各种梁的弯矩计算

弯曲变形:杆件在垂直于其轴线的载荷作用下,使原为直线的轴线变为曲线的变形。

梁Beam——以弯曲变形为主的直杆称为直梁,简称梁。

弯曲bending

平面弯曲plane bending

7.1.2梁的计算简图

载荷:

(1)集中力 concentrated loads

(2)集中力偶 force-couple

(3)分布载荷 distributed loads

7.1.3梁的类型

(1)简支梁simple supported beam 上图

(2)外伸梁overhanging beam

(3)悬臂梁cantilever beam

7.2 梁弯曲时的内力

7.2.1梁弯曲时横截面上的内力——剪力shearing force和弯矩bending moment

问题:

任截面处有何内力?

该内力正负如何规定?

例7-1 图示的悬臂梁 AB ,长为 l ,受均布载荷 q 的作用,求梁各横截面上的内力。

求内力的方法——截面法

截面法的核心——截开、代替、平衡

内力与外力平衡

解:为了显示任一横截面上的内力,假想在距梁的左端为x处沿m-m截面将梁切开 。

梁发生弯曲变形时,横截面上同时存在着两种内力。

剪力 —— 作用线切于截面、通过截面形心并在纵向对称面内。

弯矩 —— 位于纵向对称面内。

剪切弯曲 —— 横截面上既有剪力又有弯矩的弯曲。

纯弯曲 —— 梁的横截面上只有弯矩而没有剪力。

工程上一般梁(跨度 L 与横截面高度 h 之比 L/h >5),其剪力对强度和刚度的影响很小,可忽略不计,故只需考虑弯矩的影响而近似地作为纯弯曲处理。

规定:使梁弯曲成上凹下凸的形状时,则弯矩为正;反之使梁弯曲成下凹上凸形状时,弯矩为负。

7.2.2弯矩图bending moment diagrams

弯矩图:以与梁轴线平行的坐标x表示横截面位置,纵坐标y按一定比例表示各截面上相应弯矩的大小。

例7-2 试作出例7-1中悬臂梁的弯矩图。

解 (1)建立弯矩方程 由例7-1知弯矩方程为

(2)画弯矩图

弯矩方程为一元二次方程,其图象为抛物线。求出其极值点相连便可近似作出其弯矩图。

例7-3 图示的简支梁 AB ,在C点处受到集中力 F 作用,尺寸 a 、 b 和 l 均为已知,试作出梁的弯矩图。

解 (1)求约束反力

(2)建立弯矩方程 上例中梁受连续均布载荷作用,各横截面上的弯矩为x的一个连续函数,故弯矩可用一个方程来表达,而本例在梁的C点处有集中力F作用,所以梁应分成AC和BC两段分别建立弯矩方程。

例7-4 图示的简支梁 AB ,在C点处受到集中力偶 M 0 作用,尺寸 a 、 b 和 l 均为已知,试作出梁的弯矩图。

解 (1)求约束反力

(2)建立弯矩方程 由于梁在C点处有集中力偶M作用,所以梁应分AC和BC两段分别建立弯矩方程。

(3)画弯矩图

两个弯矩方程均为直线方程

总结上面例题,可以得到作弯矩图的几点规律:

(1)梁受集中力或集中力偶作用时,弯矩图为直线,并且在集中力作用处,弯矩发生转折;在集中力偶作用处,弯矩发生突变,突变量为集中力偶的大小 。

(2)梁受到均布载荷作用时,弯矩图为抛物线,且抛物线的开口方向与均布载荷的方向一致 。

(3)梁的两端点若无集中力偶作用,则端点处的弯矩为0;若有集中力偶作用时,则弯矩为集中力偶的大小。

7.3 梁纯弯曲时的强度条件

7.3.1梁纯弯曲(pure bending)的概念Concepts

纯弯曲 —— 梁的横截面上只有弯矩而没有剪力。

Q = 0,M = 常数。

7.3.2梁纯弯曲时横截面上的正应力 Normal Stresses in Beams

1.梁纯弯曲时的 变形特点 Geometry of Deformation:

