功率变换器

Dc/dc功率变换器

1.引言 随着生产技术的发展,电力电子技术的应用已深入到工业生产和社会生活的各方面,功率变换技术作为电力电子技术研究的基础之一,有着广泛的应用前景。本文将就DC/DC功率变换器的发展与应用展开分析,并探讨其发展的趋势。

2.功率变换器的实际应用 由于功率变换器具有提高系统的效率,增大装置的功率密度的功能。在现代社会中,其(DC/DC变换器)广泛应用于远程及数据通讯、计算机、办公自动化设备、工业仪器仪表、军事、航天等领域,涉及到国民经济的各行各业,有着广泛的应用前景。

近年(DC/DC)功率变换器在低功率范围内的增长率大幅度提高,其中6W~25WDC/DC变换器的增长率最高,这是因为它们大量用于直流测量和测试设备、计算机显示系统、计算机和军事通讯系统。由于微处理器的高速化,DC/DC变换器由低功率向中功率方向发展是必然的趋势,所以251W~750W的DC/DC变换器的增长率也是较快的,这主要是它用于服务性的医疗和实验设备、工业控制设备、远程通讯设备、多路通信及发送设备,这也显示出了其在远程和数字通讯领域的广阔应用前景。

具体使用,例如:①直流开关电源,其功率变换的核心

就是DC/DC功率变换器; ② DC/DC功率变换器也是现代燃料电池车动力系统中一个重要部分,主要功能是把不可调的直流电源变为可调的直流电源。

3.原理分析

DC/DC功率变换器按输入与输出间是否有电气隔离可以分为无电气隔离和有电器隔离的直流变化器两类。按工作电路区分有降压式(BUCK),升压式(BOOST),升降压式(BUCK/BOOST),库克(CUK),瑞泰(ZETA),塞皮克(SEPIC)等六种。DC/DC功率变换器基本电路原理图如图1所示。

图1中,功率开关管S1~S4及内部集成的二极管组成全桥开关变换器,S1及S3组成超前桥臂,S2及S4组成滞后桥臂,S1~S4在寄生电容、外接电容C1~C4和变压器漏感的作用F谐振,实现零电压开关。其中C7为隔直电容,可有效地防止高频变压器的直流偏磁。低压直流侧滤波电容为C5、C6、

L1为共模电感。

下面,我将就升压降压的不同功能分别对其进行原理分析:

(1)普通降压功率变换器原理图如图2,当开关闭合时,加在电感两端的电压为(Vi-Vo),此时电感由电压(Vi-Vo)励磁,电感增加的磁通为:(Vi-Vo)*Ton。

当开关断开时,由于输出电流的连续,二极管VD变为导通,电感削磁,电感减少的磁通为:(Vo)*Toff。

当开关闭合与开关断开的状态达到平衡时,(Vi-Vo)*Ton=(Vo)*Toff,由于占空比DVo,实现降压功能。

图2 降压型变换器原理图

降压型主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等,基本的参数关系如下: ① 电流连续时,负载电压的平均值为 :

ton为开关处于通态的时间,toff为开关处于断态的时间,T为开关周期,α为导通占空比,简称占空比或导通比。 ②电流断续时,负载电压uo平均值会被抬高,一般不希望出现电流断续的情况。

(2)普通升压变换器原理图如图3所示,当开关闭合时,输入电压加在电感上,此时电感由电压(Vi)励磁,电感增加的磁通为:(Vi)*Ton。

当开关断开时,由于输出电流的连续,二极管VD变为导通,电感削磁,电感减少的磁通为:(Vo- Vi)*Toff。 当开关闭合与开关断开的状态达到平衡时,(Vi)*Ton=(Vo- Vi)*Toff,由于占空比D

图3 升压型变换器原理图

升压型变换器基本的参数关系:

①当电路工作于稳态时,一个周期T中电感L积蓄的能量与释

EI1ton=(Uo-E)I1toff

放的能量相等,即

化简后可得

上式中

T/toff≥1

将升压比的倒数记作β,即

β和导通占

空比α有如下关系

则输出U0可表示为 α+β=1输出电压U0高于电源电压,关键有两个原因:一是L储能之后具有使电压泵升的作用,二是电容C可将输出电压保持住。

4.总结

总之, DC/DC功率变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁、列车、电动车的无级变速和控制,同时使上述控制具有加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约20%~30%的电能。直流斩波器不仅能起到调压的作用(开关电源),同时还能起到有效抑制电网侧

