平面图形的密铺
教学目标
(一) 教学知识点:
1. 了解平面图形的密铺的含义.
2. 掌握哪些平面图形可以密铺,密铺的理由及简单的密铺设计.
(二) 能力训练要求:
1. 经历探索多边形密铺(镶嵌) 条件的过程,进一步发展学生的合情推理能力.
2. 通过探索平面图形的密铺,知道任意一个三角形、四边形或正六边形可以密铺,并能运用这几种图形进行简单的密铺设计.
(三) 情感与价值观要求:
平面图形的密铺是体现电冰箱在现实生活中应用的一个方面;也是开发、培养学生创造性思维的一个重要渠道。
教学重点:三角形、四边形和正六边形可以密铺。
教学难点:用同一种平面图形或者几种平面图形可以密铺的条件。
教学过程:
一. 巧设情景问题,引入课题
我们经常能见到各种建筑物的地板,观察地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.(展示各种地板图片) 这些地板漂亮吗?这种用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的密铺.
这节课我们来探索平面图形的密铺.
二. 讲授新课
平面图形的密铺,又称做平面图形的镶嵌,在平面上密铺需注意:各种图形拼接后要既无缝隙,又不重叠. 那我们先来探索多边形密铺的条件,大家拿出准备好的剪刀和硬纸片分组来做一做:
(1)用形状、大小完全相同的三角形能否密铺?
(2)用同一种四边形可以密铺吗?用硬纸板剪制若干形状、大小完全相同的四边形做实验,并与同伴交流.
(3)在用三角形密铺的图案中,观察每个拼接点处有几个角?它们与这种三角形的三个内角有什么关系?
(4)在用四边形密铺的图案中,观察每个拼接点处的四个角与这种四边形的四个内角有什么关系?
(学生动手制作、教师强调:大家要注意:三角形、四边形的形状,可以是任意的,但裁剪出的每种图形一定是全等形.)
(学生分组拼接、讨论,寻找规律,教师巡视指导)
1.用形状、大小完全相同的三角形可以密铺. 因为三角形的内角和为180°,所以,用6个
这样的三角形就可以组合起来镶嵌成一个平面.
从用三角形密铺的图案中,观察到:每个拼接点处有6个角,这6个角分别是这种三角形的内角(其中有三组分别相等) ,它们可以组成两个三角形的内角,它们的和为360°.
2.用同一种四边形也可以密铺,在用四边形密铺的图案中,观察到:每个拼接点处的四个角恰好是一个四边形的四个内角. 四边形的内角和为360°,所以它们的和为360°.
3.从拼接活动中,我们知道了:要用几个形状、大小完全相同的图形不留空隙、不重叠地密铺一个平面,需使得拼接点处的各角之和为360°.
通过探索活动,我们得知:用形状、大小完全相同的四边形或三角形可以密铺一个平面,那么其他的多边形能否密铺?下面大家来想一想,议一议:
(1)正六边形能否密铺?简述你的理由.
(2)分析如下图,讨论正五边形不能密铺
.
(3)还能找到能密铺的其他正多边形吗?
(学生分析、讨论、归纳)
小节:要用正多边形镶嵌成一个平面的关键是看:这种正多边形的一个内角的倍数是否是360°,在正多边形里,正三角形的每个内角都是60°,正四边形的每个内角都是90°,正六边形的每个内角都是120°,这三种多边形的一个内角的倍数都是360°,而其他的正多边形的每个内角的倍数都不是360°,所以说:在正多边形里只有正三角形、正四边形、正六边形可以密铺,而其他的正多边形不可密铺. 一般三角形、四边形也可以密铺. 虽然它们的内角未必都相等.
三. 课堂练习:(一) 课本P 114随堂练习
1. 如图,在一个正方形的内部按图示(1)的方式剪去一个正三角形,并平移,形成如图(2)所示的新图案,以这个图案为“基本单位”能否进行密铺?说说理由.
