平行线的判定教案设计

平行线的判定教学设计

一、素质教育目标

(一)知识教学点

1.了解:推理、证明的格式.

2.理解:平行线判定公理的形成,第一个判定定理的证法.

3.掌握:平行线判定公理和第一个判定定理.

4.应用:会用判定公理及第一个判定定理进行简单的推理论证.

(二)能力训练点

1.通过模型演示,即“运动——变化”的数学思想方法的运用,培养学生的“观察——分析”和“归纳——总结”的能力.

2.通过判定公理的得出,培养学生善于从实践中总结规律,认识事物的能力.

3.通过判定定理的推导,培养学生的逻辑推理能力.

(三)德育渗透点

通过“转化”及“运动——变化”的数学思想方法的运用,让学生认识事物之间是普遍联系相互转化的辩证唯物主义思想.

二、教学重点、难点与疑点

(一)重点 在观察实验的基础上进行公理的概括与定理的推导.

(二)难点 判定定理的形成过程中逻辑推理及书写格式.

(三)疑点 推理的书写格式.

三、教学方法 启发式引导发现法.

四、教具准备 三角板、投影胶片、投影仪、计算机.

五、教学步骤

(一)创设情境,复习引入

师:上节课我们学习了平行线、平行公理及推论,请同学们判断下列语句是否正确,并说明理由(出示投影)

1.两条直线不相交,就叫平行线.

2.与一条直线平行的直线只有一条.

3.如果直线a、b都和c平行,那么a、b就平行.

学生活动:学生口答上述三个问题

【教法说明】通过3个判断题,使学生回顾上节所学知识,第1题目的在于强化平行线定义的前提条件“在同一平面内”,第2题的目的不仅回顾平行公理,同时使学生认识学习几何,语言一定要准确、规范,同一问题在不同条件下,就有不同的结论,第3题复习巩固平行公理推论的同时提示学生,它也是判定两条直线平行的方法.

师:测得两条直线相交,所成角中的一个是直角,能判定这两条直线垂直吗?根据什么?

生:能判定垂直,根据垂直的定义.

师:在同一平面内不相交的两条直线是平行线,你有办法测定两条直线是平行线吗? 学生活动:学生思考,如何测定两条直线是否平行.

教师在学生思考未得结论情况下,指出不能直接利用平行线的定义来测定两条直线是否平行,必须找其他可以测定的方法,有什么方法呢?

学生活动:学生思考,在前面复习平行公理推论的情况下,有学生会提出,再作一条直线c,让c∥a,再看c是否平行于b就可以了.

师:这种想法很好,那么,如何作c,使它与a平行?若作出c后,又如何判断c是否与b平行?

学生活动:学生思考老师的追问,意识到刚才的回答,似是而非,不能解决问题. 师:显然,我们的问题没有得到解决,为此我们来寻找另外一些判断方法,就是今天我们要学习的平行线的判定,(板书课题)

[板书] 2.5平行线的判定 (1).

【教法说明】由垂线定义可以来判断两线是否垂直,学生自然想到要用平行线定义来判断,但我们无法测定直线是否不相交,也就不能利用定义来判断,这时,学生会考虑平行公理推论,此时教师只须简单的追问,就让学生弄清问题未能解决,由此引入新课内容.

(二)探索新知,讲授新课

教师给出像课本第71页图2-20那样的两条直线被第三条直线所截的模型,转动b,让学生观察,b转动到不同位置时,∠α的大小有无变化,再让∠α从小变大,说出直线b与a的位置关系变化规律.

【教法说明】让学生充分观察,在教师的启发式提问下,分析、思考、总结出结论. 学生活动:b转动到不同位置时,∠α也随着变化,当∠α从小变大时,直线b从原来在右边与直线a相交,变到在左边与a相交.

师:在这个过程中,存在一个与a不相交即与a平行的位置,那么∠α多大时,直线a∥b呢?也就是说,我们若判定两条直线平行,需要找角的关系.

