小学数学应用题类型及解题方法
一、和差问题:已知两个数的和与差,求这两个数的应用题,叫做和差问题。一般关系式有:
(和-差)÷2=较小数 (和+差)÷2=较大数
例:甲乙两数的和是24,甲数比乙数少4,求甲乙两数各是多少?
(24+4)÷2 =28÷2 =14 乙数 (24-4)÷2 =20÷2 =10 甲数
答:甲数是10,乙数是14
二、差倍问题:
已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题 基本关系式是:两数差÷倍数差=较小数 例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。原来两堆煤各有多少吨?
分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是: (40-5×2)÷(3-1)-5 =(40-10)÷2-5 =30÷2-5 =15-5 =10(吨) 第一堆煤的重量10+40=50(吨) →第二堆煤的重量 答:第一堆煤有10吨,第二堆煤有50吨。
三、还原问题:已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题。
还原问题是逆解应用题。一般根据加、减法,乘、除法的互逆运算的关系。由题目所叙述的的顺序,倒过来逆顺序的思考,从最后一个已知条件出发,逆推而上,求得结果。
例:仓库里有一些大米,第一天售出的重量比总数的一半少12吨。第二天售出的重量,比剩下的一半少12吨,结果还剩下19吨,这个仓库原来有大米多少吨?
分析:如果第二天刚好售出剩下的一半,就应是19+12吨。第一天售出以后,剩下的吨数是(19+12)×2吨。以下类推。 列式:[(19+12)×2-12]×2 =[31×2-12]×2 =[62-12]×2 =50×2 =100(吨)答:这个仓库原来有大米100吨。
四、置换问题:题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。其结果往往与条件不符合,再加以适当的调整,从而求出结果。
例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?
分析:先假定买来的100张邮票全部是20分一张的,那么总值应是20×100=2000(分),比原来的总值多2000-1880=120(分)。而这个多的120分,是把10分一张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。 列式:(2000-1880)÷(20-10) =120÷10 =12(张)→10分一张的张数
100-12=88(张)→20分一张的张数或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。
五、盈亏问题(盈不足问题):题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。
解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。其计算方法是:
当一次有余数,另一次不足时:每份数=(余数+不足数)÷两次每份数的差
当两次都有余数时: 总份数=(较大余数-较小数)÷两次每份数的差
当两次都不足时: 总份数=(较大不足数-较小不足数)÷两次每份数的差
例1、解放军某部的一个班,参加植树造林活动。如果每人栽5棵树苗,还剩下14棵树苗;如果每人栽7棵,就差4棵树苗。求这个班有多少人?一共有多少棵树苗
分析:由条件可知,这道题属第一种情况。
列式:(14+4)÷(7-5) =18÷2 = 9(人)
5×9+14 =45+14 =59(棵) 或:7×9-4 =63-4 =59(棵)
答:这个班有9人,一共有树苗59棵。
六、年龄问题:年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。常用的计算公式是:
成倍时小的年龄=大小年龄之差÷(倍数-1)
几年前的年龄=小的现年-成倍数时小的年龄
几年后的年龄=成倍时小的年龄-小的现在年龄
例父亲今年54岁,儿子今年12岁。几年后父亲的年龄是儿子年龄的4倍?
(54-12)÷(4-1) =42÷3 =14(岁)→儿子几年后的年龄
14-12=2(年)→2年后 答:2年后父亲的年龄是儿子的4倍。
例2、父亲今年的年龄是54岁,儿子今年有12岁。几年前父亲的年龄是儿子年龄的7倍?
(54-12)÷(7-1)=42÷6=7(岁)儿子几年前年龄12-7=5(年)5年前
答:5年前父亲的年龄是儿子的7倍。
例3、王刚父母今年的年龄和是148岁,父亲年龄的3倍与母亲年龄的差比年龄和多4岁。王刚父母亲今年的年龄各是多少岁? (148×2+4)÷(3+1)=300÷4 =75(岁)→父亲的年龄
148-75=73(岁)或:(148+2)÷2 =150÷2 =75(岁) 75-2=73(岁)
答:王刚的父亲今年75岁,母亲今年73岁。
七、鸡兔问题:已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,叫做鸡兔问题,也叫“龟鹤问题”、“置换问题”。 一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。常用的基本公式有:(总足数-鸡足数×总只数)÷每只鸡兔足数的差=兔数 兔子只数=(总腿数-总头数×2) ÷2 鸡的只数=(总头数×4-总腿数) ÷2
(兔足数×总只数-总足数)÷每只鸡兔足数的差=鸡数
例:鸡兔同笼共有24只。有64条腿。求笼中的鸡和兔各有多少只?
