有理数应用题经典30题(学生版)

有理数应用题专项练习30题

1.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.

(1)A 处在岗亭何方?距离岗亭多远?

(2)若摩托车每行驶1千米耗油a 升,这一天上午共耗油多少升?

2.某工厂生产一批零件,根据要求,圆柱体的内径可以有0.03毫米的误差,抽查5个零件,超过规定内径的记作正数,不足的记作负数,检查结果如下:+0.025,﹣0.035,+0.016,﹣0.010,+0.041

(1)指出哪些产品合乎要求?

(2)指出合乎要求的产品中哪个质量好一些?

3.某奶粉每袋的标准质量为454克,在质量检测中,若超出标准质量2克,记作为+2克,若质量低于3克以上的,

(2)质量最多的是哪袋?它的实际质量是多少?

(3)质量最少的是哪袋?它的实际质量是多少?

4.蜗牛从某点0开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):+4,﹣3,+10,﹣9,﹣6,+12,﹣10.

①求蜗牛最后的位置在点0的哪个方向,距离多远?

②在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?

③蜗牛离开出发点0最远时是多少厘米?

5.某巡警车在一条南北大道上巡逻,某天巡警车从岗亭A 处出发,规定向北方向为正,当天行驶纪录如下(单位:千米)

+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2

(1)最终巡警车是否回到岗亭A 处?若没有,在岗亭何方,距岗亭多远?

(2)摩托车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油?

6.某市公交公司在一条自西向东的道路旁边设置了人民公园、新华书店、实验学校、科技馆、花园小区站点,相邻两个站点之间的距离依次为3km 、1.5km 、2km 、3.5km .如果以新华书店为原点,规定向东的方向为正,向西的方向为负,设图上1cm 长的线段表示实际距离1km .请画出数轴,将五个站点在数轴上表示出来.

7.生活与应用:

在一条笔直的东西走向的马路上,有少年宫、学校、超市、医院四家公共场所.已知少年宫在学校东300米,超市在学校西200米,医院在学校东500米.

(1)你能利用所学过的数轴知识描述它们的位置吗?

(2)小明放学后要去医院看望生病住院的奶奶,他从学校出发向西走了200米,又向西走了﹣700米,你说他能到医院吗?

8.东方红中学位于东西方向的一条路上,一天我们学校的李老师出校门去家访,他先向西走100米到聪聪家,再向东走150米到青青家,再向西走200米到刚刚家,请问:

(1)如果把这条路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出聪聪家与青青家的大概位置(数轴上一格表示50米).

(2)聪聪家与刚刚家相距多远?

(3)聪聪家向西20米所表示的数是多少?

(4)你认为可用什么办法求数轴上两点之间的距离?

9.小明到坐落在东西走向的大街上的文具店、书店、花店和玩具店购物,规定向东走为正.已知小明从书店购书后,走了100m 到达玩具店,再走﹣65m 到达花店,又继续走了﹣70m 到达文具店,最后走了10m 到达公交车站.

(1)书店距花店有多远?

(2)公交车站在书店的什么位置?

(3)若小明在四个店各逗留10min ,他的步行速度大约是每分钟35m ,小明从书店购书一直到公交车站一共用了多少时间?

10.王老师到坐落在东西走向的阜城大街上的文具店、书店、花店和玩具店购物,规定向东为正.已知王老师从书店购书后,走了110m 到达玩具店,再走﹣75m 到达花店,又继续走了﹣50m 到达文具店,最后走了25m 到达公交车站牌.

(1)书店距花店有多远?

(2)公交车站牌在书店的什么位置?

(3)若王老师在四个店各逗留10min ,他的步行速度大约是每分钟26m ,王老师从书店购书一直到公交车站一共用了多少时间?

11.已知蜗牛从A 点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“﹣”,从开始到结束爬行的各段路程(单位:cm )依次为:+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4

(1)若A 点在数轴上表示的数为﹣3,则蜗牛停在数轴上何处,请通过计算加以说明;

(2)若蜗牛的爬行速度为每秒,请问蜗牛一共爬行了多少秒?

12.上午8点,某人驾驶一辆汽车从A 地出发,向东记为正,向西记为负.记录前4次行驶过程如下:﹣15公里,+25公里,﹣20公里,+30公里,若要汽车最后回到A 地,则最后一次如何行驶?已知汽车行驶的速度为55千米/小时,在这期间他办事花去2小时,问他回到A 地的时间.