师:下面先请同学们回忆平行线的画法,过直线a外一点P画a的平行线b. 学生活动:学生在练习本上完成,教师在黑板上演示.(见图

2-34)

师:由刚才的演示,请同学们考虑,画平行线的过程,实际上是保证了什么? 生:保证了两个同位角相等.

师:由此你能得到什么猜想?

生:两条直线被第三条直线所截,如果同位角相等,那么两条直线平行.

师:我们的猜想正确吗?会不会有某一特定的时刻,即使同位角不等,而两条直线也平行呢?

教师用计算机演示运动变化过程.在观察实验之前,让学生认清α角和β角(如图2-35),而后开始实验,让学生充分观察并讨论能得出什么结论.

学生活动:学生观察讨论,分析.

总结出,当β≠α时,a不平行b,而无论α取何值,只要β=α,a、b就平行. 教师引导学生自己表达出结论,并告诉学生这个结论称为平行线的判定公理.

[板书] 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简单说成:同位角相等,两直线平行.

即:∵∠1=∠2

∴a∥b(同位角相等,两直线平行).

【教法说明】通过实际画图和用计算机演示运动——变化过程,让学生确信公理的正确.尝试反馈,巩固练习(出示投影)

1.如图2-37,∠1=150°,∠2=150°,a∥b吗?

2.∠c=31°,当∠ABE=______时,就能使BE∥CD?

【教法说明】这两个题目意在巩固所学判定公理,对于第2题是已知结论,找出使它成立的题设,这是证明问题时应掌握的一种思考方法,要求学生逐步学会执因导果和执果索因的思考方法,教师在教学时要注意逐渐培养学生的这种数学思想.

(出示投影)

直线a、b被直线c所截.

1.如图,如果∠1=∠2,么a与b有什么关系?

2.∠1与∠3有什么关系?

3.∠2与∠3是什么位置关系的一对角?

学生活动:学生观察,思考分析,给出答案:∠1=∠2时,a∥b,∠1与∠3相等,∠2与∠3是内错角.

师:∠3与∠2满足什么条件,可以得到∠1=∠2?为什么?

生:∠3=∠2,因为∠3=∠1,通过等量代换可以得到∠1=∠2.

师:∠1=∠2时,你进而可以得到什么结论?

生:a∥b.

师:由此你能总结出什么正确结论?

生:内错角相等,两直线平行.

师:也就是说,我们得到了判定两直线平行的另一个方法:

[板书] 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.

【教法说明】通过教师的启发、引导式提问法,引导学生自己去发现角之间的关系,进而归纳总结出结论,主要采用探讨问题的方式,能够培养学生积极思考,善于动脑、分析的良好学习习惯.

师:上面的推理过程,可以写成

∵∠3=∠2(已知),

∠1=∠3(对顶角相等),

∴∠1=∠2.

∵∠1=∠2(已证)],

∴a∥b(同位角相等,两直线平行).

【教法说明】这里的推理过程可以放手让学生试着说,这样才能使学生大胆尝试,培养他们勇于进取精神.

教师指出:方括号内的∵∠1=∠2,就是上面刚刚得到的“∴∠1=∠2”,在这种情况下,方括号内这一步可以省略.

尝试反馈,巩固练习(出示投影)

1.如图2-39,直线AB、CD被直线EF所截.

(1)量得∠1=80°,∠2=80°,就可以判定AB∥CD,它的根据是什么?

(2)量得∠3=100°,∠4=100°,就可以判定AB∥CD,它的根据是什么?

2.如图2-40,BE是AB的延长线,量得∠CBE=∠A=∠C.

(1)从∠CBE=∠A,可以判定哪两条直线平行?它的根据是什么?

(2)从∠CBE=∠C,可以判定哪两条直线平行?它的根据是什么?

学生活动:学生口答.

【教法说明】这组题旨在巩固平行线的判定公理和判定方法的掌握,使学生熟悉并会用于解决简单的说理问题.

(三)变式训练,培养能力

(出示投影)

1.如图2-41所示,由∠DCE=∠D,可判断哪两条直线平行?由∠1=∠2,可判断哪两条直线平行?

