克兰等为代表,已达到了工程化生产。其特点是采用变频电源,设备的体积、噪声、高压性能等方面都有很大提高;在控制系统方面,运用了先进的计算机技术,采用了先进的CNC及PLC技术,使设备的控制更可靠,操作更简便、直观。 国外真空电子束物理气相沉积技术,已用于航空发动机涡轮叶片高温防腐隔热陶瓷涂层,提高了涂层的抗热冲击性能及寿命。电子束刻蚀、电子束辐照固化树脂基复合材料技术正处于研究阶段。 电子束加工技术今后应积极拓展专业领域,紧密跟踪国际先进技术的发展,针对需求,重点开展电子束物理气相沉积关键技术研究、主承力结构件电子束焊接研究、电子束辐照固化技术研究、电子束焊机关键技术研究等。

1.7.4离子束及等离子体加工技术

表面功能涂层具有高硬度、耐磨、抗蚀功能,可显著提高零件的寿命,在工业上具有广泛用途。美国及欧洲国家目前多数用微波ECR等离子体源来制备各种功能涂层。

等离子体热喷涂技术已经进入工程化应用,已广泛应用在航空、航天、船舶等领域的产品关键零部件耐磨涂层、封严涂层、热障涂层和高温防护层等方面。

图1-5 离子束加工原理

等离子焊接已成功应用于18mm铝合金的储箱焊接。配有机器人和焊缝跟踪系统的等离子体焊在空间复杂焊缝的焊接也已实用化。微束等离子体焊在精密零部件的焊接中应用广泛。我国等离子体喷涂已应用于武器装备的研制,主要用于耐磨涂层、封严涂层、热障涂层和高温防护涂层等。

真空等离子体喷涂技术和全方位离子注入技术已开始研究,与国外尚有较大差距。等离子体焊接在生产中虽有应用,但焊接质量不稳定。离子束及等离子体加工技术今后应结合已取得的成果,针对需求,重点开展热障涂层及离子注入表面改性的新技术研究,同时,在已取得初步成果的基础上,进一步开展等离子体焊接技术研究。

1.7.5电加工技术

国外电解加工应用较广,除叶片和整体叶轮外已扩大到机匣、盘环零 激光雕刻加工件和深小孔加工,用电解加工可加工出高精度金属反射镜面。目前电解加工机床最大容量已达到5万安培,并已实现CNC控制和多参数自适应控制。电火花加工气膜孔采用多通道、纳秒级超高频脉冲电源和多电极同时加工的专用设备,加工效率2~3秒/孔,表面粗糙度Ra0.4μm,通用高档电火花成型及线切割已能提供微米级加工精度,可加

工3μm的微细轴和5μm的孔。精密脉冲电解技术已达10μm左右。电解与电火花复合加工,电解磨削、电火花磨削已用于生产。

图1-6 电解加工原理

1.7.6超声波加工技术

超声波加工基本原理:在工件和工具间加入磨料悬浮液, 由超声波发生器产生超声振荡波, 经换能器转换成超声机械振动, 使悬浮液中的磨粒不断地撞击加工表面, 把硬而脆的被加工材料局部破坏而撞击下来。在工件表面瞬间正负交替的正压冲击波和负压空化作用下强化了加工过程。因此,超声波加工实质上是磨料的机械冲击与超声波冲击及空化作用的综合结果。在传统超声波加工的基础上发展了旋转超声波加工, 即工具在不断振动的同时还以一定的速度旋转, 这将迫使工具中的磨粒不断地冲击和划擦工件表面, 把工件材料粉碎成很小的微粒去除, 以提高加工效率。

图1-7 超声波加工原理

超声波加工精度高, 速度快, 加工材料适应范围广, 可加工出复杂型腔及型面, 加工时工具和工件接触轻, 切削力小, 不会发生烧伤、变形、残余应力等缺陷, 而且超声加工机床的结构简单, 易于维护