13.有一只小虫从某点出发,在一条直线上爬行,若规定向右爬行的路程记为正,向左爬行的路程记为负,小虫爬行各段路程依次记为(单位:厘米):﹣5,﹣4,+10,﹣3,+8.

(1)小虫最后离出发点多少厘米?

(2)如果小虫在爬行过程中,每爬行一厘米就得到一粒芝麻,问小虫最终一共可得到多少粒芝麻?

(3)若小虫爬行的速度始终不变,并且爬完这段路程用了6分钟,求小虫的爬行速度是多少?

14.一个小虫从点O 出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.

(1)小虫最后是否能回到出发点O ?

(2)小虫离开出发点O 最远时是多少厘米?(直接写出结果即可.)

(3)在爬行过程中,如果每爬1厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?

15.体育课全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩

这组女生的达标率为多少平均成绩为多少秒?

16.体育课上对七年级(1)班的8名女生做仰卧起坐测试,若以16次为达标,超过的次数用正数表示,不足的次数用负数表示.现成绩抄录如下:

+2,+2,﹣2,+3,+1,﹣1,0,+1.问:

(1)有几人达标?

(2)平均每人做几次?

17.一振子从一点A 开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位mm ): +10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.

(1)求停止时所在位置距A 点何方向,有多远?

(2)如果每毫米需时0.02秒,则共用多少秒?

18.出租车司机小李某天下午营运全是在东西走向的人民大道进行的.如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)

+15,﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18

(1)将最后一名乘客送到目的地时,小李距下午出发地点的距离是多少千米?

(2)若汽车耗油量为a 公升/千米,这天下午汽车共耗油多少公升?

19.某储蓄所,某日办理了7项储蓄业务:取出9.5万元,存入5万元,取出8万元,存入12万元,存入23万元,取出10.25万元,取出2万元,求储蓄所该日现金增加多少万元?

20.小明去一水库进行水位变化的实地测量,他取警戒线作为0m ,记录了这个水库一周内的水位变化情况(测量

(2)与测量前一天比,一周内水库水位是上升了还是下降了?

21.在一次食品安检中,抽查某企业10袋奶粉,每袋取出100克,检测每100克奶粉蛋白质含量与规定每100克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g 奶粉蛋白质含量为15g )

﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5

(1)求平均每100克奶粉含蛋白质为多少?

(2)每100克奶粉含蛋白质不少于14克为合格,求合格率为多少?

22.某中学定于11月举行运动会,组委会在修整跑道时,工作人员从甲处开工,规定向南为正,向北为负,从开工处甲处到收工处乙处所走的路程为:+10,﹣3,+4,﹣2,+13,﹣8,﹣7,﹣5,﹣2,(单位:米)

(1)甲处与乙处相距多远?

(2)工作人员离开甲处最远是多少米?

(3)工作人员共修跑道多少米?

23.为了保护广大消费者的利益,最近工商管理人员在一家面粉店总抽查了20袋面粉,称得它们的重量如下(单位:千克):

25、25、24、24、23、24、24、25、26、25、23、23、24、25、25、24、24、26、26、25.

请你计算这20袋面粉的总重量和每袋的平均重量,你能找出比较简单的计算方法吗?请你试试,根据你的计算结果,你对这次检查情况有什么看法?(每袋面粉的标准重量为:25千克)

24.每袋大米的标准重量为50千克,10袋大米称重记录如图所示.

(1)与标准重量比较,10袋大米总计超过多少千克或不足多少千克?

(2)10袋大米的总重量是多少千克?

25.体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中“+“表

问:(1)这个小组男生的达标率为多少?(

(2)这个小组男生的平均成绩是多少秒?

26.在体育课上,赵老师对七年级1班的部分男生进行了引体向上的测试,该项目的标准为不低于7个.现在赵老

(2)他们共做了多少个引体向上?

27.公路养护小组乘车沿南北公路巡视维护,某天早晨从A 地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,+15,﹣6,﹣8,问B 地在A 地何方,相距多少千米?若汽车行驶每千米耗油a 升,求该天共耗油多少升?

28.某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:公里),依先后次序记录如下:+9、﹣3、﹣5、+6、﹣7、+10、﹣6、﹣4、+4、﹣3、+7

(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?

(2)若出租车每公里耗油量为0.1升,则这辆出租车每天下午耗油多少升?

29.10盒火柴如果以每盒100根为标准,超过的根数记作正数,不足的根数记作负数,每盒数据记录如下:+3,+2,0,﹣1,﹣2,﹣3,+3,﹣2,﹣2,﹣1,10盒火柴共有多少根?