2. 利用习题3.7第三题所得的“鱼”形图案能否密铺?根据上面的思路,自己独立设计一个可以密铺的“基本单位”图形.
答案:可以密铺.
(二) 试一试:同时用边长相同的正八边形和正方形能否密铺?用硬纸板为材料进行实验. 答案:可以密铺
四.. 课时小结
本节课我们通过活动,探讨,知道任意一个三角形,四边形或正六边形可以镶嵌成一个平面,并且探索出正多边形密铺的条件. 即:
一种正多边形的一个内角的倍数是否是360°.
五. 课后作业
课本P 115习题4.13 1、2、3
六.课后探索:
探索用两种正多边形镶嵌平面的条件.
过程:让学生先从简单的两种正多边形开始探索.
(1)正三角形与正方形
正方形的每个内角是90°,正三角形的每个内角是60°,对于某个拼结点处,设有x 个60°角,有y 个90°角,则:
60x +90y =360
即:2x +3y =12
又x 、y 是正整数
解得:x =3,y =2
即:每个顶点处用正三角形的三个内角,正方形的两个内角进行拼接.(如下图
)
(2)正三角形与正六边形
正三角形的每个内角是60°,正六边形的每个内角是120°,对于某个拼结点处,设有x 个60°角,有y 个120°角,即:
60x +120y =360°
即x +2y =6
x 、y 是正整数
⎧x =4⎧x =2解得:⎨ 或⎨y =1y =2⎩⎩
即:每个顶点处用四个正三角形和一个正六边形,或者用二个正三角形和两个正六边形,如下图.
(3)正三角形和正十二边形
与前一样讨论,得每个顶点处用一个正三角形和两个正十二边形
由以上讨论可找到镶嵌平面的条件.
结论:
由n 种正多边形组合起来镶嵌成一个平面的条件:
(1)n 个正多边形中的一个内角的和的倍数是360°;
(2)n 个正多边形的边长相等,或其中一个或n 个正多边形的边长是另一个或n 个正多边形的边长的整数倍.
平面图形的密铺
教学目标
(一) 教学知识点:
1. 了解平面图形的密铺的含义.
2. 掌握哪些平面图形可以密铺,密铺的理由及简单的密铺设计.
(二) 能力训练要求:
1. 经历探索多边形密铺(镶嵌) 条件的过程,进一步发展学生的合情推理能力.
2. 通过探索平面图形的密铺,知道任意一个三角形、四边形或正六边形可以密铺,并能运用这几种图形进行简单的密铺设计.
(三) 情感与价值观要求:
平面图形的密铺是体现电冰箱在现实生活中应用的一个方面;也是开发、培养学生创造性思维的一个重要渠道。
教学重点:三角形、四边形和正六边形可以密铺。
教学难点:用同一种平面图形或者几种平面图形可以密铺的条件。
教学过程:
一. 巧设情景问题,引入课题
我们经常能见到各种建筑物的地板,观察地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.(展示各种地板图片) 这些地板漂亮吗?这种用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的密铺.
这节课我们来探索平面图形的密铺.
二. 讲授新课
平面图形的密铺,又称做平面图形的镶嵌,在平面上密铺需注意:各种图形拼接后要既无缝隙,又不重叠. 那我们先来探索多边形密铺的条件,大家拿出准备好的剪刀和硬纸片分组来做一做:
(1)用形状、大小完全相同的三角形能否密铺?
(2)用同一种四边形可以密铺吗?用硬纸板剪制若干形状、大小完全相同的四边形做实验,并与同伴交流.
(3)在用三角形密铺的图案中,观察每个拼接点处有几个角?它们与这种三角形的三个内角有什么关系?
(4)在用四边形密铺的图案中,观察每个拼接点处的四个角与这种四边形的四个内角有什么关系?
(学生动手制作、教师强调:大家要注意:三角形、四边形的形状,可以是任意的,但裁剪出的每种图形一定是全等形.)