1.8特种加工发展方向及研究

根据上述现状,今后特种加工技术的发展方向应是: (1)不断改进、提高高能束源品质,并向大功率、高可靠性方向发展。 (2)高能束流加工设备向多功能、精密化和智能化方向发展,力求达到标准化、系列化和模块化的目的。扩大应用范围,向复合加工方向发展。 (3)不断推进高能束流加工新技术、新工艺、新设备的工程化和产业化工作。 为实现以上发展目标,必须开展下列加工工艺的技术研究:

1.8.1激光加工技术

无再铸层、无微裂纹涡轮叶片气膜孔激光高效加工技术研究; 铝合金、超强钢、钛合金、异种材料构件以及大型空间曲面零件的激光焊接工艺研究; 三维激光切割工艺规范及表面质量控制技术和在线测量控制技术研究; 提高高温合金、铝合金等重要部件抗疲劳性能的激光冲击技术研究; 激光快速成型技术研究; 大功率激光熔覆陶瓷涂层的工艺以及涂层组织结构和性能的研究。

1.8.2电子束加工技术

150kV、15kW高压电子枪及高压电源的技术研究; 电子束物理气相沉积技术的研究; 大厚度变截面钛合金的电子束焊接技术研究及质量评定; 典型复合材料飞机构件的电子束固化工艺研究及其工程化研究; 多功能电子束加工技术研究。

1.8.3离子束和等离子体加工技术

复杂零件“保形”离子注入与混合沉积技术研究,获得高密度等离子体方法研究; 空间结构焊接工艺参数自适应控制及焊缝自动跟踪系统研究,以及等离子弧焊过程中变形控制技术研究; 等离子喷涂陶瓷热障涂层结构、工艺及工程化研究; 层流湍流自动转换技术及轴向送粉、三维喷涂技术研究; 层流等离子体喷涂系统的研制及

其喷涂技术的研究。

1.8.4电加工技术

高品质深小孔电液束加工技术研究; 高效、优质照相电解加工群孔技术研究; 多轴、多通道电火花加工群孔、异形孔技术研究; 大容量(5000A及以上)精密电解加工技术研究; 电解—电火花复合加工技术研究。 研究上述技术的关键在于:提高高能束流的品质;开展特种加工过程的自动控制及计算机建模、仿真技术的研究;新材料加工特性研究;特种加工设备的研究等。

2 超精密加工及其新技术

2.1超精密加工概述

20世纪60年代为了适应核能、大规模集成电路、激光和航天等尖端技术的需要而发展起来的精度极高的加工技术。

超精密加工的精度比传统的精密加工提高了一个以上的数量级。到20世纪80年代,加工尺寸精度可达10纳米(1×10-8米),表面粗糙度达1纳米。超精密加工对工件材质、加工设备、工具、测量和环境等条件都有特殊的要求,需要综合应用精密机械、精密测量、精密伺服系统、计算机控制以及其他先进技术。

超精密加工的精度比传统的精密加工提高了一个以上的数量级,除需要采用新的加工方法或新的加工机理之外,对工件材质,加工设备、工具、测量和环境条件等都有特殊的要求。工件材质必须极为细致均匀,并经适当处理以消除内部残余应力,保证高度的尺寸稳定性,防止加工后发生变形。加工设备要有极高的运动精度,导轨直线性和主轴回转精度要达到0.1微米级,微量进给和定位精度要达到0.01微米级。对环境条件要求严格,须保持恒温、恒湿和空气洁净,并采取有效的防振措施。加工系统的系统误差和随机误差都应控制在 0.1微米级或更小。这些条件是靠综合应用精密机械、精密测量、精密伺服系统和计算机控制等各种先进技术获得的。

2. 2 超精密加工条件

精密加工技术是一项涉及内容广泛的综合性技术,实现精密加工,不仅需要精密的机床设备和工具、也需要稳定的环境条件,还需运用计算技术进行实时检测和反馈补偿,只有将各个领域的技术成果集应起来.才有可能实现和发展精密加工。 面对这些关键技术进行简要介绍。

