相似三角形的应用举例教案

27.2.2 相似三角形的应用举例

一、教学目标

1.

2. 进一步巩固相似三角形的知识. 能够运用三角形相似的知识,解决不能直接测量物体的长度和高

度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题.

3. 通过把实际问题转化成有关相似三角形的数学模型,进一步了解

数学建模的思想,培养分析问题、解决问题的能力.

二、重点、难点

1.重点:运用三角形相似的知识计算不能直接测量物体的长度和高度.

2.难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题).

3.难点的突破方法

(1)本节主要探索的是应用相似三角形的判定、性质等知识去解决某些简单的实际问题(计算不能直接测量物体的长度和高度及盲区问题),学生已经学过了相似三角形的概念、判定方法及性质,在此基础上通过本课的学习将对前面所学知识进行全面应用.初三学生在思维上已具备了初步的应用数学的意识,在心理特点上则更依赖于直观形象的认识.

(2)在实际生活中,面对不能直接测量出长度和宽度的物体及盲区问题,我们可以应用相似三角形的知识来测量,只要将实际问题转化为数学问题,建立相似三角形模型,再利用线段成比例来求解.在教学中,要通过这些知识的教学,帮助学生从实际生活中发现数学问题、运用所学知

识解决实际问题。另外,还可以根据学生实情,选择一些实际问题,引导学生加以解决,提高他们应用知识解决问题的能力.

(3)课上可以通过著名的科学家名句和如何测量神秘的金字塔的高度来激发学生学数学的兴趣,使学生积极参与探索,体验成功的喜悦.

(4)运用三角形相似的知识解决实际问题对于学生来说难度较大,可以适当增加课时.

三、例题的意图

相似三角形的应用主要有如下两个方面:(1)测高(不能直接使用皮尺或刻度尺量的);(2)测距(不能直接测量的两点间的距离) .本节课通过教材P49的例3——P50的例5(教材P49例3——是测量金字塔高度问题;P50例4——是测量河宽问题;P50例5——是盲区问题)的讲解,使学生掌握测高和测距的方法.知道在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量已知三角形的各条线段的长,运用相似三角形的性质列出比例式求解.讲课时,可以让学生思考用不同的方法解这几个实际问题,以提高从实际生活中发现数学问题、运用所学知识解决实际问题的能力.

应让学生多见些不同类型的有关相似三角形的应用问题,便于学生理解:世上许多实际问题都可以用数学问题来解决,而本节的应用实质是:运用相似三角形相似比的相关知识解决问题,并让学生掌握运用这方面的知识解决在自己生活中的一些实际问题的计算方法.

其中P50的例5出现了几个概念,在讲此例题时可以给学生介绍.(1)视点:观察者眼睛的位置称为视点;(2)视线:由视点出发的线称为视线;(3)仰角:在进行测量时,从下向上看,视线与水平线的夹角叫做

仰角;(4)盲区:人眼看不到的地方称为盲区.

四、课堂引入

问:世界现存规模最大的金字塔位于哪个国家,叫什么金字塔?

胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一” .塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米.据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀,所以高度有所降低.

在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”,这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量大金字塔的高度的吗?

五、例题讲解

例1(教材P49例3——测量金字塔高度问题)

分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,

从而构造相似三角形,再利用相似三角

形的判定和性质,根据已知条件,求出

金字塔的高度.

解:略(见教材P49)

问:你还可以用什么方法来测量金字塔的高度?(如用身高等)

解法二:用镜面反射(如图,点A是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形).(解法略)

例2(教材P50例4——测量河宽问题)

分析:设河宽PQ长为x m ,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有PQQR,即x

PSSTx4560.再解90x的

方程可求出河宽.

解:略(见教材P50)

问:你还可以用什么方法来测量河

的宽度?

解法二:如图构造相似三角形(解

法略).

例3(教材P50例5——盲区问题)

分析:略(见教材P50)

解:略(见教材P51)

六、课堂练习

1. 在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人

测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?

2. 小明要测量一座古塔的高度,从距他2米的一小块积水处C看到

塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高?

七、课后练习

1.