谐波电流噪声的作用。

DC/DC功率变换器现已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为0.31W/cm3~

1.22W/cm3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构。

功率变换器随应用需求而不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。功率变换器高频化、模块化、数字化、绿色化等的实现,标志着这些技术的成熟,实现高效率用电和高品质用电相结合。

Dc/dc功率变换器

1.引言 随着生产技术的发展,电力电子技术的应用已深入到工业生产和社会生活的各方面,功率变换技术作为电力电子技术研究的基础之一,有着广泛的应用前景。本文将就DC/DC功率变换器的发展与应用展开分析,并探讨其发展的趋势。

2.功率变换器的实际应用 由于功率变换器具有提高系统的效率,增大装置的功率密度的功能。在现代社会中,其(DC/DC变换器)广泛应用于远程及数据通讯、计算机、办公自动化设备、工业仪器仪表、军事、航天等领域,涉及到国民经济的各行各业,有着广泛的应用前景。

近年(DC/DC)功率变换器在低功率范围内的增长率大幅度提高,其中6W~25WDC/DC变换器的增长率最高,这是因为它们大量用于直流测量和测试设备、计算机显示系统、计算机和军事通讯系统。由于微处理器的高速化,DC/DC变换器由低功率向中功率方向发展是必然的趋势,所以251W~750W的DC/DC变换器的增长率也是较快的,这主要是它用于服务性的医疗和实验设备、工业控制设备、远程通讯设备、多路通信及发送设备,这也显示出了其在远程和数字通讯领域的广阔应用前景。

具体使用,例如:①直流开关电源,其功率变换的核心

就是DC/DC功率变换器; ② DC/DC功率变换器也是现代燃料电池车动力系统中一个重要部分,主要功能是把不可调的直流电源变为可调的直流电源。

3.原理分析

DC/DC功率变换器按输入与输出间是否有电气隔离可以分为无电气隔离和有电器隔离的直流变化器两类。按工作电路区分有降压式(BUCK),升压式(BOOST),升降压式(BUCK/BOOST),库克(CUK),瑞泰(ZETA),塞皮克(SEPIC)等六种。DC/DC功率变换器基本电路原理图如图1所示。

图1中,功率开关管S1~S4及内部集成的二极管组成全桥开关变换器,S1及S3组成超前桥臂,S2及S4组成滞后桥臂,S1~S4在寄生电容、外接电容C1~C4和变压器漏感的作用F谐振,实现零电压开关。其中C7为隔直电容,可有效地防止高频变压器的直流偏磁。低压直流侧滤波电容为C5、C6、

L1为共模电感。

下面,我将就升压降压的不同功能分别对其进行原理分析:

(1)普通降压功率变换器原理图如图2,当开关闭合时,加在电感两端的电压为(Vi-Vo),此时电感由电压(Vi-Vo)励磁,电感增加的磁通为:(Vi-Vo)*Ton。

当开关断开时,由于输出电流的连续,二极管VD变为导通,电感削磁,电感减少的磁通为:(Vo)*Toff。

当开关闭合与开关断开的状态达到平衡时,(Vi-Vo)*Ton=(Vo)*Toff,由于占空比DVo,实现降压功能。

图2 降压型变换器原理图

降压型主要用于电子电路的供电电源,也可拖动直流电动机或带蓄电池负载等,基本的参数关系如下: ① 电流连续时,负载电压的平均值为 :

ton为开关处于通态的时间,toff为开关处于断态的时间,T为开关周期,α为导通占空比,简称占空比或导通比。 ②电流断续时,负载电压uo平均值会被抬高,一般不希望出现电流断续的情况。

(2)普通升压变换器原理图如图3所示,当开关闭合时,输入电压加在电感上,此时电感由电压(Vi)励磁,电感增加的磁通为:(Vi)*Ton。

当开关断开时,由于输出电流的连续,二极管VD变为导通,电感削磁,电感减少的磁通为:(Vo- Vi)*Toff。 当开关闭合与开关断开的状态达到平衡时,(Vi)*Ton=(Vo- Vi)*Toff,由于占空比D

