[28.1锐角三角函数--正弦]说课稿

《锐角三角函数——正弦》说课稿

这节课的内容是义务教育课程标准教材数学九年级下册锐角三角函数——正弦。我将从三个方面来就本节课的教学进行解说。

一、教材分析

(一)教材所处的地位及作用

本章是在学生已学了一次函数、反比例函数、二次函数以及相似形的基础上进行的,它反映的不是数值与数值的对应关系,而是角度与数值之间的对应关系, 这对学生来说是个全新的领域。一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础.

(二)学情分析

1、九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。

2、学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础, 学生要得出锐角与比值之间的对应关系,这种对应关系不同于以前学习的数值与数值之间的对应关系,因此对学生而言建立这种对应关系有一定困难。

(三)教学目标

1、理解锐角正弦的意义,了解锐角与锐角正弦值之间的一一对应关系,进一步体会函数的变化与对应的思想;

2、会根据锐角正弦的意义解决直角三角形中已知边长求锐角正弦,以及已知正弦值和一边长求其它边长的问题;

3、经历锐角正弦意义的探索过程,体会从特殊到一般的研究问题的思路和数形结合的思想方法;

4、经历由实际问题引发出对正弦函数讨论的过程,培养学生观察生活、发现问题、研究问题的能力。

(四)重点、难点

1、重点:锐角正弦的定义及应用;

2、难点:理解锐角正弦是锐角与边的比值之间的函数关系.

3、难点突破方法:由特殊角入手开展讨论,自然过度到一般角;从具体情境抽象出正弦的概念,并结合多个实例从不同角度深化理解。

二、教法及学法分析

本节课采用情境引导和探究发现教学法,通过适宜的问题情境引发新的认知冲突,建立知识间的联系。同时采用多媒体辅助教学,以直观生动地呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

三、教学过程的设计分析

为了实现本节的教学目标, 教学过程分为以下六个环节:

(一)复习旧知,情境引入(二)合作探究,获得新知:(三)巩固训练,落实双基

(四)强化提高,培养能力(五)小结归纳,拓展深化(六)反馈练习,自主评价。

下面就几个主要环节进行解说

(一)复习旧知,情境引入

(二)

1、先让学生回顾直角三角形知识,再从铺设水管引入30°的直角三角形中的边与角的关联。

(二)合作探究,获得新知:

先让学生猜想,再利用几何画板演示,在直角三角形中,任意角度的锐角的对边和斜边的比和这个角的关系。得出结论:

当∠A 的度数一定时,∠A 的对边和斜边的比值是一个定值。这个比值随着角度的变化而变化,当角度一定时,有唯一和它对应的比值。所以∠A 的对边和斜边的比值是关于∠A 度数的函数。

再引出课题和正弦概念,给出正弦的含义和表示方法。认识几个特殊角的正弦值。

(三)巩固训练

讲解一道求正弦值的例题。

(四)强化提高,培养能力

出示三道提高题,第一道是关于直接利用正弦值求斜边的题,然后进行变式,第二题是关于不是直角三角形中求正弦的题,第三题是关于用不同的方法求一个锐角的正弦值。

(五)小结归纳,拓展深化

先让学生畅述本节课的收获,再出示一道求锐角正弦值的范围的思考题。

(六)课后练习

《锐角三角函数——正弦》说课稿

这节课的内容是义务教育课程标准教材数学九年级下册锐角三角函数——正弦。我将从三个方面来就本节课的教学进行解说。

一、教材分析

(一)教材所处的地位及作用

本章是在学生已学了一次函数、反比例函数、二次函数以及相似形的基础上进行的,它反映的不是数值与数值的对应关系,而是角度与数值之间的对应关系, 这对学生来说是个全新的领域。一方面,这是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展;另一方面,又为解直角三角形等知识奠定了基础.

(二)学情分析

1、九年级学生的思维活跃,接受能力较强,具备了一定的数学探究活动经历和应用数学的意识。

2、学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础, 学生要得出锐角与比值之间的对应关系,这种对应关系不同于以前学习的数值与数值之间的对应关系,因此对学生而言建立这种对应关系有一定困难。

(三)教学目标

1、理解锐角正弦的意义,了解锐角与锐角正弦值之间的一一对应关系,进一步体会函数的变化与对应的思想;

2、会根据锐角正弦的意义解决直角三角形中已知边长求锐角正弦,以及已知正弦值和一边长求其它边长的问题;

3、经历锐角正弦意义的探索过程,体会从特殊到一般的研究问题的思路和数形结合的思想方法;

4、经历由实际问题引发出对正弦函数讨论的过程,培养学生观察生活、发现问题、研究问题的能力。

(四)重点、难点

1、重点:锐角正弦的定义及应用;

2、难点:理解锐角正弦是锐角与边的比值之间的函数关系.