2.如图2-42,已知∠1=45°,∠2=135°,L1∥L2吗?为什么?

学生活动:学生思考后回答问题.教师给以指正并启发、引导得出各种答案.

【教法说明】这组题不仅让学生认识变式图形,加强识图能力,同时培养学生的发散思维,也就是培养学生从多角度,全方位考虑问题,从而得到一题多解.提高了学生的解题能力.

(四)归纳总结

2.结合判定定理的证明过程熟悉表达推理证明的要求,初步了解推理证明的格式.

六、布置作业 课本习题

七、板书设计

平行线的判定教学设计

一、素质教育目标

(一)知识教学点

1.了解:推理、证明的格式.

2.理解:平行线判定公理的形成,第一个判定定理的证法.

3.掌握:平行线判定公理和第一个判定定理.

4.应用:会用判定公理及第一个判定定理进行简单的推理论证.

(二)能力训练点

1.通过模型演示,即“运动——变化”的数学思想方法的运用,培养学生的“观察——分析”和“归纳——总结”的能力.

2.通过判定公理的得出,培养学生善于从实践中总结规律,认识事物的能力.

3.通过判定定理的推导,培养学生的逻辑推理能力.

(三)德育渗透点

通过“转化”及“运动——变化”的数学思想方法的运用,让学生认识事物之间是普遍联系相互转化的辩证唯物主义思想.

二、教学重点、难点与疑点

(一)重点 在观察实验的基础上进行公理的概括与定理的推导.

(二)难点 判定定理的形成过程中逻辑推理及书写格式.

(三)疑点 推理的书写格式.

三、教学方法 启发式引导发现法.

四、教具准备 三角板、投影胶片、投影仪、计算机.

五、教学步骤

(一)创设情境,复习引入

师:上节课我们学习了平行线、平行公理及推论,请同学们判断下列语句是否正确,并说明理由(出示投影)

1.两条直线不相交,就叫平行线.

2.与一条直线平行的直线只有一条.

3.如果直线a、b都和c平行,那么a、b就平行.

学生活动:学生口答上述三个问题

【教法说明】通过3个判断题,使学生回顾上节所学知识,第1题目的在于强化平行线定义的前提条件“在同一平面内”,第2题的目的不仅回顾平行公理,同时使学生认识学习几何,语言一定要准确、规范,同一问题在不同条件下,就有不同的结论,第3题复习巩固平行公理推论的同时提示学生,它也是判定两条直线平行的方法.

师:测得两条直线相交,所成角中的一个是直角,能判定这两条直线垂直吗?根据什么?

生:能判定垂直,根据垂直的定义.

师:在同一平面内不相交的两条直线是平行线,你有办法测定两条直线是平行线吗? 学生活动:学生思考,如何测定两条直线是否平行.

教师在学生思考未得结论情况下,指出不能直接利用平行线的定义来测定两条直线是否平行,必须找其他可以测定的方法,有什么方法呢?

学生活动:学生思考,在前面复习平行公理推论的情况下,有学生会提出,再作一条直线c,让c∥a,再看c是否平行于b就可以了.

师:这种想法很好,那么,如何作c,使它与a平行?若作出c后,又如何判断c是否与b平行?

学生活动:学生思考老师的追问,意识到刚才的回答,似是而非,不能解决问题. 师:显然,我们的问题没有得到解决,为此我们来寻找另外一些判断方法,就是今天我们要学习的平行线的判定,(板书课题)

[板书] 2.5平行线的判定 (1).

【教法说明】由垂线定义可以来判断两线是否垂直,学生自然想到要用平行线定义来判断,但我们无法测定直线是否不相交,也就不能利用定义来判断,这时,学生会考虑平行公理推论,此时教师只须简单的追问,就让学生弄清问题未能解决,由此引入新课内容.

(二)探索新知,讲授新课

教师给出像课本第71页图2-20那样的两条直线被第三条直线所截的模型,转动b,让学生观察,b转动到不同位置时,∠α的大小有无变化,再让∠α从小变大,说出直线b与a的位置关系变化规律.