30.某登山队5名队员以二号高地为基地,开始向海拔距二号高地500米的顶峰冲击,设他们向上走为正,行程记录如下(单位:米):+150,﹣32,﹣43,+205,﹣30,+25,﹣20,﹣5,+30,﹣25,+75.

(1)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?

(2)登山时,5名队员在进行全程中都使用了氧气,且每人每米要消耗氧气0.04升.他们共使用了氧气多少升?

有理数应用题专项练习30题

1.某巡警骑摩托车在一条南北大道上来回巡逻,一天早晨,他从岗亭出发,中午停留在A 处,规定向北方向为正,当天上午连续行驶情况记录如下(单位:千米):+5,﹣4,+3,﹣7,+4,﹣8,+2,﹣1.

(1)A 处在岗亭何方?距离岗亭多远?

(2)若摩托车每行驶1千米耗油a 升,这一天上午共耗油多少升?

2.某工厂生产一批零件,根据要求,圆柱体的内径可以有0.03毫米的误差,抽查5个零件,超过规定内径的记作正数,不足的记作负数,检查结果如下:+0.025,﹣0.035,+0.016,﹣0.010,+0.041

(1)指出哪些产品合乎要求?

(2)指出合乎要求的产品中哪个质量好一些?

3.某奶粉每袋的标准质量为454克,在质量检测中,若超出标准质量2克,记作为+2克,若质量低于3克以上的,

(2)质量最多的是哪袋?它的实际质量是多少?

(3)质量最少的是哪袋?它的实际质量是多少?

4.蜗牛从某点0开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):+4,﹣3,+10,﹣9,﹣6,+12,﹣10.

①求蜗牛最后的位置在点0的哪个方向,距离多远?

②在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?

③蜗牛离开出发点0最远时是多少厘米?

5.某巡警车在一条南北大道上巡逻,某天巡警车从岗亭A 处出发,规定向北方向为正,当天行驶纪录如下(单位:千米)

+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2

(1)最终巡警车是否回到岗亭A 处?若没有,在岗亭何方,距岗亭多远?

(2)摩托车行驶1千米耗油0.2升,油箱有油10升,够不够?若不够,途中还需补充多少升油?

6.某市公交公司在一条自西向东的道路旁边设置了人民公园、新华书店、实验学校、科技馆、花园小区站点,相邻两个站点之间的距离依次为3km 、1.5km 、2km 、3.5km .如果以新华书店为原点,规定向东的方向为正,向西的方向为负,设图上1cm 长的线段表示实际距离1km .请画出数轴,将五个站点在数轴上表示出来.

7.生活与应用:

在一条笔直的东西走向的马路上,有少年宫、学校、超市、医院四家公共场所.已知少年宫在学校东300米,超市在学校西200米,医院在学校东500米.

(1)你能利用所学过的数轴知识描述它们的位置吗?

(2)小明放学后要去医院看望生病住院的奶奶,他从学校出发向西走了200米,又向西走了﹣700米,你说他能到医院吗?

8.东方红中学位于东西方向的一条路上,一天我们学校的李老师出校门去家访,他先向西走100米到聪聪家,再向东走150米到青青家,再向西走200米到刚刚家,请问:

(1)如果把这条路看作一条数轴,以向东为正方向,以校门口为原点,请你在这条数轴上标出聪聪家与青青家的大概位置(数轴上一格表示50米).

(2)聪聪家与刚刚家相距多远?

(3)聪聪家向西20米所表示的数是多少?

(4)你认为可用什么办法求数轴上两点之间的距离?

9.小明到坐落在东西走向的大街上的文具店、书店、花店和玩具店购物,规定向东走为正.已知小明从书店购书后,走了100m 到达玩具店,再走﹣65m 到达花店,又继续走了﹣70m 到达文具店,最后走了10m 到达公交车站.

(1)书店距花店有多远?

(2)公交车站在书店的什么位置?

(3)若小明在四个店各逗留10min ,他的步行速度大约是每分钟35m ,小明从书店购书一直到公交车站一共用了多少时间?

10.王老师到坐落在东西走向的阜城大街上的文具店、书店、花店和玩具店购物,规定向东为正.已知王老师从书店购书后,走了110m 到达玩具店,再走﹣75m 到达花店,又继续走了﹣50m 到达文具店,最后走了25m 到达公交车站牌.

(1)书店距花店有多远?

(2)公交车站牌在书店的什么位置?

(3)若王老师在四个店各逗留10min ,他的步行速度大约是每分钟26m ,王老师从书店购书一直到公交车站一共用了多少时间?