(1) 精密加工机床 精密加工机床娃实现精密加工的首要条件,

(2) 金刚石刀具 精密切削加工必须能够均匀地切极薄的金属层,微量切除是精密加工的重要特征之一。金刚石刀具是精密切削中的重要手段。

(3) 精密切削机理 精密切削是微量切削,微量切削过程中许多机理方面的问题部有其特殊性,必须对这些切削机理方面的问题进行深入研究,掌握变化规律.以便更好地利用精密加工技术提高零件的加工精度和表面质量。

(4) 稳定的加工环境 精密加工必须在稳定的加工环境下进行,主要包括恒温、防振和宁气净化3个方

面的条件。

(5) 误差补偿 当加工精度高于一定程度后,若仍然采用提高机床的制造精度,保让加工环境的稳定性等误差预防措施提高加工精度,这将会使所花费的成本大幅度增加。这时应采取另一种所谓的谈趁补偿措施,即是通过消除或抵消误差本身的影响.达到提高加工精度的日的。国外的一些著名精密机床,采用

了误差补偿的方法,取得了很好的效果。

(6)精密测量技术 精密加工技术离不开精密测量技术,精密加工要求测量精度比加工精度度高1个数量级。超精密切削加工对机床设备,金刚石刀具使用技术,在绥检测与误差补偿技术,以及加工环境拧制技术等关镀技术方面比稻密加工要求更高。实现超精密加工基本条件

为了能实现超精密加工并获得预期的加工效果,必须具备下述基本条件:

(1) 被加工工件的材质要密实;各向的同一性要好(最好为单晶);表层硬度和弹性模量要恒定一致;可加工性要好;材料的化学成份与机械物理性能对标准值的偏差不应超过0.1%。

(2) 选用的超精密加工工艺方法要与被加工材料相匹配。例如,有色金属材料(如铜、铝合金)宜用单点金刚石刀具进行车削或铣削加工;黑色金属材料(如钢等)则宜选磨削与研、抛等工艺,否则得不到预期的加工效果等。

(3)加工环境要严格恒温、隔振和净化。恒温室(第一分隔区)中的温度波动不得大于±0.1°C;加工区(第二分隔区)中则不应超过±0.01°C;环境的相对湿度要保持在40%±10%以内;大气压力(如用激光测量仪时)应保持1MPa±0.1%;机床地基的隔振系统固有频率

(4)具有能实现纳米级(1nm ~10nm)增量进给的机床和分辨力优于0.1nm的测量设备,如激光干涉仪,扫描隧道显微镜和原子力显微镜等。

2.3超精密加工应用

目前,精密、超精密技术在我国的应用已不再局限于国防尖端和航空航天等少数部门,它已扩展到了国民经济的许多领域,应用规模也有较大增长。计算机、现代通信、影视传播等行业,现都需要精密、超精密加工设备,作为其迅速发展的支撑条件。计算机磁盘、录像机磁头、激光打印机的多面棱镜、复印机的感光筒等零部件的精密、超精密加工,采用的都是高效的大批量自动化生产方式。

美国、英国、日本、德国、荷兰等发达国家的精密、超精密加工技术居世界前列。这方面的技术不仅用于军事部门,也大量用于民品的生产。 今后一段时期,我国将以高效、超精密加工车床、CNC超精密复合加工机床、超精密平面和外圆磨床为重点,开发超精密加工技术及应用工程,带动一批精密、超精密的基础功能元器件,如超精密主轴轴系、超精密伺服进给系统、超精密测量系统和误差自动补偿系统的开发,以满足航天、航空及计算机等高技术产业的发展需求。

精密、超精密加工,可采用 二次加工机床;铣扁机机床;剖槽机机床;钻孔机机床;铣边机机床;铣十字槽机;铣槽机机床;倒角机机床;缩口机;攻牙机;剖沟机机床;铣槽机;铣面机机床;铣方机机床;铣平面机机床;铣台阶机;多功能加工机;组合加工机床;分度铣槽机;轴类加工机床; 扁位与槽位平行垂直,孔位与扁位槽位平行垂直成角度的均可加工,不同的产品可以根据需要设计相关的机器,而有的机器可以加工多种产品。效率高,精度可达+/-0.015MM。主要适用于各种类项的轴心(直径2-25MM),电位器,散热器,插头,灯饰配件等领域,铜,铁,铝,不锈钢,非金属类材质均可,形状可圆可方,依据要求量身定做

