一元二次方程的概念说课稿

第二章 一元二次方程

学校:会宁县丁沟初级中学 年级:九年级 科目:数学 授课人:张锐

课题:§ 花边有多宽

一、教学目标:

1、知识与技能:

要求学生会根据具体问题情境,列出一元二次方程,体会方程的模型思想。

2、过程与方法:

引导学生通过分析实际问题中的数量关系,回顾一元一次方程的概念等活动过程,组织学生讨论,归纳出一元二次方程的概念。

3、情感态度与价值观:

经历建模思考,体会做数学的快乐,培养用数学的意识。

二、教学重难点:

重点:1、由实际问题列出一元二次方程;

2、掌握一元二次方程的概念。

难点:由实际问题转化为数学方程模型。

三、教学方法:采用启法式、讨论式、类比法教学。

四、教学媒体:多媒体教室用电子白板

五、教学关键:问题情景—数学模型—概念归纳

六、教学过程:

(1)、创设情境,引入新课:

(一)、花边有多宽:

一块四周镶有宽度相等的花边的地毯如下图,它的长为8m,宽为5m.如果地毯中央长方形图案的面积为18m2 ,则花边多宽?引入课题。

解:如果设花边的宽为xm ,那么地毯中央长方形图案的长为(8-2x) m,宽为(5-2x)m,根据题意,可得方程:(8-2x)(5-2x)=18

你能化简这个方程吗?(2x213x110)

(二)、观察下面等式:

102+112+122=132+142你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?

如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为:x1,x2,x3,x4.根据题意,可得方程:

x2x1(x2)2(x3)2(x4)22

你能化简这个方程吗?(x28x200)

(三)、梯子的底端滑动了多少?

如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?

数学化

解:由勾股定理可知,滑动前梯子底端距墙 6 m.如果设梯子底端滑动xm,那么滑动后梯子底端距墙x6m;根据题意,可得方程:

(x6)272102

你能化简这个方程吗?(x212x150)

(2)、提出问题,探究新知:

(一)、观察方程:

①2x213x110

②x28x200

③x212x150

(二)、议一议:

上述三个方程有什么共同特点?

①是整式方程

②只含有一个末知数

③所含末知数的最高次数是2

由此类比一元一次方程的概念,你能总结出一元二次方程的概念吗?

上面的方程都是只含有一个未知数x的整式方程,并且都可以化为ax2bxc0(a,b,c为常数, a≠0)的形式,这样的方程叫做一元二次方程.

(3)、分析思考,加深理解:

(一)、一元二次方程的概念:

(1)、概念:

一个整式方程经过变形后,可以化做ax2bxc0(a,b,c为常数, a≠0)的形式,像这样只含有一个未知数,并且未知数的最高次数是2,那么它就是一元二次方程。

(2)、项和系数的概念:

把ax2bxc0 (a,b,c为常数, a≠0)称为一元二次方程的一般形式,其中ax2,bx ,c分别称为二次项、一次项和常数项,a,b分别称为二次项系数和一次项系数。

(4)、训练反馈,巩固双基:

1、下列方程哪些是一元二次方程?如果是一元二次方程的并指出各项系数。

(1)7x2-6x=0 (2)2x2-5xy+6y=0

(3)2x2+y-1=0 (4)x2+x3+2=0

(5) ax2-2x-4=0 (6)―3 x2=0

2、课本48页随堂练习:1、2

(5)、小结归纳,提升认知:

①通过本节学习,你学会了哪些知识?

②在本节课的学习中,你最大的收获是什么?

③通过学习,你掌握了哪些数学方法?