(学生分组拼接、讨论,寻找规律,教师巡视指导)
1.用形状、大小完全相同的三角形可以密铺. 因为三角形的内角和为180°,所以,用6个
这样的三角形就可以组合起来镶嵌成一个平面.
从用三角形密铺的图案中,观察到:每个拼接点处有6个角,这6个角分别是这种三角形的内角(其中有三组分别相等) ,它们可以组成两个三角形的内角,它们的和为360°.
2.用同一种四边形也可以密铺,在用四边形密铺的图案中,观察到:每个拼接点处的四个角恰好是一个四边形的四个内角. 四边形的内角和为360°,所以它们的和为360°.
3.从拼接活动中,我们知道了:要用几个形状、大小完全相同的图形不留空隙、不重叠地密铺一个平面,需使得拼接点处的各角之和为360°.
通过探索活动,我们得知:用形状、大小完全相同的四边形或三角形可以密铺一个平面,那么其他的多边形能否密铺?下面大家来想一想,议一议:
(1)正六边形能否密铺?简述你的理由.
(2)分析如下图,讨论正五边形不能密铺
.
(3)还能找到能密铺的其他正多边形吗?
(学生分析、讨论、归纳)
小节:要用正多边形镶嵌成一个平面的关键是看:这种正多边形的一个内角的倍数是否是360°,在正多边形里,正三角形的每个内角都是60°,正四边形的每个内角都是90°,正六边形的每个内角都是120°,这三种多边形的一个内角的倍数都是360°,而其他的正多边形的每个内角的倍数都不是360°,所以说:在正多边形里只有正三角形、正四边形、正六边形可以密铺,而其他的正多边形不可密铺. 一般三角形、四边形也可以密铺. 虽然它们的内角未必都相等.
三. 课堂练习:(一) 课本P 114随堂练习
1. 如图,在一个正方形的内部按图示(1)的方式剪去一个正三角形,并平移,形成如图(2)所示的新图案,以这个图案为“基本单位”能否进行密铺?说说理由.
2. 利用习题3.7第三题所得的“鱼”形图案能否密铺?根据上面的思路,自己独立设计一个可以密铺的“基本单位”图形.
答案:可以密铺.
(二) 试一试:同时用边长相同的正八边形和正方形能否密铺?用硬纸板为材料进行实验. 答案:可以密铺
四.. 课时小结
本节课我们通过活动,探讨,知道任意一个三角形,四边形或正六边形可以镶嵌成一个平面,并且探索出正多边形密铺的条件. 即:
一种正多边形的一个内角的倍数是否是360°.
五. 课后作业
课本P 115习题4.13 1、2、3
六.课后探索:
探索用两种正多边形镶嵌平面的条件.
过程:让学生先从简单的两种正多边形开始探索.
(1)正三角形与正方形
正方形的每个内角是90°,正三角形的每个内角是60°,对于某个拼结点处,设有x 个60°角,有y 个90°角,则:
60x +90y =360
即:2x +3y =12
又x 、y 是正整数
解得:x =3,y =2
即:每个顶点处用正三角形的三个内角,正方形的两个内角进行拼接.(如下图
)
(2)正三角形与正六边形
正三角形的每个内角是60°,正六边形的每个内角是120°,对于某个拼结点处,设有x 个60°角,有y 个120°角,即:
60x +120y =360°
即x +2y =6
x 、y 是正整数
⎧x =4⎧x =2解得:⎨ 或⎨y =1y =2⎩⎩
即:每个顶点处用四个正三角形和一个正六边形,或者用二个正三角形和两个正六边形,如下图.
(3)正三角形和正十二边形
与前一样讨论,得每个顶点处用一个正三角形和两个正十二边形
由以上讨论可找到镶嵌平面的条件.
结论:
由n 种正多边形组合起来镶嵌成一个平面的条件:
(1)n 个正多边形中的一个内角的和的倍数是360°;
(2)n 个正多边形的边长相等,或其中一个或n 个正多边形的边长是另一个或n 个正多边形的边长的整数倍.