2.6 超精密加工新方法及特点

2.6.1砂带磨削

是用粘有磨料的混纺布为磨具对工件进行加工,属于涂附磨具磨削加工的范畴,有生产率高、表面质量好、使用范围广等特点。国外在砂带材料及制作工艺上取得了很大的成就,有了适应于不同场合的砂带系列,生产出通用和专用的砂带磨床,而且自动化程度不断提高(已有全自动和自适应控制的砂带磨床),但国内砂带品种少,质量也有待提高,对机床还处于改造阶段。

图2-1 砂带磨削机

2.6.2超精密切削

也称金刚石刀具切削(SPDT),用高精密的机床和单晶金刚石刀具进行切削加工,主要用于铜、铝等不宜磨削加工的软金属的精密加工,如计算机用的磁鼓、磁盘及大功率激光用的金属反光镜等,比一般切削加工精度要高1"2个等级。例如用精密车削加工的液压马达转子柱塞孔圆柱度为0.5"1μm,尺寸精度1"2μm;红外反光镜的表面粗糙度Ra0.01"0.02μm,还具有较好的光学性质。

图2-2 超精密切削中切削力与背吃刀量的关系

从成本上看,用精密切削加工的光学反射镜,与过去用镀铬经磨削加工的产品相比,成本大约是后者的一半或几分之一。但许多因素对精密切削的效果有影响,所以要达到预期的效果很不容易。同时,金刚石刀具切削较硬的材料时磨损较快,如切削黑色金属

时磨损速度比切削铜快104倍,而且加工出的工件的表面粗糙度和 几何形状精度均不理想。

2.6.3超精密磨削

用精确修整过的砂轮在精密磨床上进行的微量磨削加工,金属的去除量可在亚微米级甚至更小,可以达到很高的尺寸精度、形位精度和很低的表面粗糙度值。尺寸精度0.1"0.3μm,表面粗糙度Ra0.2"0.05μm,效率高。应用范围广泛,从软金属到淬火钢、不锈钢、高速钢等难切削材料,及半导体、玻璃、陶瓷等硬脆非金属材料,几乎所有的材料都可利用磨削进行加工。 但磨削加工后,被加工的表面在磨削力及磨削热的作用下金相组织要发生变化,易产生加工硬化、淬火硬化、热应力层、残余应力层和磨削裂纹等缺陷。

图2-3 平面磨削情况下切屑形状

2.6.4珩磨

用镶嵌在珩磨头上的油石砂条对工件表面施加一定压力,珩磨工具或工件同时作相对旋转、轴向直线往复运动和一定量的径向运动,切除工件上极小余量的精加工方法。加工后的表面粗糙度可达Ra0.4~0.1μm,最好可到Ra0.025μm,主要用来 加工铸铁及钢,不宜用来加工硬度小、韧性好的有色金属。

珩磨余量一般不超过0.2毫米。珩磨的圆周速度,对钢材加工约为15~30米/分,对铸铁或有色金属加工可提高到50米/分以上;珩磨的往复速度不宜超过15~20米/分。油石对孔壁的压力一般为0.3~0.5兆帕,粗珩时可达1兆帕左右,精珩可小于0.1兆帕。由于珩磨时油石与工件是面接触,每颗磨粒对工件表

面的垂直压力只有磨削时的1/50~1/100,加上珩磨速度低,故切削区的温度可保持在50~150℃范围内,有利于减小加工表面的残余应力,提高表面质量。为了冲刷切屑,避免堵塞油石,同时降低切削区温度和降低表面粗糙度,珩磨时采用的切削液要有一定的工作压力并经过滤。切削液大都采用煤油,或煤油加锭子油,也有采用极压乳化液的。