(64-2×24)÷(4-2) =(64-48)÷(4-2)=16 ÷2 =8(只)→兔的只数 24-8=16(只)→鸡的只数 答:笼中的兔有8只,鸡有16只。
八、牛吃草问题(船漏水问题):若干头牛在一片有限范围内的草地上吃草。牛一边吃草,草地上一边长草。当增加(或减少)牛的数量时,这片草地上的草经过多少时间就刚好吃完呢?
例1、一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?
分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推„„其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。原因是因为其一,用的时间少;其二,对应的长出来的草也少。这个差就是这片草地5天长出来的草。每天长出来的草可供5头牛吃一天。如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。
(15×10-25×5)÷(10-5)=(150-125)÷(10-5) =25÷5 =5(头)→可供5头牛吃一天。
150-10×5 =150-50 =100(头)草地上原有草供100头牛吃一天
100÷(10-5) =100÷5 =20(天)答:若供10头牛吃,可以吃20天。
例2、一口井匀速往上涌水,用4部抽水机100分钟可以抽干;若用6部同样的抽水机则50分钟可以抽干。现在用7部同样的抽水机,多少分钟可以抽干这口井里的水?
(100×4-50×6)÷(100-50)=(400-300)÷(100-50)=100÷50 =2
400-100×2 =400-200=200 200÷(7-2)=200÷5 =40(分)
答:用7部同样的抽水机,40分钟可以抽干这口井里的水。
九、公约数、公倍数问题:运用最大公约数或最小公倍数解答应用题,叫做公约数、公倍数问题。
例1:一块长方体木料,长2.5米,宽1.75米,厚0.75米。如果把这块木料锯成同样大小的正方体木块,不准有剩余,而且每块的体积尽可能的大,那么,正方体木块的棱长是多少?共锯了多少块?
分析:2.5=250厘米 1.75=175厘米0.75=75厘米
其中250、175、75的最大公约数是25,所以正方体的棱长是25CM
(250÷25)×(175÷25)×(75÷25) =10×7×3 =210(块)
答:正方体的棱长是25厘米,共锯了210块。
例2、两啮合齿轮,一个有24个齿,另一个有40个齿,求某一对齿从第一次接触到第二次接触,每个齿轮至少要转多少周? 分析:因为24和40的最小公倍数是120,也就是两个齿轮都转120个齿时,第一次接触的一对齿,刚好第二次接触。 120÷24=5(周) 120÷40=3(周)
答:每个齿轮分别要转5周、3周。
十、分数应用题:指用分数计算来解答的应用题,叫做分数应用题,也叫分数问题。
分数应用题一般分为三类:1.求一个数是另一个数的几分之几。
2.求一个数的几分之几是多少。3.已知一个数的几分之几是多少,求这个数。
其中每一类别又分为二种,其一:一般分数应用题;其二:较复杂的分数应用题。
例1:育才小学有学生1000人,其中三好学生250人。三好学生占全校学生的几分之几?
例2:一堆煤有180吨,运走了3/5 。运走了多少吨?
例3:某农机厂去年生产农机1800台,今年计划比去年增加1/3 。今年计划生产多少台?1800×(1+1/3 )=1800×4/3=2400(台)
答:今年计划生产2400台。
例4:修一条长2400米的公路,第一天修完全长的1/3 ,第二天修完余下的1/4 。还剩下多少米?
2400×(1-1/3 )×(1-1/4 )=2400×2/3 ×3/4=1200(米)
答:还剩下1200米。
例5:一个学校有三好学生168人,占全校学生人数的4/7 。全校有学生多少人?
例6:甲库存粮120吨,比乙库的存粮少1/3 。乙库存粮多少吨?