图3 升压型变换器原理图

升压型变换器基本的参数关系:

①当电路工作于稳态时,一个周期T中电感L积蓄的能量与释

EI1ton=(Uo-E)I1toff

放的能量相等,即

化简后可得

上式中

T/toff≥1

将升压比的倒数记作β,即

β和导通占

空比α有如下关系

则输出U0可表示为 α+β=1输出电压U0高于电源电压,关键有两个原因:一是L储能之后具有使电压泵升的作用,二是电容C可将输出电压保持住。

4.总结

总之, DC/DC功率变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁、列车、电动车的无级变速和控制,同时使上述控制具有加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约20%~30%的电能。直流斩波器不仅能起到调压的作用(开关电源),同时还能起到有效抑制电网侧

谐波电流噪声的作用。

DC/DC功率变换器现已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为0.31W/cm3~

1.22W/cm3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构。

功率变换器随应用需求而不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。功率变换器高频化、模块化、数字化、绿色化等的实现,标志着这些技术的成熟,实现高效率用电和高品质用电相结合。


相关文章

  • 直驱永磁同步风力发电机的最佳风能跟踪控制
  • 第32卷 第10期 2008年5月 电 网 技 术 Power System Technology Vol. 32 No. 10 May 2008 文章编号:1000-3673(2008)10-0011-05 中图分类号:TM315 文献标 ...查看


  • 一种全功率风力发电变流器关键技术研究 1
  • 一种全功率风力发电变流器关键技术研究 1 引言 我国风力发电起步较晚,2006年前国内风力发电设备整机制造厂家中,多数只能制造1MW 以下的风力发电机组.2006年开始制造1.2MW .1.5MW 直驱永磁风力发电机组,开始技术主要靠引进. ...查看


  • 正激变换器的设计毕业论文
  • ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 安徽工业大学 毕业设计(论文)说明书 摘 要 本文介绍了DC/DC变换器.开关电源技 ...查看


  • 一种全功率风力发电变流器关键技术研究
  • 2008-11-29 10:12:00 来源:哈尔滨九洲电气股份有限公司网友评论 0条 点击查看 摘要:风力发电机类型很多,本文选择了几种风力发电系统的结构进行了对比,给出了一种不控整流器加BOOST升压加PWM逆变的全功率风力发电变流器的 ...查看


  • 大功率开关电源的新型模块式设计
  • 大功率开关电源的新型模块式设计 --模块PF1000A-360 和IPM-4M的应用 本文介绍PF1000A-360型AC/DC功率变换模块和IPM-4M型全桥式DC/AC高频大功率变换模块组合设计出新型模块式高频(22-25KHZ)高压( ...查看


  • 太阳能光伏发电最大功率点跟踪控制器设计
  • 第40卷第2期2014年3月中国测试 CHINA MEASUREMENT &TEST Vol.40No.2March ,2014 doi :10.11857/j.issn.1674-5124.2014.02.018 太阳能光伏发电最 ...查看


  • 宽带射频功率放大器设计
  •  阻抗变换器和阻抗匹配网络已经成为射频电路以及最大功率传输系统中的基 本部件.为了使宽带射频功率放大器的输入.输出达到最佳的功率匹配,匹配电路的设计成为射频功率放大器的重要任务.要实现宽带内的最大功率传输,匹配电路设计非常困难.本文设计的 ...查看


  • 频谱分析与功率谱分析
  • 频谱分析(也称频率分析),是对动态信号在频率域内进行分析,分析的结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变量的频谱函数F(ω) .频谱分析中可求得幅值谱.相位谱.功率谱和各种谱密度等等.频谱分析过程较为复杂,它是以 ...查看


  • 电力电子技术课程报告
  • 电力电子技术课程报告 电力电子学(Power Electronics)这一名称是在上世纪60年代出现的.1974年,美国的W.Newell 用一个倒三角形(如图)对电力电子学进行了描述,认为它是由电力学.电子学和控制理论三个学科交叉而形成的 ...查看


热门内容