平面假设:

1)变形前为平面变形后仍为平面

2)始终垂直与轴线

中性层 Neutral Surface :既不缩短也不伸长(不受压不受拉)。

中性层是梁上拉伸区与压缩区的分界面。

中性轴 Neutral Axis :中性层与横截面的交线。

变形时横截面是绕中性轴旋转的。

2.梁纯弯曲时横截面上正应力的分布规律

纯弯曲时梁横截面上只有正应力而无切应力。

由于梁横截面保持平面,所以沿横截面高度方向纵向纤维从缩短到伸长是线性变化的,因此横截面上的正应力沿横截面高度方向也是线性分布的。

以中性轴为界,凹边是压应力,使梁缩短,凸边是拉应力,使梁伸长,横截面上同一高度各点的正应力相等,距中性轴最远点有最大拉应力和最大压应力,中性轴上各点正应力为零 。

3.梁纯弯曲时正应力计算公式

在弹性范围内,经推导可得梁纯弯曲时横截面上任意一点的正应力为

式中, M 为作用在该截面上的弯矩( Nmm ); y 为计算点到中性轴的距离( mm ); Iz Moment of Area about Z-axis 为横截面对中性轴z的惯性矩( mm 4 )。

在中性轴上 y = 0 ,所以 s = 0 ;当 y = y max 时, s = s max 。

最大正应力产生在离中性轴最远的边缘处,

Wz横截面对中性轴 z 的抗弯截面模量( mm 3 )

计算时, M 和 y 均以绝对值代入,至于弯曲正应力是拉应力还是压应力,则由欲求应力的点处于受拉侧还是受压侧来判断。受拉侧的弯曲正应力为正,受压侧的为负。

弯曲正应力计算式虽然是在纯弯曲的情况下导出的,但对于剪切弯曲的梁,只要其跨度 L 与横截面高度 h 之比 L/h >5,仍可运用这些公式计算弯曲正应力。

7.3.3惯性矩和抗弯截面模量

简单截面的惯性矩和抗弯截面模量计算公式

7. 3.4梁纯弯曲时的强度条件

对于等截面梁,弯矩最大的截面就是危险截面,其上、下边缘各点的弯曲正应力即为最大工作应力,具有最大工作应力的点一般称为 危险点 。

梁的弯曲强度条件是 : 梁内危险点的工作应力不超过材料的许用应力。

运用梁的弯曲强度条件,可对梁进行强度校核、设计截面和确定许可载荷。

7.4 提高梁强度的主要措施

提高梁强度的主要措施是:

1)降低弯矩 M 的数值 2)增大抗弯截面模量 W z 的数值

7.4.1降低最大弯矩 M max 数值的措施

1.合理安排梁的支承

2.合理布置载荷

7.4.2合理选择梁的截面

1.形状和面积相同的截面,采用不同的放置方式,则 Wz 值可能不相同

2.面积相等而形状不同的截面,其抗弯截面模量 Wz 值不相同

3.截面形状应与材料特性相适应

7.4.3采用等强度梁

对于等截面梁,除 M max 所在截面的最大正应力达到材料的许用应力外,其余截面的应力均小于,甚至远小于许用应力。

为了节省材料,减轻结构的重量,可在弯矩较小处采用较小的截面,这种截面尺寸沿梁轴线变化的梁称为变截面梁。

等强度梁 ——使变截面梁每个截面上的最大正应力都等于材料的许用应力,则这种梁称之。《建筑桩基技术规范》按梁上荷载分布将承台梁分为4种情况(图1)。内力计算根据荷载情况分跨中和支座分别计算见表1。

在表1的公式(1)~(7)中

p0——线荷载的最大值(kN/m),p0=

a0——自桩边算起的三角形荷载的底边长度;

LC——计算跨度,LC=1.05L;

L——两相邻桩之间的净距;

q——承台梁底面以上的均布荷载。

表1 墙下条形桩基连续承台梁内力计算公式

内力 计算简图编号 内 力 计 算 公 式

支座

弯矩 (a)、(b)、(c)

(1)

(d) M=- (2)

