1,如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连结BD,由正方形对称性可知,B与D关于直线AC对称.连结ED交AC于P,则PB+PE的最小值是___________;
2,如图2,圆O的半径为2,A B C点在圆上,OA垂直OB,∠AOC为60°,P是OB上一动点,求PA+PC的最小值__________;
3,如图3,∠AOB=45°,P是∠AOB内一点,PO为10,Q,R分别是上OA OB的动点,求三角形PQR周长的最小值_________
4,(湖北荆门)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为( )
第4题图 第5题图
A 2 B C 1 D 2
5,抛物线y=ax2+bx+c(a≠0)的对称轴是x=2,且经过点P(3,0),则a+b+c的值为( )
A.-1 B,0 C,1 D,2
5,如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.
(1)求该抛物线的函数关系式;
(2)当△ADP是直角三角形时,求点P的坐标;
(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.
6,如图,在直角坐标系中,半径为5的圆与x轴交于A、B两点,y轴相切于T点,且A,T是直线y=-2x+4与x轴,y轴的交点.
(1)求点T、A、B的坐标;
(2)抛物线y=ax2+bx+c经过A、B两点,并且顶点D在圆上,求D点坐标;
(3)求出(2)中A、B、D三点且使△ABD的面积是27的抛物线的解析式.
第6题图 第7题图 第8题图
7,如图,在直角坐标中,直线y=kx-3,分别与x轴,y轴交于B(3,0)、C,过B、C两点的抛物线y=ax2+bx+c与x轴交于另一点A(点A在B左边),且S△ABC=3
(1)求k的值;
(2)求抛物线的解析式;
(3)点P在抛物线上,且∠ACP=45°,求P点的坐标.
8,(本题满分9分)如图,在直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交与点A(-1,0)、B(3,0)两点,抛物线交y轴于点C(0,3),点D为抛物线的顶点.直线y=x-1交抛物线于点M、N两点,过线段MN上一点P作y轴的平行线交抛物线于点Q.
(1)求此抛物线的解析式及顶点D的坐标;
(2)问点P在何处时,线段PQ最长,最长为多少?
(3)设E为线段OC上的三等分点,连接EP,EQ,若EP=EQ,求点P的坐标.
9,如图,已知抛物线y=ax2+bx+c(a>0)的顶点是C(0,1),直线l:y=-ax+3与这条抛物线交于P、Q两点,且点P到x轴的距离为2.
(1)求抛物线和直线l的解析式;
(2)求点Q的坐标.
第9题图 第10题图
10,(本题满分12分)如图1,抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点.(1)求抛物线的解析式;
(2)设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;
(3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于E,F两点.问在y轴的负半轴上是否存在点P,使△PEF的内心在y轴上.若存在,求出点P的坐标;若不存在,请说明理由.
11,已知抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点如图1,顶点为M.
(1)a、b的值;
(2)设抛物线与y轴的交点为Q如图1,直线y=-2x+9与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.当抛物线的顶点平移到D点时,Q点移至N点,求抛物线上的两点M、Q间所夹的曲线扫过的区域的面
积;
(3)设直线y=-2x+9与y轴交于点C,与直线OM交于点D如图2.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)没有公共点时,试探求其顶点的横坐标的取值范围;
(4)如图3,将抛物线平移,当顶点M移至原点时,过点Q(0,3)作不平行于x轴的直线交抛物线于E,F两点.试探究:在y轴的负半轴上是否存在点P,使得∠EPQ=∠QPF?若存在,求出点P的坐标;若不存在,请说明理由.
第11题图
12,如图,抛物线C:y=ax2+bx+3与x轴的两个交点坐标为A(-3,0),B(-1,0).
(Ⅰ)求抛物线C的解析式;
(Ⅱ)设抛物线C的顶点为M,直线y=-2x+9与y轴交于点E,交直线OM于点F.现保持抛物线C的形状和开口方向,使顶点沿直线OM移动(O为坐标原点).在平移过程中,当抛物线与射线EF(含端点E、F)只有一个公共点时,求它的顶点横坐标的值或取值范围;
(Ⅲ)将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于M,N两点.问在y轴的负半轴上是否存在点P,使△PMN的内心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.
