《高等数学(二)》作业参考答案
一、填空题
1.VIII 2.t 3.
2
f (x , y )
{(x , y ) x ≥y >0}
2
4.x
-5x y 4
x 0
5.
⎰dx ⎰
1
f (x , y ) dy 或
⎰dy ⎰
11
y
f (x , y ) dx
6
.
7.(2,-2,1) 8.
{
1
x 2+y 2+(1-x ) 2=9z =0
9.-4y 10.
{(x , y ) x ≥0, y ≥0, x >y }
2
11
.
⎰
-1
dx ⎰2
1
x +y 2
f (x , y , z ) dz
12.-
56
15
122
13.3; , -,
33314
1
-ln t sin t +cos t +cos t 15.
t
16.
⎰
2π
d θ⎰f (r cos θ, r sin θ) r dr .
a
1
17.
618.0
x -x 0
19.
=
y -y 0
=
z -z 0
1
.
20.(-2,-4,8)
221.
r
22.
x
x -1
y ln y dx +xy dy .
23.0
824.
3
二、计算题
1.
1.(1)解lim (2)解=-x +y x 1+213
e =e =e
x →1xy 1⨯22y →2
= x →0x →0y →0y →0
1=-
x →04y →0
(3)解:
lim(x 2+y 2) =0,
x →0
y →0
又 当x →0, y →0时sin ∴lim(x 2+y 2)sin
x →0y →0
1
有界, 22
x +y
1
=0. 22
x +y
(4)解:
=x →0x →0y →y →0
=x →0
y →0
=1)
x →0y →0
=2
(5)解:
2
0≤
x y x 2
+y
2
≤y
又 lim x →0y =0
y →0
2∴lim
x y x →0y →0
x 2
+y
2
=0
2.
2.(1)解:
∂z
∂x
=2xy -sin y , ∂z
∂y
=x 2-x cos y . (2)解:∂z
∂x
=y x y -1,
∂z
∂y
=x y ln x (3)解:
在z =(1+2xy ) x 的等号两边取对数得:
ln z=xln(1+2xy)
.
对x 求偏导数:1∂z z ∂x =ln(1+2xy ) +x 1
1+2xy
2y
∴
∂z ⎡∂x =z ⎢⎣ln(1+2xy ) +2xy ⎤
1+2xy ⎥⎦
=(1+2xy ) x ⎡⎢⎣ln(1+2xy ) +2xy ⎤
1+2xy ⎥⎦
(4)解:
∂z ∂x =1(-y ) =-y
;
1+(y ) 2x 2x 2+y 2
x
∂z 11x
∂y ==1+(y ) 2x x 2+y 2
. x
.
(5)解:
∂u 1x 1=sec 2() ∂x tan() y y
y 1
=
x x y sin() cos()
y y 22x =csc(). y y ∂u 1x 2x =sec () (-2)
x ∂y tan() y y y 2x 2x =-2csc
y y
3.解:
1
⎰
2
d x ⎰
x 2
1
f (x , y ) d =y ⎰
41
(f , x ) y d x
2
4.解:设L 是星形曲线(方向为逆时针方向),则面积
A ==
===
1
x dy -y dx ⎰ L 2
12π3232
(a cos t ⋅3a sin +cos t +a sin t ⋅3a cos t sin t ) dt ⎰02
322π
a ⎰(sin2t cos 4t +cos 2t sin 4t ) dt 02
322π
a ⎰sin 22td (2t )
016
3
πa 28
d σ=
=
2r ⎰⎰dr d θD 2π
5.解:
⎰⎰
D
⎰
d θ⎰r 2dr
a
b
b
⎡1⎤=2π⎢r 3⎥
⎣3⎦a 2
=π(b 3-a 3) 3
.
6.解:
⎰⎰⎰
Ω
x dx dy dz =
1-x 20
⎰
1
dx ⎰
1-x 20
dy ⎰
1-x -0
y 2
x dy
=
⎰
1
x dx ⎰
(1-2x -2y ) dy
11
=⎰(x -2x 2+x 3) dx 401=. 48
7.解:
令p =xy 2, θ=x 2y , 则xy 2dx+x2ydy=pdx+θdy. 由于在整个xoy 面内恒有∂p ∂θ=2xy =, ∂y ∂x
8.解:
因此, 在整个xoy 面内xy 2dx+x2ydy 是某个函数的全微分.
设p =2xy -y 4+3, q =x 2-4xy 3
则在整个xoy 面内恒有∂p ∂q 3
=2x -4y =, ∂y ∂x 因此, 该积分与路径无关, 取积分路线如右图, 则有
C(2,1)
A(1,0)
B(2,0)
⎰
1
(2,1)
(1,0)
pdx +qdy
10
=⎰p (x ,0) dx +⎰q (2,y ) dy =⎰3dx +⎰(4-8y 3) dy
1
2
1
2
=5
9.解:D 是X-型区域。
⎰⎰xy d σ=⎰dx ⎰
1
D
2
2x
1
xy dy
==
10.解:
⎰
1
(.
x
3
-) dx 22
x
98
4
(x +y +z ) d υ=d θd ϕr ⎰⎰⎰⎰⎰⎰sin ϕdr
2
2
2
Ω
2ππ1
=⎰d θ ⎰sin ϕd ϕ ⎰r 4dr
2ππ1
⎡15⎤=2π [-cos ϕ]0 ⎢r ⎥
⎣5⎦0
π
1
=
45
π.