120÷(1-1/3) =120×3/2 =180(吨)答:乙库存粮180吨。
例7:一堆煤,第一次运走全部的1/2 ,第二次运走全部的1/3 ,第二次比第一次少运8吨。这堆煤原有多少吨?8÷( 1/2-1/3 )= 8÷1/6 =48(吨)
答:这堆煤原有48吨。
十一、工程问题:它是分数应用题的一个特例。是已知工作量、工作时间和工作效率,三个量中的两个求第三个量的问题。 解答工程问题时,一般要把全部工程看作“1”,然后根据下面的数量关系进行解答:工作效率×工作时间=工作量
工作量÷工作时间=工作效率
工作量÷工作效率=工作时间?
例1:一项工程,甲队单独做需要18天,乙队单独做需要24天。如果两队合作8天后,余下的工程由甲队单独做,还要几天完成?
例2:一个水池,装有甲、乙两个进水管,一个出水管。单开甲管2小时可以注满;单开乙管3小时可以注满;单开出水管6小时可以放完。现在三管在池空时齐开,多少小时可以把水池注满?
百分数应用题:这类应用题与分数应用题的解答方式大致相同,仅求“率”时,表达方式不同,意义不同。
十二、过桥问题,从车头上桥,到车尾离开桥,求所用的时间。
路程=桥长+列车长度。
十三、流水问题,求船在流水中航行的时间。
船速+水速=顺流速度,船速-水速=逆流速度。
十四、线上植树问题,求植树的株数。
在封闭的线上植树。 路长=株距×株数 株距=路长÷株数 株数=路长÷株距。
在不封闭的线上植树,两端都植树。
路长=株距×(株数-1) 株距=路长÷(株数-1) 株数=路长÷株距+1。
十五、面上植树问题,求植树的株数。
当长方形土地的长、宽分别能被株距、行距整除时。
行距×株距=每株植物的占地面积,土地面积÷每株植物的占地面积=株数。
当长方形土地的长、宽不能被株距、行距整除时。 可以按线上植树问题解题。
十六、盈亏问题,求分配的人数。
剩余物品的个数差÷分配方法的个数差=分配的人数。
十七、时钟问题,求时针和分针重合、成直线或直角的时间。
两针重合时间=两针间隔格数÷11/12。
两针成直线时间=(两针间隔格数±30)÷11/12。
两针成直角时间=(两针间隔格数±15或45)÷11/12。
十八、时间差问题,计算几月几日到几月几日的时间差。
先计算首月和尾月,再计算中间几个月。
十九、预测星期几问题,已知今天是星期几,计算经过多少天是星期几。
用经过的天数除以7,求出剩余的天数,再计算是星期几。
1、求平均数应用题解题方法:
①读题,找出总数量;②找出总份数;③平均数=总数量÷总份数 [总数量=平均数×总份数总份数=总数量÷平均数]
2、分数(百分数)应用题解题方法(三步走):
①读题,找准题里单位“ 1”的量;
②确定单位“1”是已知,还是未知。单位“1”已知,用乘法:[单位“1”的量×分率=分率对应量];单位“1”未知,用除法或方程:[分率对应量(已知数)÷对应分率=单位“1”的量]
③比单位“1”多就用[单位“1”的量+多的]或(1+﹍),比单位“1”少就用[单位“1”的量-少的]或(1-﹍)。
3、工程问题解题方法:
①读题,根据所求问题找出需要完成的工作量和各自的工作效率;(注意要对应:求谁的时间就去找他需要完成的工作量和他的工作效率);
②工作时间=工作总量÷工作效率 [工作总量=工作效率×工作时间工作效率=工作总量÷工作时间]
