电火花加工.高能速加工的原理

电火花加工的原理:

被加工的工件做为工件电极,紫铜(或其它导电材料如石墨)做为工具电极。脉冲电源发出一连串的脉冲电压,加到工件电极和工具电极上,此时工具电极和工件均被淹没在具有一定绝缘性能的工作液(绝缘介质) 中 。

在轴伺服系统的控制下,工具电极慢慢向工件电极进给,当工具电极与工件电极的距离小到一定程度时,在脉冲电压的作用下,两极间最近点处的工作液(绝缘介质) 被击穿,工具电极与工件之间形成瞬时放电通道,产生瞬时高温,使金属局部熔化甚至汽化而被蚀除下来,使局部形成电蚀凹坑。这样以很高的频率连续不断地重复放电,工具电极不断地向工件进给,就可以将工具电极的形状复制到工件上,加工出需要的型面来 。

电火花加工特点:

可以加工任何高强度、高硬度、高韧性、高脆性以及高纯度的导电材料;加工时无明显机械力,适用于低刚度工件和微细结构的加工:脉冲参数可依据需要调节,可在同一台机床上进行粗加工、半精加工和精加工;电火花加工后的表面呈现的凹坑,有利于贮油和降低噪声;生产效率低于切削加工;放电过程有部分能量消耗在工具电极上,导致电极损耗,影响成形精度。

电火花加工的应用:

电火花加工主要用于模具生产中的型孔、型腔加工,已成为模具制造业的主导加工方法,推动了模具行业的技术进步。电火花加工零件的数量在3000件以下时,比模具冲压零件在经济上更加合理。按工艺过程中工具与工件相对运动的特点和用途不同,电火花加工可大体分为:电火花成形加工、电火花线切割加工、电火花磨削加工、电火花展成加工、非金属电火花加工和电火花表面强化等。

(1)电火花成形加工 该方法是通过工具电极相对于工件作进给运动,将工件电极的形状和尺寸复制在工件上,从而加工出所需要的零件。它包括电火花型腔加工和穿孔加工两种。电火花型腔加工主要用于加工各类热锻模、压铸模、挤压模、塑料模和胶木膜的型腔。电火花穿孔加工主要用于型孔(圆孔、方孔、多边形孔、异形孔)、曲线孔(弯孔、螺旋孔)、小孔和微孔的加工。近年来,为了解决小孔加工中电极截面小、易变形、孔的深径比大、排屑困难等问题,在电火花穿孔加工中发展了高速小孔加工,取得良好的社会经济效益。

(2)电火花线切割加工 该方法是利用移动的细金属丝作工具电极,按预定的轨迹进行脉冲放电切割。按金属丝电极移动的速度大小分为高速走丝和低速走丝线切割。我国普通采用高速走丝线切割,近年来正在发展低速走丝线切割,高速走丝时,金属丝电极是直径为φ0.02~φ0.3mm的高强度钼丝,往复为8~10m /s 。低速走丝时,多采用铜丝,线电极以小于0.2m/s的速度作单方向低速运动。线切割时,电极丝不断移动,其损耗很小,因而加工精度较高。其平均加工精度可达 0.0lmm ,大大高于电火花成形加工。表面粗糙度Ra 值可达1.6 或更小。

高能密度束流加工的共同特点:

1. 加工速度快,热流输入少,对工件热影响极少,工件变形小。

2. 束流能够聚焦且有极高的能量密度,激光加工、电子束加工可使任何坚硬、难熔的材料在瞬间熔融汽化,而离子束加工是以极大能量撞击零件表面,使材料变形、分离破坏。

3. 工具与工件不接触,无工具变形及损耗问题。

4. 束流控制方便,易实现加工过程自动化,

电子束:

原理

在真空条件下,利用电子枪中产生的电子经加速、聚焦后能量密度为106~109w/cm2的极细束流高速冲击到工件表面上极小的部位,并在几分之一微秒时间内,其能量大部分转换为热能,使工件被冲击部位的材料达到几千摄氏度,致使材料局部熔化或蒸发,来去除材料。