跨中

弯矩 (a)、(c) M= (3)

(b)

(4)

(d)

M= (5)

最大

剪力 (a)、(b)、(c)

Q= (6)

(d)

Q= (7)

图1 计算简图

a0按下式计算:

中间跨 (8)

边 跨 (9)

其中 EC——承台梁砼弹性模量;

EK——墙体的弹性模量;

I——承台梁横截面的惯性矩;

bK——墙体宽度。

当承台梁为矩形截面时,I=bh3

则: 中间跨 a0=1.37h (10)

边 跨 a0=1.05h (11)

其中 b、h——分别为承台梁的宽度和高度。

表1中弯矩公式共5个,公式中荷载取值也不统一,式(1)、(3)、(4)采用P0,式(2)、(5)采用q,这也给计算带来了不便。下面分别对跨中和支座弯矩进行分析。

(1)跨中弯矩 从计算简图可看出,(d)图是(b)图所示受力情况的特例,当a0≥LC时,取a0=LC代入式(4)即可得式(5)。当a0<时,跨中弯矩采用式(3),a0≥时,采用式(4)。

令β=,并将P0==代入式(3)和式(4)

得: M=β2qL2C (13)

(14)

将上两式统一表示为:

M=A0qL2C (15)

式(15)即为跨中弯矩计算公式,它适用于图(a)~(d)所示的四种受力简图。

(2)支座弯矩 图(a)、(c)、(d)均为图(b)所示受力情况的特例,式(1)为支座弯矩计算通式。 将β=和P0==代入式(1)

得 M=β(2-β) (16)

或 M=B0qL2C (17)

(3)弯矩系数A0、B0

跨中弯矩 M=A0qL2C (15)

支座弯矩 M=B0qL2C (17)

其中 A0、B0——弯矩系数,分别为:

β=≤0.5,A0=β2

β>0.5时,A0=β

B0=-β(2-β)

A0、B0皆为β的单值函数,为简化计算,将其列表(表2)。

表2 墙下条形桩基连续承台梁内力系数

β 内 力 系 数 β 内 力 系 数

A0 B0 A0 B0

0.10 0.00083 -0.01583 0.56 0.02590 -0.06720

0.12 0.00120 -0.01880 0.58 0.02753 -0.06863

0.14 0.00163 -0.02170 0.60 0.02907 -0.07000

0.16 0.00213 -0.02453 0.62 0.03053 -0.07130

0.18 0.00270 -0.02730 0.64 0.03190 -0.07253

0.20 0.003331 -0.03000 0.66 0.03317 -0.07370

0.22 0.00403 -0.03263 0.68 0.03433 -0.07480

0.24 0.00480 -0.03520 0.70 0.03539 -0.07583

0.26 0.00563 -0.03770 0.72 0.03635 -0.07680

0.28 0.00653 -0.04013 0.74 0.03722 -0.07770

0.30 0.00750 -0.04250 0.76 0.03799 -0.07853

0.32 0.00853 -0.04480 0.78 0.03867 -0.07930

0.34 0.00963 -0.04703 0.80 0.03927 -0.08000

0.36 0.01080 -0.04920 0.82 0.03979 -0.08063

0.38 0.01203 -0.05130 0.84 0.04023 -0.08120

0.40 0.01333 -0.05333 0.86 0.04061 -0.08170

0.42 0.01470 -0.05530 0.88 0.04091 -0.08213

0.44 0.01613 -0.05720 0.90 0.04116 -0.08250

0.46 0.01763 -0.05903 0.92 0.04136 -0.08280

0.48 0.01920 -0.06080 0.94 0.04150 -0.08303

0.50 0.02083 -0.06250 0.96 0.04159 -0.08320

0.52 0.02252 -0.06413 0.98 0.04165 -0.08330

0.54 0.02423 -0.06570 1.00 0.04167 -0.08333

式(15)和式(17)代替规范的5个公式,公式形式统一,且不需计算P0,直接采用均布荷载,结合内力系数表,设计计算十分简便。剪力计算公式较简单,仍采用原公式。

3 算例(文献〔3〕)