【教法说明】让学生充分观察,在教师的启发式提问下,分析、思考、总结出结论. 学生活动:b转动到不同位置时,∠α也随着变化,当∠α从小变大时,直线b从原来在右边与直线a相交,变到在左边与a相交.

师:在这个过程中,存在一个与a不相交即与a平行的位置,那么∠α多大时,直线a∥b呢?也就是说,我们若判定两条直线平行,需要找角的关系.

师:下面先请同学们回忆平行线的画法,过直线a外一点P画a的平行线b. 学生活动:学生在练习本上完成,教师在黑板上演示.(见图

2-34)

师:由刚才的演示,请同学们考虑,画平行线的过程,实际上是保证了什么? 生:保证了两个同位角相等.

师:由此你能得到什么猜想?

生:两条直线被第三条直线所截,如果同位角相等,那么两条直线平行.

师:我们的猜想正确吗?会不会有某一特定的时刻,即使同位角不等,而两条直线也平行呢?

教师用计算机演示运动变化过程.在观察实验之前,让学生认清α角和β角(如图2-35),而后开始实验,让学生充分观察并讨论能得出什么结论.

学生活动:学生观察讨论,分析.

总结出,当β≠α时,a不平行b,而无论α取何值,只要β=α,a、b就平行. 教师引导学生自己表达出结论,并告诉学生这个结论称为平行线的判定公理.

[板书] 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简单说成:同位角相等,两直线平行.

即:∵∠1=∠2

∴a∥b(同位角相等,两直线平行).

【教法说明】通过实际画图和用计算机演示运动——变化过程,让学生确信公理的正确.尝试反馈,巩固练习(出示投影)

1.如图2-37,∠1=150°,∠2=150°,a∥b吗?

2.∠c=31°,当∠ABE=______时,就能使BE∥CD?

【教法说明】这两个题目意在巩固所学判定公理,对于第2题是已知结论,找出使它成立的题设,这是证明问题时应掌握的一种思考方法,要求学生逐步学会执因导果和执果索因的思考方法,教师在教学时要注意逐渐培养学生的这种数学思想.

(出示投影)

直线a、b被直线c所截.

1.如图,如果∠1=∠2,么a与b有什么关系?

2.∠1与∠3有什么关系?

3.∠2与∠3是什么位置关系的一对角?

学生活动:学生观察,思考分析,给出答案:∠1=∠2时,a∥b,∠1与∠3相等,∠2与∠3是内错角.

师:∠3与∠2满足什么条件,可以得到∠1=∠2?为什么?

生:∠3=∠2,因为∠3=∠1,通过等量代换可以得到∠1=∠2.

师:∠1=∠2时,你进而可以得到什么结论?

生:a∥b.

师:由此你能总结出什么正确结论?

生:内错角相等,两直线平行.

师:也就是说,我们得到了判定两直线平行的另一个方法:

[板书] 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.

【教法说明】通过教师的启发、引导式提问法,引导学生自己去发现角之间的关系,进而归纳总结出结论,主要采用探讨问题的方式,能够培养学生积极思考,善于动脑、分析的良好学习习惯.

师:上面的推理过程,可以写成

∵∠3=∠2(已知),

∠1=∠3(对顶角相等),

∴∠1=∠2.

∵∠1=∠2(已证)],

∴a∥b(同位角相等,两直线平行).

【教法说明】这里的推理过程可以放手让学生试着说,这样才能使学生大胆尝试,培养他们勇于进取精神.

教师指出:方括号内的∵∠1=∠2,就是上面刚刚得到的“∴∠1=∠2”,在这种情况下,方括号内这一步可以省略.

尝试反馈,巩固练习(出示投影)

1.如图2-39,直线AB、CD被直线EF所截.

(1)量得∠1=80°,∠2=80°,就可以判定AB∥CD,它的根据是什么?

(2)量得∠3=100°,∠4=100°,就可以判定AB∥CD,它的根据是什么?

2.如图2-40,BE是AB的延长线,量得∠CBE=∠A=∠C.

