假如我是欧拉„„
——多面体欧拉定理的发现
一、教学目的
1、 了解欧拉公式,并体现公式的发现过程。
2、 进一步让学生体会多面体的三种基本量:点、线、面是立体几何的主要研究对象; 3、 通过体验欧拉公式的发现过程,培养学生自主学习的能力; 4、 让学生再次体验几何体的美;
5、 在情感上培养学生换位思考方式及理解伟人的坚韧不拔的精神。
二、教学重点
1、 体验欧拉公式的发现过程及再次认识组成多面体的基本量:点、线、面; 2、 让学生在体验过程中培养学生自主学习的能力。
三、教学难点:学生在发现过程中体验到数学思想和方法。
四、教学过程
1
2
t
3
教案设计说明
南宁二中 黄江兰
本节课设计为“研究性学习课题”。以介绍伟人欧拉的生平作为引入,激发学生学习欧拉公式的兴趣;利用换位思考的形式,让学生假设自己是欧拉,通过一系列问题设计:怎样产生问题——怎样研究问题——怎样完善结论——应用,引导学生进行探究,在探究过程中,亲身体验欧拉公式的发现过程;最后对整个过程进行反思,让知识在反思中得到升华。
本节课这样设计的目的是在知识上,让学生了解欧拉公式,体会欧拉公式给出的是等量关系,这个等量关系刻划的是多面体的拓扑不变性,初步了解拓扑学;并在探究的过程中让学生不断体会到欧拉公式给出的是多面体的顶点数、面数、棱数这三者的数量关系,从而进一步让学生明确多面体的三个基本量:点、线、面。
在情感上,本节课以介绍伟人欧拉的生平作为引入,目的在于让学生了解欧拉,体会欧拉坚韧不拔的精神。并且让学生假设自己是欧拉,重走欧拉公式的发现历程,进一步激发学生探究的兴趣,同时培养学生换位思考的方式。 在能力上,采用换位思考的方式,让学生假设自己是欧拉,引导学生进行探究,让学生在每一个问题的探究中获取更多的思想和方法。其中问题一:怎样产生这一想法的解决,让学生通过独立思考、交流讨论和发表见解等形式,领悟到提出问题的重要性,培养学生要问——好问——善问的良好习惯,并从中体会到数学中类比和归纳的思想。通过前面三大问题的设置:怎样产生问题——怎样研究问题——怎样完善结论,让学生体会得出研究问题的方式方法:提出问题——归纳——猜想——论证,并且培养学生严谨的治学态度。最后问题四的解决,使学生对整个过程进行一个回顾,进行反思和总结,老师对学生的反思总结进行整理和升华,让学生意识到学习中反思和总结的重要性,并最终体会到自主学习的重要性。
4
假如我是欧拉„„
——多面体欧拉定理的发现
一、教学目的
1、 了解欧拉公式,并体现公式的发现过程。
2、 进一步让学生体会多面体的三种基本量:点、线、面是立体几何的主要研究对象; 3、 通过体验欧拉公式的发现过程,培养学生自主学习的能力; 4、 让学生再次体验几何体的美;
5、 在情感上培养学生换位思考方式及理解伟人的坚韧不拔的精神。
二、教学重点
1、 体验欧拉公式的发现过程及再次认识组成多面体的基本量:点、线、面; 2、 让学生在体验过程中培养学生自主学习的能力。
三、教学难点:学生在发现过程中体验到数学思想和方法。
四、教学过程
1
2
t
3
教案设计说明
南宁二中 黄江兰
本节课设计为“研究性学习课题”。以介绍伟人欧拉的生平作为引入,激发学生学习欧拉公式的兴趣;利用换位思考的形式,让学生假设自己是欧拉,通过一系列问题设计:怎样产生问题——怎样研究问题——怎样完善结论——应用,引导学生进行探究,在探究过程中,亲身体验欧拉公式的发现过程;最后对整个过程进行反思,让知识在反思中得到升华。
本节课这样设计的目的是在知识上,让学生了解欧拉公式,体会欧拉公式给出的是等量关系,这个等量关系刻划的是多面体的拓扑不变性,初步了解拓扑学;并在探究的过程中让学生不断体会到欧拉公式给出的是多面体的顶点数、面数、棱数这三者的数量关系,从而进一步让学生明确多面体的三个基本量:点、线、面。
在情感上,本节课以介绍伟人欧拉的生平作为引入,目的在于让学生了解欧拉,体会欧拉坚韧不拔的精神。并且让学生假设自己是欧拉,重走欧拉公式的发现历程,进一步激发学生探究的兴趣,同时培养学生换位思考的方式。 在能力上,采用换位思考的方式,让学生假设自己是欧拉,引导学生进行探究,让学生在每一个问题的探究中获取更多的思想和方法。其中问题一:怎样产生这一想法的解决,让学生通过独立思考、交流讨论和发表见解等形式,领悟到提出问题的重要性,培养学生要问——好问——善问的良好习惯,并从中体会到数学中类比和归纳的思想。通过前面三大问题的设置:怎样产生问题——怎样研究问题——怎样完善结论,让学生体会得出研究问题的方式方法:提出问题——归纳——猜想——论证,并且培养学生严谨的治学态度。最后问题四的解决,使学生对整个过程进行一个回顾,进行反思和总结,老师对学生的反思总结进行整理和升华,让学生意识到学习中反思和总结的重要性,并最终体会到自主学习的重要性。
4