五层混合结构房屋,砖墙承重,内墙厚240mm,外墙厚370mm。基础采用直径320mm,长6m的钻孔灌注桩。钢筋砼承台梁,梁高300mm,梁宽:外墙400mm;内墙350mm。承台梁底面以上荷载为:横墙q=142.9kN/m;外纵墙q=85.0kN/m。试计算外纵墙和内横墙墙下承台梁的内力(图2)。

图2 单元桩基平面图

解:

1.外纵墙下承台梁

承台梁采用C20砼,I级钢筋,墙体采用MU7.5砖、M5混合砂浆。

EC=2.55×104N/mm2

EK=1500f

=1500×1.37

=2055N/mm2

(f——墙体抗压强度设计值)

LC=1.05L=1.05(1.65-0.32)

=1.40m<1.65m

承台梁尺寸400mm×300mm

(1)中间跨

a0=1.37h

=1.37×300=977mm

β===0.698

查表2,得:A0=0.03536

B0=-0.07581

则:跨中弯矩

M=A0qL2C=0.03536×85×14002 =5.89×106N.mm

支座弯矩

M=B0qL2C=-0.07581×85×14002 =-12.63×106N.mm

(2)边跨

a0=1.05h

=1.05×300=747mm

β===0.534

查表2,得:A0=0.02372

B0=-0.06525

则:跨中弯矩

M=A0qL2C=0.02372×85×14002 =3.95×106N.mm

梁端支座弯矩 MA=0

第二支座

MB=B0qL2C=-0.06525×85×14002 =-10.9×106N.mm

图3 纵墙承台梁计算简图

2.横墙下承台梁(近似按中跨计算) 承台梁尺寸350mm×300mm

LC=1.05L=1.05(1.2-0.32) =0.92m<1.2m

a0=1.37h=1.37×300=1079mm β=>1.0 取β=1.0

查表2,得:A0=0.04167

B0=-0.08333

跨中弯矩

M=A0qL2C=0.04167×142.9×9202 =5.0×106N.mm

支座弯矩

M=B0qL2C=-0.08333×142.9×9202 =-10.1×106N.mm

剪力计算较简单,略。

4 结语

通过上述分析与计算可以看出,本文提出的计算方法较《建筑桩基技术规范》(JGJ94—94)法形式简捷,计算简便,是一个实用的方法。

弯曲变形:杆件在垂直于其轴线的载荷作用下,使原为直线的轴线变为曲线的变形。

梁Beam——以弯曲变形为主的直杆称为直梁,简称梁。

弯曲bending

平面弯曲plane bending

7.1.2梁的计算简图

载荷:

(1)集中力 concentrated loads

(2)集中力偶 force-couple

(3)分布载荷 distributed loads

7.1.3梁的类型

(1)简支梁simple supported beam 上图

(2)外伸梁overhanging beam

(3)悬臂梁cantilever beam

7.2 梁弯曲时的内力

7.2.1梁弯曲时横截面上的内力——剪力shearing force和弯矩bending moment

问题:

任截面处有何内力?

该内力正负如何规定?