4、相遇问题解题方法:
①读题,从问题入手;②总路程=速度和×相遇时间 [ 相遇时间=总路程÷速度和速度和=总路程÷相遇时间 ]。
5、按比例分配应用题解题方法:
①读题,找出总数量(各部分的总和);②根据各部分的比找出总份数;③用总数量乘以各部分占总数的分率。
6、几何形体应用题解题方法:
①读题,看清是什么形体;②分析,是计算它的什么;③该怎样计算(相关计算公式);④注意单位。
7、列方程解应用题解题方法:
①根据题意,找出未知数并用x表示;②分析题里数量之间的相等关系(找出等量关系)列方程;③解方程;④检验,写出答案。
8、用比例知识解应用题解题方法:
①读题,找准题里一定的量;②判断题里的比例关系(是成正还是反比例);③列比例(成正比例,比值相等;成反比例,乘积相等)。④解比例。
9、一般应用题(通用)解题方法:
①弄清题意,找出已知条件和所求问题;②分析题里数量之间的关系,确定先算什么、再算什么、最后算什么;
③确定每一步该怎样算;④列出算式,算出得数。
小学数学五年级上册应用题经典类型讲解二
二.应用题的解题思维过程
根据上面所讲的特点,我经过多年对数学应用题题型的钻研,依据小学生的年龄特点,发掘整理出一条解决应用题的途径,在这里分享给大家,希望能给大家以启迪。
我对应用题的分析流程是这样安排的:
1.划分应用题题意层次——2.提炼有效数据(包括未知数据)——3. 联系数学基本概念和基本计算建立数据关系模型——4.构思解题步骤——5.书写解题过程——6.数据检验。
例题:一只小船,第一次顺水航行20千米,又逆水航行3千米,共用了4小时;第二次顺水航行了17.6千米,又逆水航行了3.6千米,也用了4小时。求船在静水中的速度和水流速度。
应用题有两层意思:
第一次顺水航行20千米,又逆水航行3千米,共用了4小时
第二次顺水航行了17.6千米,又逆水航行了3.6千米,也用了4小时
有效数据:顺行20千米 又 逆行3千米 共 4小时
顺行17.6千米 又 逆行3.6千米 共 4小时
数据关系线段图
第一次:顺行 20 逆行3
第二次:顺行17.6 逆行3.6
分析:顺行20-17.6=2.4(千米) 逆行3.6-3=0.6(千米)用时相等
联系数学知识:时间相同时,速度与时间成反比,可得出顺行与逆行的速度关系
分析与解 比较两次航行的航程可知:在相同的时间内,顺水可航行20-17.6=2.4千米,逆水可航行3.6-3=0.6千米。于是求
出在相同时间内顺水航程是逆水航程的2.4÷0.6=4倍。那么顺水行的航速也就是逆水行的航速的4倍,进而求出顺水与逆水的航速。
顺水航速为每小时:(20+3×4)÷4=8(千米)
逆水航速为每小时:8÷4=2(千米)
船在静水中的速度为每小时
(8+2)÷2=5(千米)
水流速度为每小时
(8-2)÷2=3(千米)
即船在静水中的速度为每小时5千米,水流速度为每小时3千米。
例题:一次象棋比赛共有10名选手参加,他们分别来自甲、乙、丙三个队。每个人都与其余九名选手各赛一盘,每盘棋的胜者得1分,负者得0分,平局各得 0.5分。结果,甲队选手平均得4.5分,乙队选手平均得3.6分,丙队选手平均得9分。那么,甲、乙、丙三队参赛选手的人数各是多少人?