(1)从∠CBE=∠A,可以判定哪两条直线平行?它的根据是什么?

(2)从∠CBE=∠C,可以判定哪两条直线平行?它的根据是什么?

学生活动:学生口答.

【教法说明】这组题旨在巩固平行线的判定公理和判定方法的掌握,使学生熟悉并会用于解决简单的说理问题.

(三)变式训练,培养能力

(出示投影)

1.如图2-41所示,由∠DCE=∠D,可判断哪两条直线平行?由∠1=∠2,可判断哪两条直线平行?

2.如图2-42,已知∠1=45°,∠2=135°,L1∥L2吗?为什么?

学生活动:学生思考后回答问题.教师给以指正并启发、引导得出各种答案.

【教法说明】这组题不仅让学生认识变式图形,加强识图能力,同时培养学生的发散思维,也就是培养学生从多角度,全方位考虑问题,从而得到一题多解.提高了学生的解题能力.

(四)归纳总结

2.结合判定定理的证明过程熟悉表达推理证明的要求,初步了解推理证明的格式.

六、布置作业 课本习题

七、板书设计


相关文章

  • 平行四边形教案
  • 平行四边形的判别 班级:姓名:学号: xxx 数学与应用数学xxx班 xxx xxx 系院: 下面的图片中,有你熟悉的哪些图形? (设计意图:以学生为中心,强调学生对知识的主动探索.主动发现和对所学知识意义的主动建构.) 平行四边形的判别 ...查看


  • 面面平行判定定理教案
  • 2.2.2面面平行的判定 教材:普通高中课程标准实验教科书 人教A版必修二 教学目标 一.知识与技能 1.理解面面平行判定定理并初步应用: 2.化归与转化思想在解决实际问题中的应用. 二.过程与方法 1.体会"类比"的数 ...查看


  • 初中八年级上册数学教案:正方形
  • <正方形>教学设计作者: 赵海霞 (初中数学 河南平顶山叶县初中数学一班 ) 评论数/浏览数: 6 / 1160 发表日期: 2010-12-24 17:06:49<正方形>教学设计教学内容分析:⑴ 学习特殊的平行四 ...查看


  • 1.3.1正方形的性质与判定(优秀教案)
  • 课题:1.3.1正方形的性质与判定 课型:新授课 年级:九年级 教学目标: 1.理解正方形的概念,通过由一般到特殊的研究方法,分析平行四边形.矩形.菱形.正方形的概念及性质之间的区别与联系.并形成文本信息与图形信息相互转化的能力. 2.在观 ...查看


  • 矩形的判定教案
  • 20.2矩形的判定 教案 荆紫关一中 李俊 一.教学目标: 1. 知识与技能:经历并了解矩形判定方法的探索过程,使学生逐步掌握说理的基本方法:掌握矩形的判定方法,能根据判定方法进行初步运用. 2. 过程与方法:在探索判定方法的过程中发展学生 ...查看


  • 高中立体几何教案
  • 高中立体几何教案 第一章 直线和平面 两个平面平行的性质教案 教学目标 1.使学生掌握两个平面平行的性质定理及应用: 2.引导学生自己探索与研究两个平面平行的性质定理,培养和发展学生发现问题解决问题的能力. 教学重点和难点 重点:两个平面平 ...查看


  • 初中几何全集教案
  • 平行四边形 概念 两组对边分别平行的四边形称为平行四边形. 注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点,否则则是错误的. 判定 两组对边分别平行的四边形是平行四边形(定义判定法): 一组对边平行且相等的四边形是平行四边形 ...查看


  • 三角形内角和定理教案
  • 7.5三角形内角和定理教学设计(第1课时) 一.学生知识状况分析 学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严 ...查看


  • 数学教案-平行线分线段成比例定理
  • 教学建议 知识结构 重难点分析 本节的重点是平行线分线段成比例定理.平行线分线段成比例定理是研究相似形的最重要和最基本的理论,它一方面可以直接判定线段成比例,另一方面,当不能直接证明要证的比例成立时,常用这个定理把两条线段的比"转 ...查看


热门内容