定义证明二重极限

定义证明二重极限

就是说当点(x,y)落在以(x0,y0)点附近的一个小圈圈内的时候,f(x,y)与A的差的绝对值会灰常灰常的接近。那么就说f(x,y)在(x0,y0)点的极限为A

关于二重极限的定义,各类数学教材中有各种不同的表述,归纳起来主要有以下三种:定义1设函数在点的某一邻域内有定义(点可以除外),如果对于任意给定的正数。,总存在正数,使得对于所论邻域内适合不等式的一切点P(X,y)所对应的函数值都满足不等式那末,常数A就称为函数当时的极限.定义2设函数的定义域为是平面上一点,函数在点儿的任一邻域中除见外,总有异于凡的属于D的点,若对于任意给定的正数。,总存在正数a,使得对D内适合不等式0

利用极限存在准则证明:

(1)当x趋近于正无穷时,(Inx/x^2)的极限为0;

(2)证明数列{Xn},其中a>0,Xo>0,Xn=[(Xn-1)+(a/Xn-1)]/2,n=1,2,…收敛,并求其极限。

1)用夹逼准则:

x大于1时,lnx>0,x^2>0,故lnx/x^2>0

且lnx1),lnx/x^2

故(Inx/x^2)的极限为0

2)用单调有界数列收敛:

分三种情况,x0=√a时,显然极限为√a

x0>√a时,Xn-X(n-1)=[-(Xn-1)+(a/Xn-1)]/2

且Xn=[(Xn-1)+(a/Xn-1)]/2>√a,√a为数列下界,则极限存在.

设数列极限为A,Xn和X(n-1)极限都为A.

对原始两边求极限得A=[A+(a/A)]/2.解得A=√a

同理可求x0

综上,数列极限存在,且为√

(一)时函数的极限:

以 时 和 为例引入.

介绍符号: 的意义, 的直观意义.

定义 ( 和 . )

几何意义介绍邻域 其中 为充分大的正数.然后用这些邻域语言介绍几何意义.

例1验证 例2验证 例3验证 证 ……

(二)时函数的极限:

由 考虑 时的极限引入.

定义函数极限的“ ”定义.

几何意义.

用定义验证函数极限的基本思路.

例4 验证 例5 验证 例6验证 证 由 =

为使 需有 为使 需有 于是, 倘限制 , 就有

例7验证 例8验证 ( 类似有 (三)单侧极限:

1.定义:单侧极限的定义及记法.

几何意义: 介绍半邻域 然后介绍 等的几何意义.

例9验证 证 考虑使 的 2.单侧极限与双侧极限的关系:

Th类似有: 例10证明: 极限 不存在.

例11设函数 在点 的某邻域内单调. 若 存在, 则有

= §2 函数极限的性质(3学时)

教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:

我们引进了六种极限: , .以下以极限 为例讨论性质. 均给出证明或简证.

二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.

1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性( 不等式性质 ):

Th 4若 和 都存在, 且存在点 的空心邻域,使 , 都有 证 设 = ( 现证对 有 )

註:若在Th 4的条件中, 改“ ”为“ ”, 未必就有 以 举例说明.

5.迫敛性:

6.四则运算性质:( 只证“+”和“ ”)

(二)利用极限性质求极限: 已证明过以下几个极限:

(注意前四个极限中极限就是函数值 )

这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.

利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.

例1( 利用极限 和 )

例2例3註:关于 的有理分式当 时的极限.

例4 [ 利用公式 ]

例5例6例7

定义证明二重极限

就是说当点(x,y)落在以(x0,y0)点附近的一个小圈圈内的时候,f(x,y)与A的差的绝对值会灰常灰常的接近。那么就说f(x,y)在(x0,y0)点的极限为A

关于二重极限的定义,各类数学教材中有各种不同的表述,归纳起来主要有以下三种:定义1设函数在点的某一邻域内有定义(点可以除外),如果对于任意给定的正数。,总存在正数,使得对于所论邻域内适合不等式的一切点P(X,y)所对应的函数值都满足不等式那末,常数A就称为函数当时的极限.定义2设函数的定义域为是平面上一点,函数在点儿的任一邻域中除见外,总有异于凡的属于D的点,若对于任意给定的正数。,总存在正数a,使得对D内适合不等式0

利用极限存在准则证明:

(1)当x趋近于正无穷时,(Inx/x^2)的极限为0;

(2)证明数列{Xn},其中a>0,Xo>0,Xn=[(Xn-1)+(a/Xn-1)]/2,n=1,2,…收敛,并求其极限。

1)用夹逼准则:

x大于1时,lnx>0,x^2>0,故lnx/x^2>0

且lnx1),lnx/x^2

故(Inx/x^2)的极限为0

2)用单调有界数列收敛:

分三种情况,x0=√a时,显然极限为√a

x0>√a时,Xn-X(n-1)=[-(Xn-1)+(a/Xn-1)]/2

且Xn=[(Xn-1)+(a/Xn-1)]/2>√a,√a为数列下界,则极限存在.

设数列极限为A,Xn和X(n-1)极限都为A.

对原始两边求极限得A=[A+(a/A)]/2.解得A=√a

同理可求x0

综上,数列极限存在,且为√

(一)时函数的极限:

以 时 和 为例引入.