图2-4 挤压珩磨加工原理

2.6.5精密研磨

通过介于工件和工具间的磨料及加工液,工件及研具作相互机械摩擦,使工件达到所要求的尺寸与精度的加工方法。

精密研磨对于金属和非金属工件都可以达到其他加工方法所不能达到的精度和表面粗糙度,被研磨表面的粗糙度Ra≤0.025μm加工变质层很小,表面质量高,精密研磨的设备简单,主要用于平面、圆柱面、齿轮齿面及有密封要求的配偶件的加工,也可用于量规、量块、喷油嘴、阀体与阀芯的光整加工 但精密研磨的效率较低,如干研速度一般为10"30m/min,湿研速度为20"120m/min。对加工环境要求严格,如有大磨料或异物混入时,将使表面产生很难去除的划伤。

图2-5 螺旋振动研磨机工作原理图

2.6.6抛光

是利用机械、化学、电化学的方法对工件表面进行的一种微细加工,主要用来降低工件表面粗糙度,常用的方法有:手工或机械抛光、超声波抛光、化学抛光、电化学抛光及电化学机械复合加工等。

图2-6 离心抛光机工作原理

手工或机械抛光是用涂有磨膏的抛光器,在一定的压力下,与工件表面做相对运动,以实现对工件表面的光整加工。加工后工件表面粗糙度Ra≤0.05μm,可用于平面、柱面、曲面及模具型腔的抛光加工。手工抛光的加工效果与操作者的熟练程度有关。

2.6.7超声波抛光

是利用工具端面做超声振动,通过磨料悬浮液对硬脆材料进行光整加工,加工精度 0.01"0.02μm,表面粗糙度Ra0.1μm。

超声抛光设备简单,操作、维修方便,工具可用较软的材料制作,而且不需作复杂的运动,主要用来加工硬脆材料,如不导电的非金属材料,当加工导电的硬质金属材料时,生产率较低.

2.6.8化学抛光

是通过硝酸和磷酸等氧化剂,在一定的条件下,使被加工的金属表面氧化,使表面平整化和光泽化。

化学抛光设备简单,可以加工各种形状的工件,效率较高,加工的表面粗糙度一般为Ra≤0.2μm,但腐蚀液对人体和设备有损伤,污染环境,需妥善处理。主要用来对不锈钢、铜、铝及其合金的光亮修饰加工。

2.6.9电化学抛光

是利用电化学反应去除切削加工所残留的微观不平度,以提高零件表面光亮度的方法。它比机械抛光具有较高的生产率和小的表面粗糙度:一般可达Ra0.2μm,若原始表面为Ra0.4"0.2μm,则 抛光后可提高到Ra0.1"0.08μm,加工后工件具有较好的物理机械性能,使用寿命长,但电化学抛光只能加工导电的材料。随着电化学加工技术的发展,还产生了多种新型的复合加工方法,例如超精密电解磨削、电化学机械复合光整加工、电化学超精加工等。它们主要以降低工件的表面粗糙度值为目的,加工去除量很小,一般在 0.01"0.1mm,对于表面粗糙度达到Ra0.8"1.6μm的外圆,平面、内孔及自由曲面均可一道工序加工到镜面,表面粗糙度Ra0.05μm,甚至更低。

图2-7 电化学抛光原理

电化学机械加工属于一种加工单位极小的精密加工方法,从原理上讲加工精度可以达到原子级,所以加工精度具有大的潜力,但由于左右其加工精度的因素目前还不是很清楚,所以在实际应用中,其加工表现出一定的不稳定性,这在很大程度上限制了它在工业生产中的应用。

2.7超精密加工的发展趋势

超精密加工技术是一门综合性的系统工程,它的发展综合地利用了机床、工具、计量、环境技术、微电子技术、计算机技术、数控技术等的进步。

超精密加工技术随着时间的推延,精度、难度、复杂性等都在向更高层次发展,使加工技术也随之需要不断加以更新,来与之相适应。

时代对超精密加工技术仍在不断地提出更新的需求,从大到天体望远镜的透镜,小到微机械的微纳米尺寸零件。不论体积大小,其最高尺寸精度都趋近于毫微米;形状也日益复杂化,各种非球面已是当前非常典型的几何形状;70年代,始于日本的产品短薄轻小的战略思想,引发了仪表的小型化、轻便化,从而导致仪表零件的薄壁、低刚度、易变形的特点,也造成超精密加工的更大难度。