积;
(3)设直线y=-2x+9与y轴交于点C,与直线OM交于点D如图2.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)没有公共点时,试探求其顶点的横坐标的取值范围;
(4)如图3,将抛物线平移,当顶点M移至原点时,过点Q(0,3)作不平行于x轴的直线交抛物线于E,F两点.试探究:在y轴的负半轴上是否存在点P,使得∠EPQ=∠QPF?若存在,求出点P的坐标;若不存在,请说明理由.
第11题图
12,如图,抛物线C:y=ax2+bx+3与x轴的两个交点坐标为A(-3,0),B(-1,0).
(Ⅰ)求抛物线C的解析式;
(Ⅱ)设抛物线C的顶点为M,直线y=-2x+9与y轴交于点E,交直线OM于点F.现保持抛物线C的形状和开口方向,使顶点沿直线OM移动(O为坐标原点).在平移过程中,当抛物线与射线EF(含端点E、F)只有一个公共点时,求它的顶点横坐标的值或取值范围;
(Ⅲ)将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于M,N两点.问在y轴的负半轴上是否存在点P,使△PMN的内心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.
第12题图 第13题图
13,(14分)已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0)、B(0,1)两点,且对称轴是y轴.经过点C(0,2)的直线l与x轴平行,O为坐标原点,P、Q为抛物线y=ax2+bx+c(a≠0)上的两动点.
(1) 求抛物线的解析式;
(2) 以点P为圆心,PO为半径的圆记为⊙P,判断直线l与⊙P的位置关系,并证明你的结论;
(3) 设线段PQ=9,G是PQ的中点,求点G到直线l距离的最小值.
14,已知抛物线y=ax2+bx+c与直线y=mx+n相交于两点,这两点的坐标分别是(0,
n),其中a,b,c,m,n为实数,且a,m不为0.
(1)求c的值;
(2)设抛物线y=ax2+bx+c与x轴的两个交点是(x1,0)和(x2,0),求x1x2的值; )和(m-b,m2-mb+
(3)当-1≤x≤1时,设抛物线y=ax2+bx+c上与x轴距离最大的点为P(xo,yo ),求这时|yo|的最小值.
第14题图
1,如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连结BD,由正方形对称性可知,B与D关于直线AC对称.连结ED交AC于P,则PB+PE的最小值是___________;
2,如图2,圆O的半径为2,A B C点在圆上,OA垂直OB,∠AOC为60°,P是OB上一动点,求PA+PC的最小值__________;
3,如图3,∠AOB=45°,P是∠AOB内一点,PO为10,Q,R分别是上OA OB的动点,求三角形PQR周长的最小值_________
4,(湖北荆门)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为( )
第4题图 第5题图
A 2 B C 1 D 2
5,抛物线y=ax2+bx+c(a≠0)的对称轴是x=2,且经过点P(3,0),则a+b+c的值为( )
A.-1 B,0 C,1 D,2
5,如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.
(1)求该抛物线的函数关系式;
(2)当△ADP是直角三角形时,求点P的坐标;
(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.
6,如图,在直角坐标系中,半径为5的圆与x轴交于A、B两点,y轴相切于T点,且A,T是直线y=-2x+4与x轴,y轴的交点.
(1)求点T、A、B的坐标;
(2)抛物线y=ax2+bx+c经过A、B两点,并且顶点D在圆上,求D点坐标;
(3)求出(2)中A、B、D三点且使△ABD的面积是27的抛物线的解析式.
第6题图 第7题图 第8题图
7,如图,在直角坐标中,直线y=kx-3,分别与x轴,y轴交于B(3,0)、C,过B、C两点的抛物线y=ax2+bx+c与x轴交于另一点A(点A在B左边),且S△ABC=3
(1)求k的值;
(2)求抛物线的解析式;
(3)点P在抛物线上,且∠ACP=45°,求P点的坐标.
8,(本题满分9分)如图,在直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交与点A(-1,0)、B(3,0)两点,抛物线交y轴于点C(0,3),点D为抛物线的顶点.直线y=x-1交抛物线于点M、N两点,过线段MN上一点P作y轴的平行线交抛物线于点Q.
(1)求此抛物线的解析式及顶点D的坐标;
(2)问点P在何处时,线段PQ最长,最长为多少?