电子束加工的特点

1)高功率密度 属非接触式加工,工件不受机械力作用,很少产生宏观应力变形,同时也不存在工具损耗问题。

2)电子束强度、位置、聚焦可精确控制,,电子束通过磁场和电场可在工件上以任何速度行进,便于自动化控制。

3)环境污染少 适合加工纯度要求很高的半导体材料及易氧化的金属材料。 电子束加工的应用

1)电子束打孔

不锈钢、耐热钢、宝石、陶瓷、玻璃等各种材料上的小孔、深孔。最小加工直径可达0.003mm ,最大深径比可达10。

还可凭借偏转磁场的变化使电子束在工件内偏转方向加工出弯曲的孔,

2)电子束切割

可对各种材料进行切割,切口宽度仅有3~6μm 。

利用电子束再配合工件的相对运动,可加工所需要的曲面

3)光刻

当使用低能量密度的电子束照射高分子材料时,将使材料分子链被切断或重新组合,引起分子量的变化即产生潜象,再将其浸入溶剂中将潜象显影出来。

把这种方法与其它处理工艺结合使用,可实现在金属掩膜或材料表面上刻槽。

4)其它应用

用计算机控制,对陶瓷、半导体或金属材料进行电子刻蚀加工;异种金属焊接;电子束热处理等。

激光束

激光加工原理

激光加工(laser beam machining,LBM )是在光热效应下产生的高温熔融和冲击波的综合作用过程。

通过光学系统将激光束聚焦成尺寸与光波波长相近的极小光斑,其功率密度可达107~1011w/cm2,温度可达一万摄氏度,将材料在瞬间(10-3s )熔化和蒸发,工件表面不断吸收激光能量,凹坑处的金属蒸汽迅速膨胀,压力猛然增大,熔融物被产生的强烈冲击波喷溅出去。

激光加工的特点

1)激光加工属非接触加工,无明显机械力,也无工具损耗,工件不变形,加工

速度快,热影响区小,可达高精度加工,易实现自动化。

2)因功率密度是所有加工方法中最高的,所以不受材料限制,几乎可加工任何金属与非金属材料。

3)激光加工可通过惰性气体、空气或透明介质对工件进行加工,如可通过玻璃对隔离室内的工件进行加工或对真空管内的工件进行焊接。

4)激光可聚焦形成微米级光斑,输出功率大小可调节,常用于精密细微加工,最高加工精度可达0.001mm ,表面粗糙度Ra 值可达0.4~0.1。

5)能源消耗少,无加工污染,在节能、环保等方面有较大优势。

激光加工的应用

(1)激光打孔

激光打孔主要用于特殊材料或特殊工件上的孔加工,如仪表中的宝石轴承、陶瓷、玻璃、金刚石拉丝模等非金属材料和硬质合金、不锈钢等金属材料的细微孔的加工。

激光打孔的效率非常高,功率密度通常为107~108w/cm2,打孔时间甚至可缩短至传统切削加工的百分之一以下,生产率大大提高。。

(2)激光焊接

激光束焊接是以聚集的激光束作为能源的特种熔化焊接方法。

激光器利用原子受激辐射的原理,使物质受激而产生波长均一,方向一致和强度非常高的光束。经聚焦后,激光束的能量更为集中,能量密度可达105~107W/cm2。 如将焦点调节到焊件结合处,光能迅速转换成热能,使金属瞬间熔化,冷却凝固后成为焊缝。

(3)激光切割

激光切割是利用聚焦以后的高功率密度(105~107w/cm2)激光束连续照射工件,光束能量以及活性气体辅助切割过程附加的化学反应热能均被材料吸收,引起照射点材料温度急剧上升,到达沸点后材料开始汽化,并形成孔洞,且光束与工件相对移动,使材料形成切缝,切缝处熔渣被一定压力的辅助气体吹除。

激光切割是激光加工中应用最广泛的一种,主要是其切割速度快、质量高、省材料、热影响区小、变形小、无刀具磨损、没有接触能量损耗,噪音小,易实现自动化,而且还可穿透玻璃切割真空管内的灯丝,由于以上诸多优点,深受各制造领域欢迎,不足之处是一次性投资较大,且切割深度受限。

(4)激光表面热处理

当激光能量密度在103~105w/cm2左右时,对工件表面进行扫描,在极短的时间内加热到相变温度(由扫描速度决定时间长短),工件表层由于热量迅速向内传导快速冷却,实现了工件表层材料的相变硬化(激光淬火)。

