四年级奥数练习题:归一问题测试(A卷)

四年级奥数练习题:归一问题测试(A卷)

1. 加工一批39600件的大衣,30个人10天完成了13200件,其余的要求在15天内完成,要增加_____人.

2. 54人12天修水渠1944米,如果人数增加18人,天数缩到原来的一半,可修水渠_____米.

3. 一批产品,28人25天可以收割完,生产5天后,此项任务要提前10天完成,应增加_____人.

4. 某食堂存有16人可吃15天的米,16人吃了5天后,走了6人,余下的可吃_____天.

5. 某生产小组12个人,9天完成,零件1620个.现在有一批任务,零件数为2520个,问14个人要_____天完成.

6. 一项工程预计15人每天做4小时,18天可以完成,后来增加3人,并且工作时间增加1小时,这项工程_____天完成.

7. 某机床厂第一车间的职工,用18台车床,2小时生产机器零件720件,20台这样的车床3小时可生产机器零件_____件.

8. 4辆大卡车5次运煤80吨,3辆小卡车8次运煤36吨.现在有煤77吨,用一辆大卡车和小卡车同时运_____次运完.

9. 某车间接到任务,要在15天制造12000个零件.后来任务增加28%日产量也提高 .这样_____天完成.

10. 8个人10天修路840米,照这样算,20人修4200米,要_____天.

解答题:

11. 某工程队施工时,欲将一个池塘的水排完,若用15台抽水机,并且每天抽水8小时,则7日可排水1260吨;若每天抽水12小时,要求14天排水7560吨,则应需几台抽水机?

12. 光华机械厂一个车间,原计划15人3天做900个零件,生产开始后,又增加一批任务,在工作效率相同下,要10个人8天完成,问增加了几个零件?

13. 光明小学有50个学生帮学校搬砖,要搬2000块,4次搬了一半,照这样算,再增加50个学生,还要几次运完?

14. 一根木料,锯成2段,要3分钟,如果锯成6段要多少分钟?

四年级奥数归一问题测试题(A卷)答案

1. 10人.

解: (39600-13200)÷(13200÷30÷10×15)-30=10(人).

2. 1296米.

解: 1944÷54÷12×(18+54)×(12÷2)=1296(米).

3. 28人.

解: (28×25-28×5)÷(25-5-10)-28=28(人).

4. 16天.

解: (15×16-5×16)÷(16-6)=16(天).

5. 12天.

解: 2520÷(1620÷9÷12×14)=12(天).

6. 12天.

解: 15×4×18÷[(15+3)×(4+1)]=12(天).

7. 1200件.

解: 720÷18÷2×20×3=1200(件).

8. 14次.

解: 77÷[(80÷4÷5)+(36÷3÷8)]=14(次).

9. 16天.

解: (12000+12000×0.28)÷(12000÷15+12000÷15× )=16(天).

10. 20天.

解: 4200÷(840÷10÷8×20)=20(天).

11. 先求出1台机器1小时排水的吨数: 1260÷7÷8÷15=1.5(吨).

再求出1台机器每天排12小时排足14天的水的吨数: 1.5×12×14=252(吨).

最后求出所需要的台数: 7560÷252=30(台).

综合式: 7560÷[1260÷15÷(8×7)×(12×14)]=30(台).

12. 先求出每个人每天做的个数: 900÷15÷3=20(个).

再求出共做的个数: 20×10×8=1600(个).

最后求出增加的个数: 1600-900=700(个).

13. 先求出每个学生每次运的砖数: 2000× ÷4÷50=5(块).

再求出现在的学生一次过运的砖数: (50+50)×5=500(块).

最后求出还要运的次数: 2000× ÷500=2(次).

简便方法: 4÷[(50+50)÷50]=2(次).

14. 先求出锯一下用的时间: 3÷(2-1)=1.5(分钟).

再求出锯6段用的次数: 6-1=5(次).

最后求出共用的时间: 1.5×5=7.5(分钟).

四年级奥数练习题:归一问题测试(A卷)

1. 加工一批39600件的大衣,30个人10天完成了13200件,其余的要求在15天内完成,要增加_____人.

2. 54人12天修水渠1944米,如果人数增加18人,天数缩到原来的一半,可修水渠_____米.

3. 一批产品,28人25天可以收割完,生产5天后,此项任务要提前10天完成,应增加_____人.

4. 某食堂存有16人可吃15天的米,16人吃了5天后,走了6人,余下的可吃_____天.

5. 某生产小组12个人,9天完成,零件1620个.现在有一批任务,零件数为2520个,问14个人要_____天完成.

6. 一项工程预计15人每天做4小时,18天可以完成,后来增加3人,并且工作时间增加1小时,这项工程_____天完成.

7. 某机床厂第一车间的职工,用18台车床,2小时生产机器零件720件,20台这样的车床3小时可生产机器零件_____件.

8. 4辆大卡车5次运煤80吨,3辆小卡车8次运煤36吨.现在有煤77吨,用一辆大卡车和小卡车同时运_____次运完.

9. 某车间接到任务,要在15天制造12000个零件.后来任务增加28%日产量也提高 .这样_____天完成.

10. 8个人10天修路840米,照这样算,20人修4200米,要_____天.

解答题:

11. 某工程队施工时,欲将一个池塘的水排完,若用15台抽水机,并且每天抽水8小时,则7日可排水1260吨;若每天抽水12小时,要求14天排水7560吨,则应需几台抽水机?

12. 光华机械厂一个车间,原计划15人3天做900个零件,生产开始后,又增加一批任务,在工作效率相同下,要10个人8天完成,问增加了几个零件?