在当前必然也会谈到的是微机械技术的诞生,为超精密制造技术引来一种崭新的态势,它的微细程度使传统的制造技术面临一种新的挑战。尽管它的诞生时间只是近期的事。人们已公认为它是21世纪的前沿技术。它的发展极为神速,受到全世界的关注,我国也不例外,仅几年时间,许多单位已生产出各种产品,甚至完成了将原子迁移,构成图形或字体等的各种创举。1996年,上海交通大学展示了直径为2mm的微电机,而今天瑞士TECHSTAR GmbH已经将直径3mm电机,转速为100,000r/min的产品作为商品销售,其最小的滚珠轴承外径只有3mm。微机械的发展如此迅速,确实惊人!

超精密加工技术一直是制造技术的前沿技术,每前进一步,都需付出很大的代价,而且对其要求也是随着时间的推延而不断提高,这就必须广泛的收集信息,虽然工艺信息往往是被视作Know-How而加以保密,所以更增加了它的收集难度,但是信息的渠道是多方面的,另外,得到的信息,大部分仍然需要经过大量筛选,择其有用的为我所用。而信息的收集必须先行,并且需要及时。

超精密加工技术发展趋势是:向更高精度、更高效率方向发展;向大型化、微型化方向发展;向加工检测一体化方向发展;机床向多功能模块化方向发展;不断探讨适合于超精密加工的新原理、新方法、新材料。21世纪初十年将是超精密加工技术达到和完成纳米加工技术的关键十年。

3 结论

经过两个多月的努力,浅谈特种加工与超精密加工的论文终于完成了在整个设计过程中,出现过很多的难题,但都在老师和同学的帮助下顺利解决了,在不断的学习过程中我体会到:

写论文是一个不断学习的过程,从最初刚写论文时对特种加工与超精密加工的问题的模糊认识到最后能够对该问题有深刻的认识,我体会到实践对于学习的重要性,以前只是明白理论,没有经过实践考察,对知识的理解不够明确,通过这次的做,真正做到理论与实践相结合。

总之,通过毕业设计,我深刻体会到要做好一个完整的事情,需要有系统的思维方式和方法,对待要解决的问题,要耐心、要善于运用已有的资源来充实自己。同时我也深刻的认识到,在对待一个新事物时,一定要从整体考虑,完成一步之后再作下一步,这样才能更加有效。

致 谢

时光匆匆如流水,转眼便是大学毕业时节,春梦秋云,聚散真容易。在这个美好的季节里,我在电脑上敲出了最后一个字,心中涌现的不是想象已久的欢欣,却是难以言喻的失落。是的,随着论文的终结,意味着我生命中最纯美的学生时代即将结束,尽管百般不舍,这一天终究会在熙熙攘攘的喧嚣中决绝的来临。

三年寒窗,所收获的不仅仅是愈加丰厚的知识,更重要的是在阅读、实践中所培养的思维方式、表达能力和广阔视野。很庆幸这些年来我遇到了许多恩师益友,无论在学习上、生活上还是工作上都给予了我无私的帮助和热心的照顾,让我在诸多方面都有所成长。感恩之情难以用语言量度,谨以最朴实的话语致以最崇高的敬意。

还要感谢我的父母,给予我生命并竭尽全力给予了我接受教育的机会,养育之恩没齿难忘; 他们不仅培养了我对中国传统文化的浓厚的兴趣,让我在漫长的人生旅途中使心灵有了虔敬的归依,而且也为我能够顺利的完成毕业论文提供了巨大的支持与帮助。在未来的日子里,我会更加努力的学习和工作,不辜负父母对我的殷殷期望!我一定会好好孝敬和报答他们!,

还有许多人,也许他们只是我生命中匆匆的过客,但他们对我的支持和帮助依然在我记忆中留底了深刻的印象。在此无法一一罗列,但对他们我始终心怀感激。最后,我要向在百忙之中抽时间对本文进行审阅、评议和参加本人论文答辩的各位师长表示感谢!