11.已知蜗牛从A 点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“﹣”,从开始到结束爬行的各段路程(单位:cm )依次为:+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4

(1)若A 点在数轴上表示的数为﹣3,则蜗牛停在数轴上何处,请通过计算加以说明;

(2)若蜗牛的爬行速度为每秒,请问蜗牛一共爬行了多少秒?

12.上午8点,某人驾驶一辆汽车从A 地出发,向东记为正,向西记为负.记录前4次行驶过程如下:﹣15公里,+25公里,﹣20公里,+30公里,若要汽车最后回到A 地,则最后一次如何行驶?已知汽车行驶的速度为55千米/小时,在这期间他办事花去2小时,问他回到A 地的时间.

13.有一只小虫从某点出发,在一条直线上爬行,若规定向右爬行的路程记为正,向左爬行的路程记为负,小虫爬行各段路程依次记为(单位:厘米):﹣5,﹣4,+10,﹣3,+8.

(1)小虫最后离出发点多少厘米?

(2)如果小虫在爬行过程中,每爬行一厘米就得到一粒芝麻,问小虫最终一共可得到多少粒芝麻?

(3)若小虫爬行的速度始终不变,并且爬完这段路程用了6分钟,求小虫的爬行速度是多少?

14.一个小虫从点O 出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.

(1)小虫最后是否能回到出发点O ?

(2)小虫离开出发点O 最远时是多少厘米?(直接写出结果即可.)

(3)在爬行过程中,如果每爬1厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?

15.体育课全班女生进行了百米测验,达标成绩为18秒,下面是第一小组8名女生的成绩记录,其中“+”表示成绩

这组女生的达标率为多少平均成绩为多少秒?

16.体育课上对七年级(1)班的8名女生做仰卧起坐测试,若以16次为达标,超过的次数用正数表示,不足的次数用负数表示.现成绩抄录如下:

+2,+2,﹣2,+3,+1,﹣1,0,+1.问:

(1)有几人达标?

(2)平均每人做几次?

17.一振子从一点A 开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位mm ): +10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.

(1)求停止时所在位置距A 点何方向,有多远?

(2)如果每毫米需时0.02秒,则共用多少秒?

18.出租车司机小李某天下午营运全是在东西走向的人民大道进行的.如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)

+15,﹣3,+14,﹣11,+10,﹣12,+4,﹣15,+16,﹣18

(1)将最后一名乘客送到目的地时,小李距下午出发地点的距离是多少千米?

(2)若汽车耗油量为a 公升/千米,这天下午汽车共耗油多少公升?

19.某储蓄所,某日办理了7项储蓄业务:取出9.5万元,存入5万元,取出8万元,存入12万元,存入23万元,取出10.25万元,取出2万元,求储蓄所该日现金增加多少万元?

20.小明去一水库进行水位变化的实地测量,他取警戒线作为0m ,记录了这个水库一周内的水位变化情况(测量

(2)与测量前一天比,一周内水库水位是上升了还是下降了?

21.在一次食品安检中,抽查某企业10袋奶粉,每袋取出100克,检测每100克奶粉蛋白质含量与规定每100克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g 奶粉蛋白质含量为15g )

﹣3,﹣4,﹣5,+1,+3,+2,0,﹣1.5,+1,+2.5

(1)求平均每100克奶粉含蛋白质为多少?

(2)每100克奶粉含蛋白质不少于14克为合格,求合格率为多少?

22.某中学定于11月举行运动会,组委会在修整跑道时,工作人员从甲处开工,规定向南为正,向北为负,从开工处甲处到收工处乙处所走的路程为:+10,﹣3,+4,﹣2,+13,﹣8,﹣7,﹣5,﹣2,(单位:米)

(1)甲处与乙处相距多远?

(2)工作人员离开甲处最远是多少米?

(3)工作人员共修跑道多少米?

23.为了保护广大消费者的利益,最近工商管理人员在一家面粉店总抽查了20袋面粉,称得它们的重量如下(单位:千克):

25、25、24、24、23、24、24、25、26、25、23、23、24、25、25、24、24、26、26、25.

请你计算这20袋面粉的总重量和每袋的平均重量,你能找出比较简单的计算方法吗?请你试试,根据你的计算结果,你对这次检查情况有什么看法?(每袋面粉的标准重量为:25千克)

24.每袋大米的标准重量为50千克,10袋大米称重记录如图所示.

(1)与标准重量比较,10袋大米总计超过多少千克或不足多少千克?