例7-1 图示的悬臂梁 AB ,长为 l ,受均布载荷 q 的作用,求梁各横截面上的内力。

求内力的方法——截面法

截面法的核心——截开、代替、平衡

内力与外力平衡

解:为了显示任一横截面上的内力,假想在距梁的左端为x处沿m-m截面将梁切开 。

梁发生弯曲变形时,横截面上同时存在着两种内力。

剪力 —— 作用线切于截面、通过截面形心并在纵向对称面内。

弯矩 —— 位于纵向对称面内。

剪切弯曲 —— 横截面上既有剪力又有弯矩的弯曲。

纯弯曲 —— 梁的横截面上只有弯矩而没有剪力。

工程上一般梁(跨度 L 与横截面高度 h 之比 L/h >5),其剪力对强度和刚度的影响很小,可忽略不计,故只需考虑弯矩的影响而近似地作为纯弯曲处理。

规定:使梁弯曲成上凹下凸的形状时,则弯矩为正;反之使梁弯曲成下凹上凸形状时,弯矩为负。

7.2.2弯矩图bending moment diagrams

弯矩图:以与梁轴线平行的坐标x表示横截面位置,纵坐标y按一定比例表示各截面上相应弯矩的大小。

例7-2 试作出例7-1中悬臂梁的弯矩图。

解 (1)建立弯矩方程 由例7-1知弯矩方程为

(2)画弯矩图

弯矩方程为一元二次方程,其图象为抛物线。求出其极值点相连便可近似作出其弯矩图。

例7-3 图示的简支梁 AB ,在C点处受到集中力 F 作用,尺寸 a 、 b 和 l 均为已知,试作出梁的弯矩图。

解 (1)求约束反力

(2)建立弯矩方程 上例中梁受连续均布载荷作用,各横截面上的弯矩为x的一个连续函数,故弯矩可用一个方程来表达,而本例在梁的C点处有集中力F作用,所以梁应分成AC和BC两段分别建立弯矩方程。

例7-4 图示的简支梁 AB ,在C点处受到集中力偶 M 0 作用,尺寸 a 、 b 和 l 均为已知,试作出梁的弯矩图。

解 (1)求约束反力

(2)建立弯矩方程 由于梁在C点处有集中力偶M作用,所以梁应分AC和BC两段分别建立弯矩方程。

(3)画弯矩图

两个弯矩方程均为直线方程

总结上面例题,可以得到作弯矩图的几点规律:

(1)梁受集中力或集中力偶作用时,弯矩图为直线,并且在集中力作用处,弯矩发生转折;在集中力偶作用处,弯矩发生突变,突变量为集中力偶的大小 。

(2)梁受到均布载荷作用时,弯矩图为抛物线,且抛物线的开口方向与均布载荷的方向一致 。

(3)梁的两端点若无集中力偶作用,则端点处的弯矩为0;若有集中力偶作用时,则弯矩为集中力偶的大小。

7.3 梁纯弯曲时的强度条件

7.3.1梁纯弯曲(pure bending)的概念Concepts

纯弯曲 —— 梁的横截面上只有弯矩而没有剪力。

Q = 0,M = 常数。

7.3.2梁纯弯曲时横截面上的正应力 Normal Stresses in Beams

1.梁纯弯曲时的 变形特点 Geometry of Deformation:

平面假设:

1)变形前为平面变形后仍为平面

2)始终垂直与轴线

中性层 Neutral Surface :既不缩短也不伸长(不受压不受拉)。

中性层是梁上拉伸区与压缩区的分界面。

中性轴 Neutral Axis :中性层与横截面的交线。

变形时横截面是绕中性轴旋转的。

2.梁纯弯曲时横截面上正应力的分布规律

纯弯曲时梁横截面上只有正应力而无切应力。

由于梁横截面保持平面,所以沿横截面高度方向纵向纤维从缩短到伸长是线性变化的,因此横截面上的正应力沿横截面高度方向也是线性分布的。

以中性轴为界,凹边是压应力,使梁缩短,凸边是拉应力,使梁伸长,横截面上同一高度各点的正应力相等,距中性轴最远点有最大拉应力和最大压应力,中性轴上各点正应力为零 。

3.梁纯弯曲时正应力计算公式

在弹性范围内,经推导可得梁纯弯曲时横截面上任意一点的正应力为

式中, M 为作用在该截面上的弯矩( Nmm ); y 为计算点到中性轴的距离( mm ); Iz Moment of Area about Z-axis 为横截面对中性轴z的惯性矩( mm 4 )。

在中性轴上 y = 0 ,所以 s = 0 ;当 y = y max 时, s = s max 。

最大正应力产生在离中性轴最远的边缘处,

Wz横截面对中性轴 z 的抗弯截面模量( mm 3 )