七、布置作业:

(一)、必做题:

习题2.1知识技能 1、2

(二)、选做题:课本第49页 问题解决 3

八、板书设计:

九、教学反思:

对于一元二次方程概念的学习,由于学生在前面已经学习过一元一次方程、二元一次方程和分式方程的知识,也是以后学习二次函数的基础。是初中教材中一个重要的内容。鉴于此,在以后教学中,我要吸取本节教学的有益经验。及时发现教学工作中可能存在的问题。例如:按照惯例,对于具体问题学生的难点都在于如何找等量关系和列出方程,最容易忽视的是解方程的细节,这要在具体解方程时加强训练的力度。教材有很多闪光点,让人耳目一新,极大调动了学生创造热情。课本上很多问题都来源生活,贴近学生实际,增强了学生应用数学的意识和能力。

第二章 一元二次方程

学校:会宁县丁沟初级中学 年级:九年级 科目:数学 授课人:张锐

课题:§ 花边有多宽

一、教学目标:

1、知识与技能:

要求学生会根据具体问题情境,列出一元二次方程,体会方程的模型思想。

2、过程与方法:

引导学生通过分析实际问题中的数量关系,回顾一元一次方程的概念等活动过程,组织学生讨论,归纳出一元二次方程的概念。

3、情感态度与价值观:

经历建模思考,体会做数学的快乐,培养用数学的意识。

二、教学重难点:

重点:1、由实际问题列出一元二次方程;

2、掌握一元二次方程的概念。

难点:由实际问题转化为数学方程模型。

三、教学方法:采用启法式、讨论式、类比法教学。

四、教学媒体:多媒体教室用电子白板

五、教学关键:问题情景—数学模型—概念归纳

六、教学过程:

(1)、创设情境,引入新课:

(一)、花边有多宽:

一块四周镶有宽度相等的花边的地毯如下图,它的长为8m,宽为5m.如果地毯中央长方形图案的面积为18m2 ,则花边多宽?引入课题。

解:如果设花边的宽为xm ,那么地毯中央长方形图案的长为(8-2x) m,宽为(5-2x)m,根据题意,可得方程:(8-2x)(5-2x)=18

你能化简这个方程吗?(2x213x110)

(二)、观察下面等式:

102+112+122=132+142你还能找到其他的五个连续整数,使前三个数的平方和等于后两个数的平方和吗?

如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为:x1,x2,x3,x4.根据题意,可得方程:

x2x1(x2)2(x3)2(x4)22

你能化简这个方程吗?(x28x200)

(三)、梯子的底端滑动了多少?

如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?

数学化

解:由勾股定理可知,滑动前梯子底端距墙 6 m.如果设梯子底端滑动xm,那么滑动后梯子底端距墙x6m;根据题意,可得方程:

(x6)272102

你能化简这个方程吗?(x212x150)

(2)、提出问题,探究新知:

(一)、观察方程:

①2x213x110

②x28x200

③x212x150

(二)、议一议:

上述三个方程有什么共同特点?

①是整式方程

②只含有一个末知数

③所含末知数的最高次数是2

由此类比一元一次方程的概念,你能总结出一元二次方程的概念吗?

上面的方程都是只含有一个未知数x的整式方程,并且都可以化为ax2bxc0(a,b,c为常数, a≠0)的形式,这样的方程叫做一元二次方程.

(3)、分析思考,加深理解:

(一)、一元二次方程的概念:

(1)、概念:

一个整式方程经过变形后,可以化做ax2bxc0(a,b,c为常数, a≠0)的形式,像这样只含有一个未知数,并且未知数的最高次数是2,那么它就是一元二次方程。

(2)、项和系数的概念:

把ax2bxc0 (a,b,c为常数, a≠0)称为一元二次方程的一般形式,其中ax2,bx ,c分别称为二次项、一次项和常数项,a,b分别称为二次项系数和一次项系数。

(4)、训练反馈,巩固双基:

1、下列方程哪些是一元二次方程?如果是一元二次方程的并指出各项系数。

(1)7x2-6x=0 (2)2x2-5xy+6y=0

(3)2x2+y-1=0 (4)x2+x3+2=0

(5) ax2-2x-4=0 (6)―3 x2=0

2、课本48页随堂练习:1、2

(5)、小结归纳,提升认知:

①通过本节学习,你学会了哪些知识?

②在本节课的学习中,你最大的收获是什么?