参考文献

1 《特种加工》 刘晋春 赵家齐 机械工业出版社 2 《精密与特种加工技术》 袁根福 祝锡晶 北京大学出版社 3 《精密和超精密加工技术》 袁哲俊 王先逵 机械工业出版社 4 《新世纪高校机械工程规划教材》 张建化 机械工业出版社 5 《现代加工技术》 张辽远

6 《精密与特种共加工》 王贵成 张银喜

7 《先进制造技术》 张大涌

8 《特种加工技术》 周旭光

机械工业出版社 武汉理工大学出版社 机械工业出版社 西安电子科技大学出版社


相关文章

  • 精密与特种加工论文3
  • <精密与特种加工> 题目 学院 机械工程学院 班级 姓名 学号 精密与特种加工技术的现状及发展 摘要:特种加工是指利用机.光.电.声.热.化学.磁.原子能等能源来进行加工的非传统加工方法,本文主要论述对精密与特种加工这门课学习后 ...查看


  • [特种加工]课程教学大纲
  • <特种加工>课程教学大纲 课程中文名称:特种加工 课程英文名称:Non-Traditional Machining 课程类别:专业核心课程 课程编号:0400051221 课程归属单位:机械工程学院 制订时间:2015年11月1 ...查看


  • 现代加工技术概况
  • 现代加工技术概况 1. 现代加工技术发展现状 现代加工技术是广泛应用在生产制造当中的一种技术,是在原本应用机械能的方式下加以改进,变成能够对多种能利用的一种方式.通过这种方式能够大大的提高我们的工作效率,并且使得制作产品更精细.同时,现代加 ...查看


  • 国防工业的先进制造技术
  • 国防工业的先进制造技术 尖端科技 国防工业的先进制造技术 AdvancedTechnologyofManufacturinginDefenseIndustry ■李圣怡 摘要:文章介绍先进制造技术的几个重要领域,包抱制造信息化和数 字化技术 ...查看


  • 福建工程学院精密与特种加工技术复习材料
  • 1.特种加工的能量转换原理. 特种加工是将电能.热能.光能.声能和磁能等物理能量及化学能量或其组合乃至与机械能组合直接施加到被加工的部位上,从而实现材料去除的加工方法. 2.精密切削加工分类. 1)精密.超精密车削:2)精密.超精密铣削:3 ...查看


  • 超精密加工技术的发展与展望
  • 精密与特种加工技术 结课论文 题 目:超精密加工技术的发展与展望 指导教师: 沈 浩 学 院: 机电工程学院 专 业: 机 械 工 程 姓 名: 学 号: 超精密加工技术的发展与展望 摘 要:超精密加工是多种技术综合的一种加工技术, 是获得 ...查看


  • 先进制造技术
  • 攀 枝 花 学 院 先进制造技术研究现状及发展 院 系:机 电 工 程 学 院 班 级:08机械设计制造及自动化4班 姓 名:罗 乐 学 号:[1**********]3 先进制造技术研究现状及发展 摘要:本文介绍了先进制造技术的概念,分析 ...查看


  • [先进制造技术]学习报告
  • <先进制造技术>学习报告 2010年9月22日 这学期我接触了<先进制造技术>这门课,由于这门课是一门考察科目,我学得不太认真,所以我只有从书本上和网上来学习这门科的知识.以下内容我对 先进制造技术的浅谈. 先进制造 ...查看


  • 我国机械加工技术的现状与发展
  • 我国机械加工技术的现状与发展的建 议 摘要近十几年来,机械加工技术有了迅速发展.一方面是传统的切削与 磨削加工技术仍在不断发展,加工精度水平也日益提高,精密加工与超精密加工技 术已进入实用阶段;另一方面加工技术向自动化方向发展,正在沿着数控 ...查看


热门内容