计算时, M 和 y 均以绝对值代入,至于弯曲正应力是拉应力还是压应力,则由欲求应力的点处于受拉侧还是受压侧来判断。受拉侧的弯曲正应力为正,受压侧的为负。

弯曲正应力计算式虽然是在纯弯曲的情况下导出的,但对于剪切弯曲的梁,只要其跨度 L 与横截面高度 h 之比 L/h >5,仍可运用这些公式计算弯曲正应力。

7.3.3惯性矩和抗弯截面模量

简单截面的惯性矩和抗弯截面模量计算公式

7. 3.4梁纯弯曲时的强度条件

对于等截面梁,弯矩最大的截面就是危险截面,其上、下边缘各点的弯曲正应力即为最大工作应力,具有最大工作应力的点一般称为 危险点 。

梁的弯曲强度条件是 : 梁内危险点的工作应力不超过材料的许用应力。

运用梁的弯曲强度条件,可对梁进行强度校核、设计截面和确定许可载荷。

7.4 提高梁强度的主要措施

提高梁强度的主要措施是:

1)降低弯矩 M 的数值 2)增大抗弯截面模量 W z 的数值

7.4.1降低最大弯矩 M max 数值的措施

1.合理安排梁的支承

2.合理布置载荷

7.4.2合理选择梁的截面

1.形状和面积相同的截面,采用不同的放置方式,则 Wz 值可能不相同

2.面积相等而形状不同的截面,其抗弯截面模量 Wz 值不相同

3.截面形状应与材料特性相适应

7.4.3采用等强度梁

对于等截面梁,除 M max 所在截面的最大正应力达到材料的许用应力外,其余截面的应力均小于,甚至远小于许用应力。

为了节省材料,减轻结构的重量,可在弯矩较小处采用较小的截面,这种截面尺寸沿梁轴线变化的梁称为变截面梁。

等强度梁 ——使变截面梁每个截面上的最大正应力都等于材料的许用应力,则这种梁称之。《建筑桩基技术规范》按梁上荷载分布将承台梁分为4种情况(图1)。内力计算根据荷载情况分跨中和支座分别计算见表1。

在表1的公式(1)~(7)中

p0——线荷载的最大值(kN/m),p0=

a0——自桩边算起的三角形荷载的底边长度;

LC——计算跨度,LC=1.05L;

L——两相邻桩之间的净距;

q——承台梁底面以上的均布荷载。

表1 墙下条形桩基连续承台梁内力计算公式

内力 计算简图编号 内 力 计 算 公 式

支座

弯矩 (a)、(b)、(c)

(1)

(d) M=- (2)

跨中

弯矩 (a)、(c) M= (3)

(b)

(4)

(d)

M= (5)

最大

剪力 (a)、(b)、(c)

Q= (6)

(d)

Q= (7)

图1 计算简图

a0按下式计算:

中间跨 (8)

边 跨 (9)

其中 EC——承台梁砼弹性模量;

EK——墙体的弹性模量;

I——承台梁横截面的惯性矩;

bK——墙体宽度。

当承台梁为矩形截面时,I=bh3

则: 中间跨 a0=1.37h (10)

边 跨 a0=1.05h (11)

其中 b、h——分别为承台梁的宽度和高度。

表1中弯矩公式共5个,公式中荷载取值也不统一,式(1)、(3)、(4)采用P0,式(2)、(5)采用q,这也给计算带来了不便。下面分别对跨中和支座弯矩进行分析。

(1)跨中弯矩 从计算简图可看出,(d)图是(b)图所示受力情况的特例,当a0≥LC时,取a0=LC代入式(4)即可得式(5)。当a0<时,跨中弯矩采用式(3),a0≥时,采用式(4)。

令β=,并将P0==代入式(3)和式(4)

得: M=β2qL2C (13)

(14)

将上两式统一表示为:

M=A0qL2C (15)

式(15)即为跨中弯矩计算公式,它适用于图(a)~(d)所示的四种受力简图。

(2)支座弯矩 图(a)、(c)、(d)均为图(b)所示受力情况的特例,式(1)为支座弯矩计算通式。 将β=和P0==代入式(1)

得 M=β(2-β) (16)

或 M=B0qL2C (17)

(3)弯矩系数A0、B0

跨中弯矩 M=A0qL2C (15)

支座弯矩 M=B0qL2C (17)

