数学教案解方程

§5.2 解方程 (1)

教学目标:

1、学会利用等式性质1解方程;

2、理解移项的概念;

3、学会移项。

教学重点:利用等式性质1解方程及移项法则;

教学难点:利用等式性质1来解释方程的变形。

教学准备:

1、投影仪、投影片。

2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。

教学过程:

(一)引入新课:

1、 上节课的想一想引入新课:等式和方程之间有什么区别和联系?

方程是等式,但必须含有未知数;

等式不一定含有未知数,它不一定是方程。

2、下面的一些式子是否为方程?这些方程又有何特点?

① 5x+6=9x②3x+5③7+5×3=22④4x+3y=2

由学生小议后回答:①、④是方程。

分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数。

我们先来研究最简单的(只含有一个未知数的)的一元一次方程。

3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。

注意:一次方程可以含有两个或两个以上的未知数:如上例的④。

4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。

5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)

① 2x+3=11②y2=16③x+y=2④3y-1=4y

6、什么叫方程的解?怎样解方程?

关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程

(二)、讲解新课:

1、 等式性质1:

出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。

强调关键词:

2、 利用等式性质1解方程:

x+2=5

分析:要把原方程变形成x=?只要把方程两边同时减去2即可。

注意: 解题格式。

例1 解方程5x=7+4x

分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x。

(解略)

解完后提问:如何检验方程时的计算有没有错误?(由学生回答)

只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)

观察前面两个方程的求解过程:

x+2=5 5x=7+4x

x=5-2 5x-4x=7 思考:⑴把+2从方程的一边移到另一边,发生了什么变化?

⑵把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变)

3、 移项:

从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。

注意:①移项要变号;

②移项的实质:利用等式性质1对方程进行变形。

例2 解方程:3x+4=2x+7

解:移项,得3x-2x=7-4,

合并同类项,得x=3。

∴x=3是原方程的解。

归纳:①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;

②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式;

③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。

练习:书本105页 1(口答),2(板演),想一想。

(三)、课堂小结:

①什么是一次方程,一元一次方程?

②等式性质1(找关键词);

③移项法则;

④应用等式性质1的注意点(例2归纳的三条)。

(四)、布置作业:见作业本。

§5.2 解方程 (1)

教学目标:

1、学会利用等式性质1解方程;

2、理解移项的概念;

3、学会移项。

教学重点:利用等式性质1解方程及移项法则;

教学难点:利用等式性质1来解释方程的变形。

教学准备:

1、投影仪、投影片。

2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。

教学过程:

(一)引入新课:

1、 上节课的想一想引入新课:等式和方程之间有什么区别和联系?

方程是等式,但必须含有未知数;

等式不一定含有未知数,它不一定是方程。

2、下面的一些式子是否为方程?这些方程又有何特点?

① 5x+6=9x②3x+5③7+5×3=22④4x+3y=2

由学生小议后回答:①、④是方程。

分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数。

我们先来研究最简单的(只含有一个未知数的)的一元一次方程。

3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。

注意:一次方程可以含有两个或两个以上的未知数:如上例的④。

4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。

5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)

① 2x+3=11②y2=16③x+y=2④3y-1=4y

6、什么叫方程的解?怎样解方程?

关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究如何求一元一次方程的解(点出课题)利用等式性质1解一元一次方程

(二)、讲解新课:

1、 等式性质1:

出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。

强调关键词:

2、 利用等式性质1解方程:

x+2=5

分析:要把原方程变形成x=?只要把方程两边同时减去2即可。

注意: 解题格式。

例1 解方程5x=7+4x

分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x。

(解略)

解完后提问:如何检验方程时的计算有没有错误?(由学生回答)

只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)

观察前面两个方程的求解过程:

x+2=5 5x=7+4x

x=5-2 5x-4x=7 思考:⑴把+2从方程的一边移到另一边,发生了什么变化?

⑵把+4x从方程的一边移到另一边,又发生了什么变化?(符号改变)

3、 移项:

从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。

注意:①移项要变号;

②移项的实质:利用等式性质1对方程进行变形。

例2 解方程:3x+4=2x+7

解:移项,得3x-2x=7-4,

合并同类项,得x=3。

∴x=3是原方程的解。

归纳:①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;

②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式;

③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。

练习:书本105页 1(口答),2(板演),想一想。

(三)、课堂小结:

①什么是一次方程,一元一次方程?

②等式性质1(找关键词);

③移项法则;

④应用等式性质1的注意点(例2归纳的三条)。

(四)、布置作业:见作业本。


相关文章

  • 选课指南(2015级)
  • 复旦大学数学学院 学生选课指南 (自2015年新生开始) Version 1:2015/7/3 选课是大学和中学最大的不同之一,学生在大学学习阶段需要在一定的范围内自己决定学什么课程,这对习惯中小学按学校安排课程学习的学生来说经常会面临选择 ...查看


  • 常微分方程在数学建模中的应用
  • 北方民族大学 学士学位论文 论文题目: 院(部) 名 称: 信息与计算科学学院 学 生 姓 名: 马木沙 专 业: 信计 学 号: 20093490 指导教师姓名: 魏波 论文提交时间: 论文答辩时间: 学位授予时间: 北方民族大学教务处制 ...查看


  • 论"增根"在数学中存在的价值
  • 论"增根"在数学中存在的价值 摘要:懂得一些数学常识的人都知道,"根"在数学上,意思是指能使一元方程左右两边的值相等的未知数的取值.也可以这样讲,方程的"根"与"解&qu ...查看


  • 数学物理方程 课程论文
  • 数学物理方程在化工中的应用简介 摘要:数学是科学的基础, 是现代科学和工程技术的核心.虽然数学研究和数学教育的兴旺发达, 并不会自动地带来先进的科学技术和强大的化学工业, 但后者要先进和强大, 则离不开数学的繁荣与发展.数学在化学工程中的应 ...查看


  • 现代电力系统分析整理提纲
  • 第一章 现代电力系统的主要特点, 电网互联的优点及带来的问题, 电力系统的运行状态及运行状态带来的好处.电力系统分析概述. 第二章 电力网络的基本概念 结点电压方程,关联矩阵, 用关联矩阵与支路参数确定结点电压方程, 流站,及其控制方式) ...查看


  • 分式方程解法
  • 16.3<分式方程解法>说课稿 <课标>指出:"数学教学是数学活动的教学,是师生之间.学生之间交往互动与共同发展的过程."从教师的教学角度上看:教师是进行数学活动的组织者.引领者,是教学活动的主导 ...查看


  • 近世代数的应用
  • 近世代数的应用 班级:2009214101 学号:09212604 序号:28 姓名:蔡忠忠 近世代数(又名抽象代数)是现代数学的重要基础,在计算机科学.信息科学.近代物理与近代化学等方面有广泛的应用,是从事现代科学技术人员所必需的数学基础 ...查看


  • 二阶变系数齐次微分方程通解的求法
  • ((高等数学研究1:?,($$" 一类二阶变系数齐次微分方程通解的求法 李永利! 摘要!!桑改莲!(河南质量工程职业学院基础部!河南平顶山!!"#$$$)作为文[%]两种情形的统一推广,给出一类二阶变系数线性微分方程的通 ...查看


  • 人教新课标五年级上册数学教案解方程1教学设计
  • (人教新课标)五年级数学教案 上册解方程3 教学内容: 数学书P60:例3.及61页的做一做,练习十一的第8题. 教学目标: 1. 初步学会如何利用方程来解应用题 2.能比较熟练地解方程. 3.进一步提高学生分析数量关系的能力. 教学重难点 ...查看


热门内容