教材P51.练习1和练习2.

2. 如图,小明在打网球时,使球恰好能打过网,而且落在离网5米

的位置上,求球拍击球的高度h.(设网球是

直线运动)

3. 小明想利用树影测量树高,他在某一时刻

测得长为1m的竹竿影长0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m,又测得地面部分的影长2.7m,他求得的树高是多少?

教学反思

27.2.2 相似三角形的应用举例

一、教学目标

1.

2. 进一步巩固相似三角形的知识. 能够运用三角形相似的知识,解决不能直接测量物体的长度和高

度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题.

3. 通过把实际问题转化成有关相似三角形的数学模型,进一步了解

数学建模的思想,培养分析问题、解决问题的能力.

二、重点、难点

1.重点:运用三角形相似的知识计算不能直接测量物体的长度和高度.

2.难点:灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题).

3.难点的突破方法

(1)本节主要探索的是应用相似三角形的判定、性质等知识去解决某些简单的实际问题(计算不能直接测量物体的长度和高度及盲区问题),学生已经学过了相似三角形的概念、判定方法及性质,在此基础上通过本课的学习将对前面所学知识进行全面应用.初三学生在思维上已具备了初步的应用数学的意识,在心理特点上则更依赖于直观形象的认识.

(2)在实际生活中,面对不能直接测量出长度和宽度的物体及盲区问题,我们可以应用相似三角形的知识来测量,只要将实际问题转化为数学问题,建立相似三角形模型,再利用线段成比例来求解.在教学中,要通过这些知识的教学,帮助学生从实际生活中发现数学问题、运用所学知

识解决实际问题。另外,还可以根据学生实情,选择一些实际问题,引导学生加以解决,提高他们应用知识解决问题的能力.

(3)课上可以通过著名的科学家名句和如何测量神秘的金字塔的高度来激发学生学数学的兴趣,使学生积极参与探索,体验成功的喜悦.

(4)运用三角形相似的知识解决实际问题对于学生来说难度较大,可以适当增加课时.

三、例题的意图

相似三角形的应用主要有如下两个方面:(1)测高(不能直接使用皮尺或刻度尺量的);(2)测距(不能直接测量的两点间的距离) .本节课通过教材P49的例3——P50的例5(教材P49例3——是测量金字塔高度问题;P50例4——是测量河宽问题;P50例5——是盲区问题)的讲解,使学生掌握测高和测距的方法.知道在实际测量物体的高度、宽度时,关键是要构造和实物所在三角形相似的三角形,而且要能测量已知三角形的各条线段的长,运用相似三角形的性质列出比例式求解.讲课时,可以让学生思考用不同的方法解这几个实际问题,以提高从实际生活中发现数学问题、运用所学知识解决实际问题的能力.

应让学生多见些不同类型的有关相似三角形的应用问题,便于学生理解:世上许多实际问题都可以用数学问题来解决,而本节的应用实质是:运用相似三角形相似比的相关知识解决问题,并让学生掌握运用这方面的知识解决在自己生活中的一些实际问题的计算方法.

其中P50的例5出现了几个概念,在讲此例题时可以给学生介绍.(1)视点:观察者眼睛的位置称为视点;(2)视线:由视点出发的线称为视线;(3)仰角:在进行测量时,从下向上看,视线与水平线的夹角叫做

仰角;(4)盲区:人眼看不到的地方称为盲区.

四、课堂引入

问:世界现存规模最大的金字塔位于哪个国家,叫什么金字塔?

胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一” .塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米.据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀,所以高度有所降低.

在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”,这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量大金字塔的高度的吗?

五、例题讲解

例1(教材P49例3——测量金字塔高度问题)

分析:根据太阳光的光线是互相平行的特点,可知在同一时刻的阳光下,竖直的两个物体的影子互相平行,

从而构造相似三角形,再利用相似三角

形的判定和性质,根据已知条件,求出

金字塔的高度.