其中 A0、B0——弯矩系数,分别为:

β=≤0.5,A0=β2

β>0.5时,A0=β

B0=-β(2-β)

A0、B0皆为β的单值函数,为简化计算,将其列表(表2)。

表2 墙下条形桩基连续承台梁内力系数

β 内 力 系 数 β 内 力 系 数

A0 B0 A0 B0

0.10 0.00083 -0.01583 0.56 0.02590 -0.06720

0.12 0.00120 -0.01880 0.58 0.02753 -0.06863

0.14 0.00163 -0.02170 0.60 0.02907 -0.07000

0.16 0.00213 -0.02453 0.62 0.03053 -0.07130

0.18 0.00270 -0.02730 0.64 0.03190 -0.07253

0.20 0.003331 -0.03000 0.66 0.03317 -0.07370

0.22 0.00403 -0.03263 0.68 0.03433 -0.07480

0.24 0.00480 -0.03520 0.70 0.03539 -0.07583

0.26 0.00563 -0.03770 0.72 0.03635 -0.07680

0.28 0.00653 -0.04013 0.74 0.03722 -0.07770

0.30 0.00750 -0.04250 0.76 0.03799 -0.07853

0.32 0.00853 -0.04480 0.78 0.03867 -0.07930

0.34 0.00963 -0.04703 0.80 0.03927 -0.08000

0.36 0.01080 -0.04920 0.82 0.03979 -0.08063

0.38 0.01203 -0.05130 0.84 0.04023 -0.08120

0.40 0.01333 -0.05333 0.86 0.04061 -0.08170

0.42 0.01470 -0.05530 0.88 0.04091 -0.08213

0.44 0.01613 -0.05720 0.90 0.04116 -0.08250

0.46 0.01763 -0.05903 0.92 0.04136 -0.08280

0.48 0.01920 -0.06080 0.94 0.04150 -0.08303

0.50 0.02083 -0.06250 0.96 0.04159 -0.08320

0.52 0.02252 -0.06413 0.98 0.04165 -0.08330

0.54 0.02423 -0.06570 1.00 0.04167 -0.08333

式(15)和式(17)代替规范的5个公式,公式形式统一,且不需计算P0,直接采用均布荷载,结合内力系数表,设计计算十分简便。剪力计算公式较简单,仍采用原公式。

3 算例(文献〔3〕)

五层混合结构房屋,砖墙承重,内墙厚240mm,外墙厚370mm。基础采用直径320mm,长6m的钻孔灌注桩。钢筋砼承台梁,梁高300mm,梁宽:外墙400mm;内墙350mm。承台梁底面以上荷载为:横墙q=142.9kN/m;外纵墙q=85.0kN/m。试计算外纵墙和内横墙墙下承台梁的内力(图2)。

图2 单元桩基平面图

解:

1.外纵墙下承台梁

承台梁采用C20砼,I级钢筋,墙体采用MU7.5砖、M5混合砂浆。

EC=2.55×104N/mm2

EK=1500f

=1500×1.37

=2055N/mm2

(f——墙体抗压强度设计值)

LC=1.05L=1.05(1.65-0.32)