介绍符号: 的意义, 的直观意义.

定义 ( 和 . )

几何意义介绍邻域 其中 为充分大的正数.然后用这些邻域语言介绍几何意义.

例1验证 例2验证 例3验证 证 ……

(二)时函数的极限:

由 考虑 时的极限引入.

定义函数极限的“ ”定义.

几何意义.

用定义验证函数极限的基本思路.

例4 验证 例5 验证 例6验证 证 由 =

为使 需有 为使 需有 于是, 倘限制 , 就有

例7验证 例8验证 ( 类似有 (三)单侧极限:

1.定义:单侧极限的定义及记法.

几何意义: 介绍半邻域 然后介绍 等的几何意义.

例9验证 证 考虑使 的 2.单侧极限与双侧极限的关系:

Th类似有: 例10证明: 极限 不存在.

例11设函数 在点 的某邻域内单调. 若 存在, 则有

= §2 函数极限的性质(3学时)

教学目的:使学生掌握函数极限的基本性质。

教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。

教学重点:函数极限的性质及其计算。

教学难点:函数极限性质证明及其应用。

教学方法:讲练结合。

一、组织教学:

我们引进了六种极限: , .以下以极限 为例讨论性质. 均给出证明或简证.

二、讲授新课:

(一)函数极限的性质:以下性质均以定理形式给出.

1.唯一性:

2.局部有界性:

3.局部保号性:

4.单调性( 不等式性质 ):

Th 4若 和 都存在, 且存在点 的空心邻域,使 , 都有 证 设 = ( 现证对 有 )

註:若在Th 4的条件中, 改“ ”为“ ”, 未必就有 以 举例说明.

5.迫敛性:

6.四则运算性质:( 只证“+”和“ ”)

(二)利用极限性质求极限: 已证明过以下几个极限:

(注意前四个极限中极限就是函数值 )

这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.

利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.

例1( 利用极限 和 )

例2例3註:关于 的有理分式当 时的极限.

例4 [ 利用公式 ]

例5例6例7


相关文章

  • 用定义证明二重极限
  • 用定义证明二重极限 利用极限存在准则证明: (1)当x趋近于正无穷时,(Inx/x^2)的极限为0; (2)证明数列{Xn},其中a>0,Xo>0,Xn=[(Xn-1)+(a/Xn-1)]/2,n=1,2,-收敛,并求其极限. ...查看


  • 二重极限的几种求法
  • 第21卷 第2期雁北师范学院学报Vol.21.No.2 2005年4月JOURALOFYANBEINORMALUNIVERSITYApr.2005 文章编号:1009-1939(2005)02-0065-03 二重极限的几种求法 张雅平 ( ...查看


  • 16.2二元函数的极限
  • §2 二元函数的极限 教学目的 掌握二元函数的极限的定义,了解重极限与累次极限的区别与联系. 教学要求 (1) 基本要求:掌握二元函数的极限的定义,了解重极限与累次极限的区别与联系,熟悉判别极限存在性的基本方法. (2) 较高要求:掌握重极 ...查看


  • 论二重极限的计算方法
  • 内蒙古财经学院学报(综合版) 2012年第lo卷第5期 论二重极限的计算方法 王瑞莲 (内蒙古财经大学统计与数学学院,内蒙古呼和浩特010051) [摘要]二重极限是高等数学多元函数微积分学中一个重要理论,它的计算比一元函数复杂得多.文中结 ...查看


  • 2011成考高数考试大纲
  • (一)函数 1.知识范围 (1)函数的概念 函数的定义.函数的表示法.分段函数.隐函数 (2)函数的性质 单调性.奇偶性.有界性.周期性 (3)反函数 反函数的定义.反函数的图像 (4)基本初等函数 幂函数.指数函数.对数函数.三角函数.反 ...查看


  • 二重极限与累次极限的关系
  • 南昌高专学报2010年第2期(总第87期)Journal of Nanchang College No.2(Sum87) 2010年4月出版 Apr. 2010 157 二重极限与累次极限的关系 王旭琴 (吕梁高等专科学校数学系 山西 吕梁 ...查看


  • 成人高考高等数学(一)复习指导
  • 成人高考高等数学(一)复习指导 高数一考试大纲 本大纲适用于工学理学(生物科学类.地理科学类.环境科学类.心理学类等四个一级学科除外)专业的考生. 总要求考生应按本大纲的要求,了解或理解"高等数学"中函数.极限和连续.一 ...查看


  • 多元函数微分学 1
  • 模块十二 多元函数微分学 ※知识框架 一.二重极限及连续 二.偏导数概念 三.可微与全微分 四.相互关系 五.方向导数与梯度 ※课程脚本: ★引入:本章的标题是多元函数微分学,在前面我们介绍过一元函数微分,这里的'多元'就是自变量为多个,而 ...查看


  • 第十四讲多元函数的极限与连续
  • 第十四讲多元函数的极限与连续 14 . 1 多元函数极限与连续的基本概念 对多元函数的研究,主要以二元函数为代表,对多于两个变元的函数,基本上与二元函数相似.要讨论二元函数,就要涉及它所定义的平面点集问题,这正如要讨论一元函数就要研究实数点 ...查看


热门内容