与其它表面热处理比较,激光热处理工艺简单,生产率高,工艺过程易实现自动化。一般无须冷却介质,对环境无污染,对工件表面加热快,冷却快,硬度比常温淬火高约15%~20%;耗能少,工件变形小,适合精密局部表面硬化及内孔或形状复杂零件表面的局部硬化处理,但激光表面热处理设备费用高,工件表面硬化深度受限,因而不适合大负荷的重型零件。

(5)其它应用

近年来,各行业中对激光合金化、激光抛光、激光冲击硬化法、激光清洗模具技术也在不断深入研究及应用中。

离子束

离子束加工原理

离子束加工(ion beam machining ,IBM )是在真空条件下利用离子源(离子枪)产生的离子经加速聚焦形成高能的离子束流投射到工件表面,使材料变形、破坏、分离以达到加工目的。

因为离子带正电荷且质量是电子的千万倍,且加速到较高速度时,具有比电子束大得多的撞击动能,因此,离子束撞击工件将引起变形、分离、破坏等机械作用,而不像电子束是通过热效应进行加工。

离子束加工特点

1)加工精度高。因离子束流密度和能量可得到精确控制。

2)在较高真空度下进行加工,环境污染少。特别适合加工高纯度的半导体材料及易氧化的金属材料。

3)加工应力小,变形极微小,加工表面质量高,适合于各种材料和低刚度零件的加工。

离子束加工的应用范围

离子束加工方式包括离子蚀刻、离子镀膜及离子溅射沉积和离子注入等。

离子刻蚀

当所带能量为0.1~5keV 、直径为十分之几纳米的的氩离子轰击工件表面时,此高能离子所传递的能量超过工件表面原子(或分子)间键合力时,材料表面的原子(或分子)被逐个溅射出来,以达到加工目的

离子束刻蚀可用于加工空气轴承的沟槽、打孔、加工极薄材料及超高精度非球面透镜,还可用于刻蚀集成电路等的高精度图形。

离子溅射沉积

采用能量为0.1~5keV 的氩离子轰击某种材料制成的靶材,将靶材原子击出并令其沉积到工件表面上并形成一层薄膜。实际上此法为一种镀膜工艺。 离子镀膜

离子镀膜一方面是把靶材射出的原子向工件表面沉积,另一方面还有高速中性粒子打击工件表面以增强镀层与基材之间的结合力(可达10~20MPa ),

此法适应性强、膜层均匀致密、韧性好、沉积速度快,目前已获得广泛应用。 离子注入

用5~500keV 能量的离子束,直接轰击工件表面,由于离子能量相当大,可使离子钻进被加工工件材料表面层,改变其表面层的化学成分,从而改变工件表面层的机械物理性能。注入表面元素的均匀性好,纯度高,其注入的粒量及深度可控制,但设备费用大、成本高、生产率较低。

电火花加工的原理:

被加工的工件做为工件电极,紫铜(或其它导电材料如石墨)做为工具电极。脉冲电源发出一连串的脉冲电压,加到工件电极和工具电极上,此时工具电极和工件均被淹没在具有一定绝缘性能的工作液(绝缘介质) 中 。

在轴伺服系统的控制下,工具电极慢慢向工件电极进给,当工具电极与工件电极的距离小到一定程度时,在脉冲电压的作用下,两极间最近点处的工作液(绝缘介质) 被击穿,工具电极与工件之间形成瞬时放电通道,产生瞬时高温,使金属局部熔化甚至汽化而被蚀除下来,使局部形成电蚀凹坑。这样以很高的频率连续不断地重复放电,工具电极不断地向工件进给,就可以将工具电极的形状复制到工件上,加工出需要的型面来 。

电火花加工特点:

可以加工任何高强度、高硬度、高韧性、高脆性以及高纯度的导电材料;加工时无明显机械力,适用于低刚度工件和微细结构的加工:脉冲参数可依据需要调节,可在同一台机床上进行粗加工、半精加工和精加工;电火花加工后的表面呈现的凹坑,有利于贮油和降低噪声;生产效率低于切削加工;放电过程有部分能量消耗在工具电极上,导致电极损耗,影响成形精度。

电火花加工的应用:

电火花加工主要用于模具生产中的型孔、型腔加工,已成为模具制造业的主导加工方法,推动了模具行业的技术进步。电火花加工零件的数量在3000件以下时,比模具冲压零件在经济上更加合理。按工艺过程中工具与工件相对运动的特点和用途不同,电火花加工可大体分为:电火花成形加工、电火花线切割加工、电火花磨削加工、电火花展成加工、非金属电火花加工和电火花表面强化等。

(1)电火花成形加工 该方法是通过工具电极相对于工件作进给运动,将工件电极的形状和尺寸复制在工件上,从而加工出所需要的零件。它包括电火花型腔加工和穿孔加工两种。电火花型腔加工主要用于加工各类热锻模、压铸模、挤压模、塑料模和胶木膜的型腔。电火花穿孔加工主要用于型孔(圆孔、方孔、多边形孔、异形孔)、曲线孔(弯孔、螺旋孔)、小孔和微孔的加工。近年来,为了解决小孔加工中电极截面小、易变形、孔的深径比大、排屑困难等问题,在电火花穿孔加工中发展了高速小孔加工,取得良好的社会经济效益。

(2)电火花线切割加工 该方法是利用移动的细金属丝作工具电极,按预定的轨迹进行脉冲放电切割。按金属丝电极移动的速度大小分为高速走丝和低速走丝线切割。我国普通采用高速走丝线切割,近年来正在发展低速走丝线切割,高速走丝时,金属丝电极是直径为φ0.02~φ0.3mm的高强度钼丝,往复为8~10m /s 。低速走丝时,多采用铜丝,线电极以小于0.2m/s的速度作单方向低速运动。线切割时,电极丝不断移动,其损耗很小,因而加工精度较高。其平均加工精度可达 0.0lmm ,大大高于电火花成形加工。表面粗糙度Ra 值可达1.6 或更小。

高能密度束流加工的共同特点:

1. 加工速度快,热流输入少,对工件热影响极少,工件变形小。

2. 束流能够聚焦且有极高的能量密度,激光加工、电子束加工可使任何坚硬、难熔的材料在瞬间熔融汽化,而离子束加工是以极大能量撞击零件表面,使材料变形、分离破坏。

3. 工具与工件不接触,无工具变形及损耗问题。

4. 束流控制方便,易实现加工过程自动化,

电子束:

原理

在真空条件下,利用电子枪中产生的电子经加速、聚焦后能量密度为106~109w/cm2的极细束流高速冲击到工件表面上极小的部位,并在几分之一微秒时间内,其能量大部分转换为热能,使工件被冲击部位的材料达到几千摄氏度,致使材料局部熔化或蒸发,来去除材料。

电子束加工的特点

1)高功率密度 属非接触式加工,工件不受机械力作用,很少产生宏观应力变形,同时也不存在工具损耗问题。

2)电子束强度、位置、聚焦可精确控制,,电子束通过磁场和电场可在工件上以任何速度行进,便于自动化控制。

3)环境污染少 适合加工纯度要求很高的半导体材料及易氧化的金属材料。 电子束加工的应用

1)电子束打孔

不锈钢、耐热钢、宝石、陶瓷、玻璃等各种材料上的小孔、深孔。最小加工直径可达0.003mm ,最大深径比可达10。

还可凭借偏转磁场的变化使电子束在工件内偏转方向加工出弯曲的孔,

2)电子束切割

可对各种材料进行切割,切口宽度仅有3~6μm 。

利用电子束再配合工件的相对运动,可加工所需要的曲面

3)光刻

当使用低能量密度的电子束照射高分子材料时,将使材料分子链被切断或重新组合,引起分子量的变化即产生潜象,再将其浸入溶剂中将潜象显影出来。

把这种方法与其它处理工艺结合使用,可实现在金属掩膜或材料表面上刻槽。

4)其它应用

用计算机控制,对陶瓷、半导体或金属材料进行电子刻蚀加工;异种金属焊接;电子束热处理等。

激光束

激光加工原理

激光加工(laser beam machining,LBM )是在光热效应下产生的高温熔融和冲击波的综合作用过程。

通过光学系统将激光束聚焦成尺寸与光波波长相近的极小光斑,其功率密度可达107~1011w/cm2,温度可达一万摄氏度,将材料在瞬间(10-3s )熔化和蒸发,工件表面不断吸收激光能量,凹坑处的金属蒸汽迅速膨胀,压力猛然增大,熔融物被产生的强烈冲击波喷溅出去。