=1.40m<1.65m

承台梁尺寸400mm×300mm

(1)中间跨

a0=1.37h

=1.37×300=977mm

β===0.698

查表2,得:A0=0.03536

B0=-0.07581

则:跨中弯矩

M=A0qL2C=0.03536×85×14002 =5.89×106N.mm

支座弯矩

M=B0qL2C=-0.07581×85×14002 =-12.63×106N.mm

(2)边跨

a0=1.05h

=1.05×300=747mm

β===0.534

查表2,得:A0=0.02372

B0=-0.06525

则:跨中弯矩

M=A0qL2C=0.02372×85×14002 =3.95×106N.mm

梁端支座弯矩 MA=0

第二支座

MB=B0qL2C=-0.06525×85×14002 =-10.9×106N.mm

图3 纵墙承台梁计算简图

2.横墙下承台梁(近似按中跨计算) 承台梁尺寸350mm×300mm

LC=1.05L=1.05(1.2-0.32) =0.92m<1.2m

a0=1.37h=1.37×300=1079mm β=>1.0 取β=1.0

查表2,得:A0=0.04167

B0=-0.08333

跨中弯矩

M=A0qL2C=0.04167×142.9×9202 =5.0×106N.mm

支座弯矩

M=B0qL2C=-0.08333×142.9×9202 =-10.1×106N.mm

剪力计算较简单,略。

4 结语

通过上述分析与计算可以看出,本文提出的计算方法较《建筑桩基技术规范》(JGJ94—94)法形式简捷,计算简便,是一个实用的方法。


相关文章

  • 荷载组合和内力组合
  • 2008-06-13 11:02 荷载组合和内力组合怎么理解 我对荷载组合和内力组合这两个概念很胡涂. 请各位高手们指教点化一下! 谢谢 ========== 简单地说: 荷载组合--结构整体分析前,把各种工况的外荷载按一定的规律加在结构 ...查看


  • 工字钢焊接强度验算
  • 工字钢对接工艺强度验算书 焊缝质量等级应符合现行国家标准<钢结构工程施工质量验收规范>GB 50205的规定,规范将对接焊缝质量分为一级.二级和三级,考虑到实际施工中对接焊缝很难达到一级.二级的质量要求,因此,本次验算是针对焊缝 ...查看


  • 管法兰接头的密封性能_下_
  • 第4期 43 标准化 管法兰接头的密封性能(下) 应道宴 (全国化工设备设计技术中心站, 上海2000 42) 4法兰 法兰是继垫片之后, 对法兰接头密封性能 (3) 密封面型式 法兰密封面型式有全平面.突面.凹凸面.榫槽面.环连接面等多种 ...查看


  • 5M钢桁架建筑结构试验报告
  • 一.研究目的 1.通过本次试验,使我们进一步了解静力试验中数据采集系统.液压加载系统.测力传感器.位移传感器.电子秤.百分表等各种仪器设备的工作原理和技术指标,并掌握其使用方法,熟悉结构静力实验的基本操作过程: 2.通过自主设计试验,掌握结 ...查看


  • 结施图中各种钢筋的称呼区别
  • 结施图中各种钢筋的称呼区别 我们在结施图上看到一片片的钢筋配筋图,各种钢筋因位置或是作用不同而产生很多种称呼.今天我把我所知道的作个小结分享给大家. 架立筋和贯通筋有什么区别? 在钢筋布置上, 架立钢筋是布置本跨的1/3.也就是说, 本跨梁 ...查看


  • 钢筋在建筑中的各种名称及作用
  • 钢筋的区分(受力筋.分布筋.造构筋.箍筋.架立筋.贯通筋.负筋.拉结筋.腰筋) 受力筋:指布置在梁或板的下部.承受拉力的那部分钢筋及抗剪切的起弯筋.吊筋等. 怎么样区分板的受力筋跟分布筋? (1)以板的开间.进深跨度区分:如果是单项板,那么 ...查看


  • 浮阀塔设备设计
  • 化工设备机械基础课程设计 题 目 系 (院) 专 业 班 级 学生姓名 学 号 指导教师 职 称 浮阀塔设备的机械设计 化学与化工系 化学工程与工艺 09化工本1 任义仙 2009010809 张岩 二〇一二年六月十八日 目录 前言 ... ...查看


  • 结构计算-D值法
  • 第六讲 水平荷载作用下框架内力的计算--D 值法 主要内容:D 值法 内容分解: 1)两种计算方法的比较,引出较精确的D 值法: 2)具体计算步骤 作用在框架上的水平荷载主要有风荷载和地震作用,它们均可简化成作用在框架节点上的水平集中力. ...查看


  • [混凝土结构]答案
  • 第一章 绪论 一.名词解释 1. 混凝土结构的耐久性:是指在规定的使用年限内,在各种环境条件作用下,不需要额外的费用加固处理而能保持其安全性.正常使用和可接受的外观的能力. 2. 结构分析:是指根据已确定的结构方案,确定合理的计算简图与结构 ...查看


热门内容