《高等数学(二)》作业参考答案
一、填空题
1.VIII 2.t 3.
2
f (x , y )
{(x , y ) x ≥y >0}
2
4.x
-5x y 4
x 0
5.
⎰dx ⎰
1
f (x , y ) dy 或
⎰dy ⎰
11
y
f (x , y ) dx
6
.
7.(2,-2,1) 8.
{
1
x 2+y 2+(1-x ) 2=9z =0
9.-4y 10.
{(x , y ) x ≥0, y ≥0, x >y }
2
11
.
⎰
-1
dx ⎰2
1
x +y 2
f (x , y , z ) dz
12.-
56
15
122
13.3; , -,
33314
1
-ln t sin t +cos t +cos t 15.
t
16.
⎰
2π
d θ⎰f (r cos θ, r sin θ) r dr .
a
1
17.
618.0
x -x 0
19.
=
y -y 0
=
z -z 0
1
.
20.(-2,-4,8)
221.
r
22.
x
x -1
y ln y dx +xy dy .
23.0
824.
3
二、计算题
1.
1.(1)解lim (2)解=-x +y x 1+213
e =e =e
x →1xy 1⨯22y →2
= x →0x →0y →0y →0
1=-
x →04y →0
(3)解:
lim(x 2+y 2) =0,
x →0
y →0
又 当x →0, y →0时sin ∴lim(x 2+y 2)sin
x →0y →0
1
有界, 22
x +y
1
=0. 22
x +y
(4)解:
=x →0x →0y →y →0
=x →0
y →0
=1)
x →0y →0
=2
(5)解:
2
0≤
x y x 2
+y
2
≤y
又 lim x →0y =0
y →0
2∴lim
x y x →0y →0
x 2
+y
2
=0
2.
2.(1)解:
∂z
∂x
=2xy -sin y , ∂z
∂y
=x 2-x cos y . (2)解:∂z
∂x
=y x y -1,
∂z
∂y
=x y ln x (3)解:
在z =(1+2xy ) x 的等号两边取对数得:
ln z=xln(1+2xy)
.
对x 求偏导数:1∂z z ∂x =ln(1+2xy ) +x 1
1+2xy
2y
∴
∂z ⎡∂x =z ⎢⎣ln(1+2xy ) +2xy ⎤
1+2xy ⎥⎦
=(1+2xy ) x ⎡⎢⎣ln(1+2xy ) +2xy ⎤
1+2xy ⎥⎦
(4)解:
∂z ∂x =1(-y ) =-y
;
1+(y ) 2x 2x 2+y 2
x
∂z 11x
∂y ==1+(y ) 2x x 2+y 2
. x
.
(5)解:
∂u 1x 1=sec 2() ∂x tan() y y
y 1
=
x x y sin() cos()
y y 22x =csc(). y y ∂u 1x 2x =sec () (-2)
x ∂y tan() y y y 2x 2x =-2csc
y y
3.解:
1
⎰
2
d x ⎰
x 2
1
f (x , y ) d =y ⎰
41
(f , x ) y d x
2
4.解:设L 是星形曲线(方向为逆时针方向),则面积
A ==
===
1
x dy -y dx ⎰ L 2
12π3232
(a cos t ⋅3a sin +cos t +a sin t ⋅3a cos t sin t ) dt ⎰02
322π
a ⎰(sin2t cos 4t +cos 2t sin 4t ) dt 02
322π
a ⎰sin 22td (2t )
016
3
πa 28
d σ=
=
2r ⎰⎰dr d θD 2π
5.解:
⎰⎰
D
⎰
d θ⎰r 2dr
a
b
b
⎡1⎤=2π⎢r 3⎥
⎣3⎦a 2
=π(b 3-a 3) 3
.
6.解:
⎰⎰⎰
Ω
x dx dy dz =
1-x 20
⎰
1
dx ⎰
1-x 20
dy ⎰
1-x -0
y 2
x dy
=
⎰
1
x dx ⎰
(1-2x -2y ) dy
11
=⎰(x -2x 2+x 3) dx 401=. 48
7.解:
令p =xy 2, θ=x 2y , 则xy 2dx+x2ydy=pdx+θdy. 由于在整个xoy 面内恒有∂p ∂θ=2xy =, ∂y ∂x
8.解:
因此, 在整个xoy 面内xy 2dx+x2ydy 是某个函数的全微分.
设p =2xy -y 4+3, q =x 2-4xy 3
则在整个xoy 面内恒有∂p ∂q 3
=2x -4y =, ∂y ∂x 因此, 该积分与路径无关, 取积分路线如右图, 则有
C(2,1)
A(1,0)
B(2,0)
⎰
1
(2,1)
(1,0)
pdx +qdy
10
=⎰p (x ,0) dx +⎰q (2,y ) dy =⎰3dx +⎰(4-8y 3) dy
1
2
1
2
=5
9.解:D 是X-型区域。
⎰⎰xy d σ=⎰dx ⎰
1
D
2
2x
1
xy dy
==
10.解:
⎰
1
(.
x
3
-) dx 22
x
98
4
(x +y +z ) d υ=d θd ϕr ⎰⎰⎰⎰⎰⎰sin ϕdr
2
2
2
Ω
2ππ1
=⎰d θ ⎰sin ϕd ϕ ⎰r 4dr
2ππ1
⎡15⎤=2π [-cos ϕ]0 ⎢r ⎥
⎣5⎦0
π
1
=
45
π.