(2)10袋大米的总重量是多少千克?

25.体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的成绩测试记录,其中“+“表

问:(1)这个小组男生的达标率为多少?(

(2)这个小组男生的平均成绩是多少秒?

26.在体育课上,赵老师对七年级1班的部分男生进行了引体向上的测试,该项目的标准为不低于7个.现在赵老

(2)他们共做了多少个引体向上?

27.公路养护小组乘车沿南北公路巡视维护,某天早晨从A 地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,+15,﹣6,﹣8,问B 地在A 地何方,相距多少千米?若汽车行驶每千米耗油a 升,求该天共耗油多少升?

28.某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:公里),依先后次序记录如下:+9、﹣3、﹣5、+6、﹣7、+10、﹣6、﹣4、+4、﹣3、+7

(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?

(2)若出租车每公里耗油量为0.1升,则这辆出租车每天下午耗油多少升?

29.10盒火柴如果以每盒100根为标准,超过的根数记作正数,不足的根数记作负数,每盒数据记录如下:+3,+2,0,﹣1,﹣2,﹣3,+3,﹣2,﹣2,﹣1,10盒火柴共有多少根?

30.某登山队5名队员以二号高地为基地,开始向海拔距二号高地500米的顶峰冲击,设他们向上走为正,行程记录如下(单位:米):+150,﹣32,﹣43,+205,﹣30,+25,﹣20,﹣5,+30,﹣25,+75.

(1)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?

(2)登山时,5名队员在进行全程中都使用了氧气,且每人每米要消耗氧气0.04升.他们共使用了氧气多少升?


相关文章

  • 新人教版七年级数学上册教学计划
  • 人教版七年级数学上册教学计划 一.教学目标 知识技能目标:学习有理数有关知识,掌握有理数的加减乘除法运算,学会整式的加减法.一元一次方程等的运算.同时进一步提高学生认识几何图形的初步能力. 过程方法目标:学会有理数.整式的加减及一元一次方程 ...查看


  • 有理数加减乘除混合运算经典复习题[1]
  • 有理数的加减乘除混合运算经典复习 [有理数加减法运算练习] 一.加减法法则.运算律的复习. A .△同号两数相加,取__________的符号, 并把__________________________. 1.(–3)+(–9) 2.85+ ...查看


  • 七年级奥数题辅导专用
  • 第一讲 有理数的运算 知识体系:整数和分数统称有理数,运算能力的考查是该部分最重要的内容,探索发现规律.灵活运用.巧妙解答. 热门赛点:1.求和公式 2.分组计算 3.公式法计算 4.凑整法计算 5.裂项法计算 6.图示法计算 7.依规律计 ...查看


  • 经典奥数题经典奥数题经典奥数题
  • 希望杯第一届(1990年)初中一年级第一试试题 一.选择题(每题1分,共10分) 1.如果a ,b 都代表有理数,并且a +b=0,那么 ( ) A .a ,b 都是0. B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b ...查看


  • 数学精神与方法
  • 1. 叙述皮亚诺的自然数公理系统. 皮亚诺的自然数公理系统包含"0"."数"和"后继"三个基本概念.这里所谓的"数"是指所有自然数所构成的类,即指包括0在内的自 ...查看


  • 论高观点下的初等数学及其在新课标中的体现
  • 论"高观点"下的初等数学及其在新课标中的 体现 (许昌市第三初级中学 赵永) 1 引言 19世纪末20世纪初, 英国爆发了一场数学改革的运动, 人们称之为"克莱茵---贝利"运动. 在这次运动中, 克 ...查看


  • 初中数学知识点总结[经典版本]
  • 初中数学知识点总结 一.基本知识 ㈠.数与代数A .数与式: 1.有理数 有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方 ...查看


  • 实数的混合运算(精)经典难题复习巩固(教师)
  • 经典专题系列 实数(二次根式的混合运算) 一. 导入 一人爬墙出校,被校长抓到了,校长问:为什么不从校门走?答曰:美特斯邦威,不走寻常路. 校长又问:这么高的墙怎么翻过去的啊?他指了指裤子说:李宁,一切皆有可能.校长再问:翻墙是什么感觉? ...查看


  • 模糊理论概述
  • 模糊理论概述 在我们的日常生活中有许多的事物,或多或少都具有模糊性和混淆不清的特性."模模糊糊"的概念,是最微妙且难以捉摸,但却又是常見最重要的,但在近代数学中却有了很清晰的定义.但是所为"模糊"有两 ...查看


热门内容