解:略(见教材P49)

问:你还可以用什么方法来测量金字塔的高度?(如用身高等)

解法二:用镜面反射(如图,点A是个小镜子,根据光的反射定律:由入射角等于反射角构造相似三角形).(解法略)

例2(教材P50例4——测量河宽问题)

分析:设河宽PQ长为x m ,由于此种测量方法构造了三角形中的平行截线,故可得到相似三角形,因此有PQQR,即x

PSSTx4560.再解90x的

方程可求出河宽.

解:略(见教材P50)

问:你还可以用什么方法来测量河

的宽度?

解法二:如图构造相似三角形(解

法略).

例3(教材P50例5——盲区问题)

分析:略(见教材P50)

解:略(见教材P51)

六、课堂练习

1. 在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人

测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?

2. 小明要测量一座古塔的高度,从距他2米的一小块积水处C看到

塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高?

七、课后练习

1.

教材P51.练习1和练习2.

2. 如图,小明在打网球时,使球恰好能打过网,而且落在离网5米

的位置上,求球拍击球的高度h.(设网球是

直线运动)

3. 小明想利用树影测量树高,他在某一时刻

测得长为1m的竹竿影长0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图,他先测得留在墙上的影高1.2m,又测得地面部分的影长2.7m,他求得的树高是多少?

教学反思


相关文章

  • 解三角形应用举例教案
  • 解三角形应用举例教案 ●教学目标 知识与技能:能够运用正弦定理.余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语 过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫.其次结合学生的实际情况,采 ...查看


  • 相似三角形的应用教案设计
  • 相似三角形的应用教案设计 数学与应用数学 [1**********] 郭晓萍 在数学教学中,几何教学是一个重要的领域,从生活到教室,从历史到课堂,几何都给师生带来许多有趣而富有挑战的课程.而图形相似是初中数学的重要内容之一,也是平面几何的核 ...查看


  • 数学教案-平行线分线段成比例定理
  • 教学建议 知识结构 重难点分析 本节的重点是平行线分线段成比例定理.平行线分线段成比例定理是研究相似形的最重要和最基本的理论,它一方面可以直接判定线段成比例,另一方面,当不能直接证明要证的比例成立时,常用这个定理把两条线段的比"转 ...查看


  • 相似三角形应用举例说课稿
  • 27.2.2<相似三角形应用举例>说课稿 河北屯镇初级中学 齐志强 各位领导和老师:您们好!非常高兴能有机会在视导活动中为大家做展示课,谨此请在座的领导和老师们指导.我说课的内容是新人教版九年级教科书数学下册第二十七章2.2节& ...查看


  • 相似三角形应用举例导学案
  • 27.2.3相似三角形应用举例(一)导学案 初三数学组 学习目标: 1. 能够运用三角形相似的知识,解决不能直接测量物体的长度和高度. 一.知识链接 判断两三角形相似有哪些方法?相似三角形有什么性质? 二..探索新知 1.学校操场上的国旗旗 ...查看


  • 相似三角形的应用举例练习
  • 27.2.2 相似三角形应用举例(2)练习题 一.基础练习 1.如图1,AB是斜靠在墙壁上的长梯,梯脚B距离1.6m,梯上点D距墙1.4m,•BD•长0.55m,则梯子的长为_______m. (1) (2) (3) 2.•要做甲.•乙两个 ...查看


  • 数学教案-解直角三角形
  • 教学建议 1.知识结构: 本小节主要学习解直角三角形的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法. 2.重点和难点分析: 教学重点和难点:直角三角形的解法. 本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角 ...查看


  • 相似三角形的应用教案设计 1
  • 相似三角形的应用教案设计 一. 教材分析: 二. 教学流程: 授之以鱼与授之以渔 ――<相似三角形的应用>教学评析 设计思路 教学理念: 本课教学以提高学生素质为主旨,将"以学生发展为本"的课改理念贯穿全过程 ...查看


  • 数学教案-相似三角形的性质
  • 教学建议 知识结构 重点.难点分析 相似三角形的性质及应用是本节的重点也是难点. 它是本章的主要内容之一,是在学完相似三角形判断的基础上,进一步研究相似三角形的性质,以完成对相似三角形的定义.判定和性质的全面研究.相似三角形的性质还是研究相 ...查看


热门内容