古代数学家杨辉的故事
宋、元数学四大家之一的杨辉是世界上第一个排出丰富的纵横图和讨论构成规律的数学家.
说起杨辉的这一成就,还得从一件偶然的小事说起.一天台州府的地方官杨辉坐轿出外巡游,半路上被一个在路中间算题的孩童拦住道路不能通过.杨辉一看来了兴趣,连忙下轿,抬步来到前面.
杨辉摸着孩童的头说:“为何不让本官从此经过?”
孩童答道:“不是不让经过,我是怕你们把我的算式踩掉,我又想不起来了.” “什么算式?”
“就是把1到9九个数字分三行排列,不论直着加、横着加还是斜着加,结果都是等于15.我们先生说下午一定要把这道题做好.我正算到关键之处.”
杨辉连忙蹲下身,仔细地看孩童的算式,觉得这个算式在哪儿见过,仔细一想,原来是西汉学者戴德编纂的《大戴礼》中所写的文章中提及的.
杨辉和孩童两人连忙一起运算起来, 直到天过午,两人才舒了一口气,结果出来了,他们又验算了一下,结果全是15,这才站了起来.结果如图1所示:
杨辉回到家中反复琢磨,一有空闲就在桌上摆弄这些数字,终于发现了其中的规律,按照类似的规律,杨辉又得到了“花16图”——把从1到16的数字排列在四行四列的方格中,使每一横行、纵行、斜行四数之和均为34.
后来,杨辉又将散见于前人著作和流传于民间的有关这类问题加以整理,得到了“五五图”“六六图”“衍数图”“易数图”“九九图”“百子图”等许多类似的图.杨辉把这些图总称为纵横图,于1275年写进自己的数学著作《续古
摘奇算法》一书中,并流传后世.
但长期以来,人们习惯于把它当做纯粹的数学游戏,并没有给予应有的重视.随着近代组合数学的发展,纵横图显示了越来越强大的生命力,在图论、组合分析、对策论、计算机科学领域中都找到了用武之地.
古代数学家杨辉的故事
宋、元数学四大家之一的杨辉是世界上第一个排出丰富的纵横图和讨论构成规律的数学家.
说起杨辉的这一成就,还得从一件偶然的小事说起.一天台州府的地方官杨辉坐轿出外巡游,半路上被一个在路中间算题的孩童拦住道路不能通过.杨辉一看来了兴趣,连忙下轿,抬步来到前面.
杨辉摸着孩童的头说:“为何不让本官从此经过?”
孩童答道:“不是不让经过,我是怕你们把我的算式踩掉,我又想不起来了.” “什么算式?”
“就是把1到9九个数字分三行排列,不论直着加、横着加还是斜着加,结果都是等于15.我们先生说下午一定要把这道题做好.我正算到关键之处.”
杨辉连忙蹲下身,仔细地看孩童的算式,觉得这个算式在哪儿见过,仔细一想,原来是西汉学者戴德编纂的《大戴礼》中所写的文章中提及的.
杨辉和孩童两人连忙一起运算起来, 直到天过午,两人才舒了一口气,结果出来了,他们又验算了一下,结果全是15,这才站了起来.结果如图1所示:
杨辉回到家中反复琢磨,一有空闲就在桌上摆弄这些数字,终于发现了其中的规律,按照类似的规律,杨辉又得到了“花16图”——把从1到16的数字排列在四行四列的方格中,使每一横行、纵行、斜行四数之和均为34.
后来,杨辉又将散见于前人著作和流传于民间的有关这类问题加以整理,得到了“五五图”“六六图”“衍数图”“易数图”“九九图”“百子图”等许多类似的图.杨辉把这些图总称为纵横图,于1275年写进自己的数学著作《续古
摘奇算法》一书中,并流传后世.
但长期以来,人们习惯于把它当做纯粹的数学游戏,并没有给予应有的重视.随着近代组合数学的发展,纵横图显示了越来越强大的生命力,在图论、组合分析、对策论、计算机科学领域中都找到了用武之地.