③通过学习,你掌握了哪些数学方法?

七、布置作业:

(一)、必做题:

习题2.1知识技能 1、2

(二)、选做题:课本第49页 问题解决 3

八、板书设计:

九、教学反思:

对于一元二次方程概念的学习,由于学生在前面已经学习过一元一次方程、二元一次方程和分式方程的知识,也是以后学习二次函数的基础。是初中教材中一个重要的内容。鉴于此,在以后教学中,我要吸取本节教学的有益经验。及时发现教学工作中可能存在的问题。例如:按照惯例,对于具体问题学生的难点都在于如何找等量关系和列出方程,最容易忽视的是解方程的细节,这要在具体解方程时加强训练的力度。教材有很多闪光点,让人耳目一新,极大调动了学生创造热情。课本上很多问题都来源生活,贴近学生实际,增强了学生应用数学的意识和能力。


相关文章

  • [一元二次方程]教学设计
  • <一元二次方程>教学设计 一.内容和内容解析 1.内容 一元二次方程的概念,一元二次方程的一般形式. 2.内容解析 一元二次方程是方程在一元一次方程基础上 "次"的推广,同时它是解决诸多实际问题的需要,为勾股 ...查看


  • 常微分方程
  • < 常微分方程 >课程教学大纲 一.课程基本信息 课程代码:110044 课程名称:常微分方程 英文名称:Ordinary Differential Equation 课程类别:专业必修课 学 时:45 学 分:2.5 适用对象 ...查看


  • 士研究生入学考试[数学](含高等数学.线性代数) 考试
  • 华中科技大学硕士研究生入学考试<数学>(含高等数学.线性代数) 考试大纲 一.函数.极限.连续 考试内容 函数的概念及表示法 函数的有界性.单调性.周期性和奇偶性 复合函数.反函数.分段函数和隐函数 基本初等函数的性质及其图形 ...查看


  • 2018年考研数学二大纲
  • 2018年考研数学(二)考试大纲 2018年数学一考试大纲 考试科目:线性代数.概率论与数理统计 高等数学 一.函数.极限.连续 考试内容 函数的概念及表示法 函数的有界性.单调性.周期性和奇偶性 复合函数.反函数.分段函数和隐函数 基本初 ...查看


  • 专升本入学考试数学考试大纲
  • 专升本入学考试数学考试大纲 考试形式和试卷结构 一.答题方式 答题方式为:闭卷.笔试. 二.试卷题型结构 试卷题型结构为:单选题.填空题.解答题: 三.参考书籍 高等数学(上.下册)(第二版) 常迎香 主编 科学出版社 专升本入学考试数学考 ...查看


  • 2015研究生数学一考试大纲
  • 2015年数学一考试大纲 考试科目:高等数学.线性代数.概率论与数理统计 考试形式和试卷结构: 一.试卷满分及考试时间 试卷满分为150分,考试时间为180分钟. 二.答题方式 答题方式为闭卷.笔试. 三.试卷内容结构 高等教学 约56% ...查看


  • 曲线与方程说课稿
  • 曲线与方程 各位评委老师好!我叫XX ,我申请的学科是高中数学,我说课的题目是<曲线与方程>,下面是我的说课内容,深切盼望各位老师对我的说课内容提出宝贵意见.(板书名字和说课题目) 一.教材分析 <曲线与方程>是&l ...查看


  • 高等数学教学大纲
  • <高等数学>课程教学大纲 一.课程基本情况 开课单位:数理系 课程编码:B080101 适应专业:高职高专工程类专业 修课方式:必修 总学时:110学时 考核方式:考试 教 材:侯风波 <高等数学(第二版) > 高等 ...查看


  • 高等数学大纲(物理类)
  • <高等数学>教学大纲 课程名称:高等数学 适用层次.专业:理科.工科各专业 学 时:320学时 学 分:20学分 课程类型:通识教育平台课 课 程 性 质:必修课 一.课程的教学目标与任务 高等数学是理.工.管等相关专业的第一基 ...查看


热门内容