(3)设E为线段OC上的三等分点,连接EP,EQ,若EP=EQ,求点P的坐标.
9,如图,已知抛物线y=ax2+bx+c(a>0)的顶点是C(0,1),直线l:y=-ax+3与这条抛物线交于P、Q两点,且点P到x轴的距离为2.
(1)求抛物线和直线l的解析式;
(2)求点Q的坐标.
第9题图 第10题图
10,(本题满分12分)如图1,抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点.(1)求抛物线的解析式;
(2)设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;
(3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于E,F两点.问在y轴的负半轴上是否存在点P,使△PEF的内心在y轴上.若存在,求出点P的坐标;若不存在,请说明理由.
11,已知抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点如图1,顶点为M.
(1)a、b的值;
(2)设抛物线与y轴的交点为Q如图1,直线y=-2x+9与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.当抛物线的顶点平移到D点时,Q点移至N点,求抛物线上的两点M、Q间所夹的曲线扫过的区域的面
积;
(3)设直线y=-2x+9与y轴交于点C,与直线OM交于点D如图2.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)没有公共点时,试探求其顶点的横坐标的取值范围;
(4)如图3,将抛物线平移,当顶点M移至原点时,过点Q(0,3)作不平行于x轴的直线交抛物线于E,F两点.试探究:在y轴的负半轴上是否存在点P,使得∠EPQ=∠QPF?若存在,求出点P的坐标;若不存在,请说明理由.
第11题图
12,如图,抛物线C:y=ax2+bx+3与x轴的两个交点坐标为A(-3,0),B(-1,0).
(Ⅰ)求抛物线C的解析式;
(Ⅱ)设抛物线C的顶点为M,直线y=-2x+9与y轴交于点E,交直线OM于点F.现保持抛物线C的形状和开口方向,使顶点沿直线OM移动(O为坐标原点).在平移过程中,当抛物线与射线EF(含端点E、F)只有一个公共点时,求它的顶点横坐标的值或取值范围;
(Ⅲ)将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于M,N两点.问在y轴的负半轴上是否存在点P,使△PMN的内心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.
积;
(3)设直线y=-2x+9与y轴交于点C,与直线OM交于点D如图2.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)没有公共点时,试探求其顶点的横坐标的取值范围;
(4)如图3,将抛物线平移,当顶点M移至原点时,过点Q(0,3)作不平行于x轴的直线交抛物线于E,F两点.试探究:在y轴的负半轴上是否存在点P,使得∠EPQ=∠QPF?若存在,求出点P的坐标;若不存在,请说明理由.
第11题图
12,如图,抛物线C:y=ax2+bx+3与x轴的两个交点坐标为A(-3,0),B(-1,0).
(Ⅰ)求抛物线C的解析式;
(Ⅱ)设抛物线C的顶点为M,直线y=-2x+9与y轴交于点E,交直线OM于点F.现保持抛物线C的形状和开口方向,使顶点沿直线OM移动(O为坐标原点).在平移过程中,当抛物线与射线EF(含端点E、F)只有一个公共点时,求它的顶点横坐标的值或取值范围;
(Ⅲ)将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于M,N两点.问在y轴的负半轴上是否存在点P,使△PMN的内心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.
第12题图 第13题图
13,(14分)已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0)、B(0,1)两点,且对称轴是y轴.经过点C(0,2)的直线l与x轴平行,O为坐标原点,P、Q为抛物线y=ax2+bx+c(a≠0)上的两动点.
(1) 求抛物线的解析式;
(2) 以点P为圆心,PO为半径的圆记为⊙P,判断直线l与⊙P的位置关系,并证明你的结论;
(3) 设线段PQ=9,G是PQ的中点,求点G到直线l距离的最小值.
14,已知抛物线y=ax2+bx+c与直线y=mx+n相交于两点,这两点的坐标分别是(0,
n),其中a,b,c,m,n为实数,且a,m不为0.
(1)求c的值;
(2)设抛物线y=ax2+bx+c与x轴的两个交点是(x1,0)和(x2,0),求x1x2的值; )和(m-b,m2-mb+
(3)当-1≤x≤1时,设抛物线y=ax2+bx+c上与x轴距离最大的点为P(xo,yo ),求这时|yo|的最小值.
第14题图