激光加工的特点

1)激光加工属非接触加工,无明显机械力,也无工具损耗,工件不变形,加工

速度快,热影响区小,可达高精度加工,易实现自动化。

2)因功率密度是所有加工方法中最高的,所以不受材料限制,几乎可加工任何金属与非金属材料。

3)激光加工可通过惰性气体、空气或透明介质对工件进行加工,如可通过玻璃对隔离室内的工件进行加工或对真空管内的工件进行焊接。

4)激光可聚焦形成微米级光斑,输出功率大小可调节,常用于精密细微加工,最高加工精度可达0.001mm ,表面粗糙度Ra 值可达0.4~0.1。

5)能源消耗少,无加工污染,在节能、环保等方面有较大优势。

激光加工的应用

(1)激光打孔

激光打孔主要用于特殊材料或特殊工件上的孔加工,如仪表中的宝石轴承、陶瓷、玻璃、金刚石拉丝模等非金属材料和硬质合金、不锈钢等金属材料的细微孔的加工。

激光打孔的效率非常高,功率密度通常为107~108w/cm2,打孔时间甚至可缩短至传统切削加工的百分之一以下,生产率大大提高。。

(2)激光焊接

激光束焊接是以聚集的激光束作为能源的特种熔化焊接方法。

激光器利用原子受激辐射的原理,使物质受激而产生波长均一,方向一致和强度非常高的光束。经聚焦后,激光束的能量更为集中,能量密度可达105~107W/cm2。 如将焦点调节到焊件结合处,光能迅速转换成热能,使金属瞬间熔化,冷却凝固后成为焊缝。

(3)激光切割

激光切割是利用聚焦以后的高功率密度(105~107w/cm2)激光束连续照射工件,光束能量以及活性气体辅助切割过程附加的化学反应热能均被材料吸收,引起照射点材料温度急剧上升,到达沸点后材料开始汽化,并形成孔洞,且光束与工件相对移动,使材料形成切缝,切缝处熔渣被一定压力的辅助气体吹除。

激光切割是激光加工中应用最广泛的一种,主要是其切割速度快、质量高、省材料、热影响区小、变形小、无刀具磨损、没有接触能量损耗,噪音小,易实现自动化,而且还可穿透玻璃切割真空管内的灯丝,由于以上诸多优点,深受各制造领域欢迎,不足之处是一次性投资较大,且切割深度受限。

(4)激光表面热处理

当激光能量密度在103~105w/cm2左右时,对工件表面进行扫描,在极短的时间内加热到相变温度(由扫描速度决定时间长短),工件表层由于热量迅速向内传导快速冷却,实现了工件表层材料的相变硬化(激光淬火)。

与其它表面热处理比较,激光热处理工艺简单,生产率高,工艺过程易实现自动化。一般无须冷却介质,对环境无污染,对工件表面加热快,冷却快,硬度比常温淬火高约15%~20%;耗能少,工件变形小,适合精密局部表面硬化及内孔或形状复杂零件表面的局部硬化处理,但激光表面热处理设备费用高,工件表面硬化深度受限,因而不适合大负荷的重型零件。

(5)其它应用

近年来,各行业中对激光合金化、激光抛光、激光冲击硬化法、激光清洗模具技术也在不断深入研究及应用中。

离子束

离子束加工原理

离子束加工(ion beam machining ,IBM )是在真空条件下利用离子源(离子枪)产生的离子经加速聚焦形成高能的离子束流投射到工件表面,使材料变形、破坏、分离以达到加工目的。

因为离子带正电荷且质量是电子的千万倍,且加速到较高速度时,具有比电子束大得多的撞击动能,因此,离子束撞击工件将引起变形、分离、破坏等机械作用,而不像电子束是通过热效应进行加工。

离子束加工特点

1)加工精度高。因离子束流密度和能量可得到精确控制。

2)在较高真空度下进行加工,环境污染少。特别适合加工高纯度的半导体材料及易氧化的金属材料。

3)加工应力小,变形极微小,加工表面质量高,适合于各种材料和低刚度零件的加工。

离子束加工的应用范围

离子束加工方式包括离子蚀刻、离子镀膜及离子溅射沉积和离子注入等。

离子刻蚀

当所带能量为0.1~5keV 、直径为十分之几纳米的的氩离子轰击工件表面时,此高能离子所传递的能量超过工件表面原子(或分子)间键合力时,材料表面的原子(或分子)被逐个溅射出来,以达到加工目的