3、难点突破方法:由特殊角入手开展讨论,自然过度到一般角;从具体情境抽象出正弦的概念,并结合多个实例从不同角度深化理解。

二、教法及学法分析

本节课采用情境引导和探究发现教学法,通过适宜的问题情境引发新的认知冲突,建立知识间的联系。同时采用多媒体辅助教学,以直观生动地呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

三、教学过程的设计分析

为了实现本节的教学目标, 教学过程分为以下六个环节:

(一)复习旧知,情境引入(二)合作探究,获得新知:(三)巩固训练,落实双基

(四)强化提高,培养能力(五)小结归纳,拓展深化(六)反馈练习,自主评价。

下面就几个主要环节进行解说

(一)复习旧知,情境引入

(二)

1、先让学生回顾直角三角形知识,再从铺设水管引入30°的直角三角形中的边与角的关联。

(二)合作探究,获得新知:

先让学生猜想,再利用几何画板演示,在直角三角形中,任意角度的锐角的对边和斜边的比和这个角的关系。得出结论:

当∠A 的度数一定时,∠A 的对边和斜边的比值是一个定值。这个比值随着角度的变化而变化,当角度一定时,有唯一和它对应的比值。所以∠A 的对边和斜边的比值是关于∠A 度数的函数。

再引出课题和正弦概念,给出正弦的含义和表示方法。认识几个特殊角的正弦值。

(三)巩固训练

讲解一道求正弦值的例题。

(四)强化提高,培养能力

出示三道提高题,第一道是关于直接利用正弦值求斜边的题,然后进行变式,第二题是关于不是直角三角形中求正弦的题,第三题是关于用不同的方法求一个锐角的正弦值。

(五)小结归纳,拓展深化

先让学生畅述本节课的收获,再出示一道求锐角正弦值的范围的思考题。

(六)课后练习


相关文章

  • 锐角三角函数说课稿
  • 锐角三角函数说课稿 富蕴县双语寄宿制中学 汪国良 2014.3.23 设计意图:通过情境创设,激发学生的求知欲望,产生学习动力,此时把学生带入下一环节--- 自主探究 (实际问题转化为数学问题,通过数学建模,解决问题): 初步认识: 在一个 ...查看


  • 人教版九年级锐角三角函数全章教案
  • + 第二十八章 锐角三角函数 教材分析: 本章包括锐角三角函数的概念(主要是正弦.余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容.锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函 ...查看


  • [三角函数及解直角三角形] 1
  • <三角函数及解直角三角形>知识点总结 Ⅰ.本章知识结构框图: Ⅱ.本章知识点: 1.正弦.余弦.正切.余切的概念 在是三角形ABC中,∠C=90°, (1) 锐角A的对边与斜边的比叫做∠A的正弦,记作sinA. 即sin A = ...查看


  • 正弦余弦3
  • 初三几何教案 第六章:解直角三角形 第3课时:正弦和余弦(三) 教学目标: 1.使学生了解一个锐角的正弦(余弦) 值与它的余角的余弦(正弦) 值之间的关系. 2.逐步培养学生观察.比较.分析.综合.抽象.概括的逻辑思维能力. 教学重点: 使 ...查看


  • 正切和余切
  • 正切和余切 [教学目标]: 1.能说出正切和余切的概念和特点. 2.能正确地使用tanA.cotA表示直角三角形中两边的比,辨明两者之间的关系. 3.会运用正切和余切解决三角形的图形问题. 4.能提高自身观察.比较.分析.综合.概括等逻辑思 ...查看


  • 任意角的正弦.余弦.正切
  • 任意角的三角函数 课 型:新授课 课 时:1课时 教材分析 本节课是三角函数这一章里非常重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义.三角函数是基本初等函数,它 ...查看


  • [正弦与余弦]教学设计
  • 数学教学设计 本节课的内容是九年级上册第4章<锐角三角函数>第一节<正弦和余弦>第一课时,是在学习了九年级第3章<图形的相似>中的相关知识(线段的比.比例线段.相似三角形的性质与判定)之后,从实例出发,探 ...查看


  • 三角函数教案
  • 课题:§7.1正切 [学习目标] 1.理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值. 2.了解计算一个锐角的正切值的方法. [学习重点与难点] 计算一个锐角的正切值的方法 [学习过程] 一.情景创设 1.观察:如图,是某体育馆 ...查看


  • 四.解直角三角形的教案
  • 教案 解直角三角形 4.1 正弦和余弦(1) 教学设计 教学内容 教学分析 教学准备 第 1 课时 板书设计 4.1 正弦和余弦(2) [教学目标] 1.能够根据直角三角形的边角关系进行计算: 2.能用三角函数的知识根据三角形中已知的边和角 ...查看


热门内容