13. 光明小学有50个学生帮学校搬砖,要搬2000块,4次搬了一半,照这样算,再增加50个学生,还要几次运完?

14. 一根木料,锯成2段,要3分钟,如果锯成6段要多少分钟?

四年级奥数归一问题测试题(A卷)答案

1. 10人.

解: (39600-13200)÷(13200÷30÷10×15)-30=10(人).

2. 1296米.

解: 1944÷54÷12×(18+54)×(12÷2)=1296(米).

3. 28人.

解: (28×25-28×5)÷(25-5-10)-28=28(人).

4. 16天.

解: (15×16-5×16)÷(16-6)=16(天).

5. 12天.

解: 2520÷(1620÷9÷12×14)=12(天).

6. 12天.

解: 15×4×18÷[(15+3)×(4+1)]=12(天).

7. 1200件.

解: 720÷18÷2×20×3=1200(件).

8. 14次.

解: 77÷[(80÷4÷5)+(36÷3÷8)]=14(次).

9. 16天.

解: (12000+12000×0.28)÷(12000÷15+12000÷15× )=16(天).

10. 20天.

解: 4200÷(840÷10÷8×20)=20(天).

11. 先求出1台机器1小时排水的吨数: 1260÷7÷8÷15=1.5(吨).

再求出1台机器每天排12小时排足14天的水的吨数: 1.5×12×14=252(吨).

最后求出所需要的台数: 7560÷252=30(台).

综合式: 7560÷[1260÷15÷(8×7)×(12×14)]=30(台).

12. 先求出每个人每天做的个数: 900÷15÷3=20(个).

再求出共做的个数: 20×10×8=1600(个).

最后求出增加的个数: 1600-900=700(个).

13. 先求出每个学生每次运的砖数: 2000× ÷4÷50=5(块).

再求出现在的学生一次过运的砖数: (50+50)×5=500(块).

最后求出还要运的次数: 2000× ÷500=2(次).

简便方法: 4÷[(50+50)÷50]=2(次).

14. 先求出锯一下用的时间: 3÷(2-1)=1.5(分钟).

再求出锯6段用的次数: 6-1=5(次).

最后求出共用的时间: 1.5×5=7.5(分钟).


相关文章

  • 苏教版三年级上册语文电子课本
  • 全国站 首页 小升初 杯赛竞赛 重点中学 奥数题库 教学资源 小学试题 趣味乐园 小学数学 小学语文 小学英语 小学作文 家庭教育 一年级 二年级 三年级 四年级 五年级 六年级 展开 全国站 小升初 资讯 政策 择校 备考 经验 面试 简 ...查看


  • 一年级奥数之有趣的平面图形测试
  • 一年级秋季第三讲 有趣的平面图形 拓展练习 史乐老师 03有趣的平面图形 拓展题目 1.数一数,填一填. 2.请你数一数下面的图形. 3.请你数一数下面的图形中有多少个三角形? 一年级秋季第三讲 有趣的平面图形 拓展练习 史乐老师 4.请你 ...查看


  • 2013年最受欢迎的小升初奥数教材
  • 2013年最受欢迎的小升初奥数教材 小升初各大奥数杯赛已经开始报名,奥数冲刺除了报各大辅导班以外,最重要应该是选择一本奥数教材,奥数教材的最大的好处是不限时间不限地点可以重复自学,下面根据统计数据为大家公布2013年最受武汉学生欢迎的小升初 ...查看


  • 小学六年级奥数题:行程问题流水行舟练习题八
  • 编者小语:行程问题在六年级奥数题中经常出现.小升初测试和奥数杯赛都对行程问题青睐.编辑为六年级的同学准备了六年级奥数题中关于行程问题流水行舟的练习题八,希望能更好让同学们掌握相关知识.1.两个码头相距192千米,一艘汽艇顺水行完全程需要8小 ...查看


  • 小学奥数教案--容斥问题
  • 教案 容斥问题 一 本讲学习目标 理解并掌握容斥问题. 二 重点难点考点分析 容斥问题涉及到一个重要原理--包含和排除原理.也叫容斥原理.即当两个计数部分有重复包含时,为了不重复的计数,应从它们的和中排除重复部分. 三 概念解析 容斥原理: ...查看


  • 奥数的一些相关问题
  • [学习篇] 奥数学什么,奥数杯赛有哪些,对学习奥数的几点建议 1. 什么是奥数? "奥数"是奥林匹克数学竞赛的简称.1934年和1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克的名称,1959 ...查看


  • [四年级]奥数 速算与巧算 (1-17)
  • 奥数 > 奥数题库 > 奥数练习题 > 四年级奥数 > 速算与巧算 奥数练习题 一年级 二年级 三年级 四年级 速算与巧算定义新运算等差数列及其应用倒推法的妙用行程问题几何中的计数问题图形的剪拼格点与面积填横式数学竞 ...查看


  • 奥数题库|小学三年级奥数练习题集锦
  • 速算与巧算 巧算速算一般都是通过凑整法或者其他方法使复杂的计算变得简单明了,从而提...[巧算] [凑整法] ·三年级奥数试题及答案:速算与巧算 ·三年级奥数试题及答案:速算与巧算 上楼梯问题 爬楼梯问题的解题规律是:所走的台阶数=每层楼梯 ...查看


  • 小学四年级奥数 容斥问题
  • 容斥问题(一) 容斥问题涉及到一个重要的原理--包含与排除原理,也称为容斥原理,即当两个计数部分有重复包含时,为了不重复地计数,应从它们的和中排除重复部分. 这一讲我们先介绍容斥原理1对n 个事物,如果采用两种不同的分类标准:按性质a 分类 ...查看


热门内容