离子束刻蚀可用于加工空气轴承的沟槽、打孔、加工极薄材料及超高精度非球面透镜,还可用于刻蚀集成电路等的高精度图形。

离子溅射沉积

采用能量为0.1~5keV 的氩离子轰击某种材料制成的靶材,将靶材原子击出并令其沉积到工件表面上并形成一层薄膜。实际上此法为一种镀膜工艺。 离子镀膜

离子镀膜一方面是把靶材射出的原子向工件表面沉积,另一方面还有高速中性粒子打击工件表面以增强镀层与基材之间的结合力(可达10~20MPa ),

此法适应性强、膜层均匀致密、韧性好、沉积速度快,目前已获得广泛应用。 离子注入

用5~500keV 能量的离子束,直接轰击工件表面,由于离子能量相当大,可使离子钻进被加工工件材料表面层,改变其表面层的化学成分,从而改变工件表面层的机械物理性能。注入表面元素的均匀性好,纯度高,其注入的粒量及深度可控制,但设备费用大、成本高、生产率较低。


相关文章

  • 特种加工技术论文
  • 特种加工技术 摘要 特种加工是指那些不属于传统加工工艺范畴的加工方法,它不同于使用刀具.磨具等直接利用机械能切除多余材料的传统加工方法.特种加工是近几十年发展起来的新工艺,是对传统加工工艺方法的重 要补充与发展,目前仍在继续研究开发和改进. ...查看


  • 金属加工人必备的现代加工方法,特点.优劣啥都有,信息老全了!
  • 特种加工亦称"非传统加工"或"现代加工方法",泛指用电能.热能.光能.电化学能.化学能.声能及特殊机械能等能量达到去除或增加材料的加工方法,从而实现材料被去除.变形.改变性能或被镀覆等. 一. 特种加 ...查看


  • 现代加工技术之激光加工论文
  • 激光加工技术的应用与发展 姓名:张健 学号:2011011392 学院:机械与电子工程学院 激光加工技术的应用与发展 摘要:激光加工是指利用激光束投射到材料表面产生的热效应来完成加工过程,包括激光焊接.激光切割.表面改性.激光打标.激光钻孔 ...查看


  • 浅谈特种加工与超精密加工
  • 目录 摘要 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ 3 前言 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ 4 1 特种加工及其新技术„„„„„„„„„„„„„„„„„„„„„„„„ 5 1.1 ...查看


  • 现代加工技术概况
  • 现代加工技术概况 1. 现代加工技术发展现状 现代加工技术是广泛应用在生产制造当中的一种技术,是在原本应用机械能的方式下加以改进,变成能够对多种能利用的一种方式.通过这种方式能够大大的提高我们的工作效率,并且使得制作产品更精细.同时,现代加 ...查看


  • 精密与特种加工论文3
  • <精密与特种加工> 题目 学院 机械工程学院 班级 姓名 学号 精密与特种加工技术的现状及发展 摘要:特种加工是指利用机.光.电.声.热.化学.磁.原子能等能源来进行加工的非传统加工方法,本文主要论述对精密与特种加工这门课学习后 ...查看


  • 材料表面工程考试题
  • 一. 名词解释: 1. 材料表面工程 表面工程是经表面预处理后,通过表面涂覆,表面改性或多种表面技术复合处理,改变固体金属表面或非金属表面的形态.化学成分.组织结构和应力状况,以获得所需要表面性能的系统工程. 2. 高能量密度能源表面技术 ...查看


  • 微制造系统中的微细电火花加工技术
  • Special Reports 综述 Ξ 微制造系统中的微细电火花加工技术 Micro EDM Machining Technolgy in Micro Manu facturing System 王振龙 赵万生 (哈尔滨工业大学) 摘 要 ...查看


  • 科技文献检索课题
  • 1. 刀具数据库的研究与建立 2.双足行走机器人控制系统设计 3.基于VC的高速数据采集系统设计 4. 基于DSP飞机发动机转速表检测仪 5.移动式机器人软硬件设计 6.基于U盘的数控实验系统驱动部分设计 7.数控实验系统界面设计 8.无线 ...查看


热门内容