这是一道竞赛题目,题中数据关系较为复杂,但只要我们划分提议层次,就不难看出等量关系
第一句话三个意思:共10名选手,分为三个队,各队人数不一等
每两人之间各一场比赛,即每人参赛9场
评判规则:胜一场得1分,平一场两人各得0.5分,负一场0分,向深处思维可知,比赛产生的总分数是不变的 第二句话:甲对平均4.5分,乙队平均3.6分,丙队平均9分
数据关系列表:
甲 乙 丙
总 分 数 ( ) + ( ) + ()=9+8+7+???+1=45
总平均分 45 ÷ 10 =4.5
各队平均分 4.5 3.6 9
分析与解:每人最多9场比赛,所以只有一人得最高分9分,可判断丙队1人;再看甲队平均分等于总平均分,所以,平均时只在乙队与丙队之间进行数据的移补,即丙队高于平总平均分部分补给乙队,因此有等量关系
(9-4.5)÷(4.5-3.6)=5 (人) 可判断乙队5人
甲队人数:10―1―5=4(人)
三. 熟练掌握课本中的数学概念、运算法则和常用公式
数学问题的叙述是建立在概念基础上的,因此,熟练的掌握数学基本概念可以使我们迅速捕捉应用题中的数学信息,帮助我们弄清题意。
例:数的有关概念:自然数、整数、小数(纯小数、带小数,有限小数、无限小数:无限不循环小数、无限循环小数,纯循环小数、混循环小数)、分数(真分数、假分数、带分数)、百分数、约数与倍数、质数与合数、奇数与偶数、公约数与公倍数、互质数、质因数等等
运算法则与常用公式是数学计算的基本方法,不但是计算过程中必须掌握的知识,在分析应用题的过程中也是很好的辅助工具,可以使我们简化思维过程,建立数据之间的逻辑关系。
例:小学数学基本公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2 2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab 4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2 6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 ?=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、长方体(正方体、圆柱体)的体
相关联的数量关系
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab
4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6 平行四边形 s面积 a底 h高 面积=底×高 s=ah
7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏
9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径
10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间 追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒
例题:3个相邻偶数的乘积是一个六位数8****2,求这3个偶数。
分析:由于乘积是一个六位数字,所以这3个相邻的偶数必须是两位数字。而这3个相邻的偶数的个位数字只能是0,2,4,6,8中相邻的3个,但要使它们的 乘积的个位数字为2,这3个相邻偶数的个位数字只能是4,6,7;由于3个100相乘等于一个小的七位数字1000000,所以可以估算出这3个相邻的偶 数为94,96,98。经计算知,要使乘积的第一位数字为8,这3个相邻的偶数只能是94,96. 小学五年级上册应用题经典类型讲解(一)
今天我给想给大家探讨的是《小学应用题思维方法》。应用题是我们小学数学中常见的题目,也是我们把数学知识应用于实际的一个途径。常见的应用题有文字题目、情景题目、图形题目、算式应用题等等,类型很多。每一种形式的应用题又分多种类 型,比如文字题目中有:还原问题、行程问题、鸡兔同笼、流水问题、平均数问题、工程问题等等,随着考试的不断发展,特别是奥数理论的发展,近几年又出现了更多更新颖的数学题目,在给我们同学增添数学学习兴趣的同时,也给我们同学增加了不小的难度。如何解决学习中的这些问题呢?我认为:主要是数学思维问题。 从出题老师的角度看,数学题目的发展变化,不是为了难倒同学们,而是为了开发同学们的智力,发展同学们的数学思维,如果我们能够很好的掌握数学的思维方法,任何应用题都会迎刃而解。我今天就以文字应用题为例,与同学们共同探讨应用题的思维方法。
一. 数学题目的特点:
较为复杂的题目一般会出现两个以上的等量关系,而这些等量关系之间有存在着相互的联系,联系的方式我这里给大家分为三种,即:递进关系、并列关系和交叉关系。
例如:甲、乙、丙三人步行的速度分别是每分钟30米、40米、50米,甲、乙在A地,而丙在B地同时出发相向而行,丙遇乙后10分钟和甲相遇。A、B两地间的路长多少米?
分析与解答:从图中可以看出,丙和乙相遇后又经过10分钟和甲相遇,10分钟内甲丙两人共行(30+50)×10=800米。这800米就是乙、丙相遇比 甲多行的路程。乙每分钟比甲多行40-30=10米,现在乙比甲多行800米,也就是行了80÷10=80分钟。因此,AB两地间的路程为(50+40)×80=7200米。
(递进关系)
一个植树小组植树。如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。这个植树小组有多少人?一共有多少棵树?
由题意可知,植树的人数和树的棵数是不变的。比较两种分配方案,结果相差14+4=18棵,即第一种方案的结果比第二种多18棵。这是因为两种分配方案每人植树的棵数相差7-5=2棵。所以植树小组有18÷2=9人,一共有5×9+14=59棵树。
(并列关系)
有26块砖,兄弟2人争着去挑,弟弟抢在前面,刚摆好砖,哥哥赶来了。哥哥看弟弟挑得太多,就拿来一半给自己。弟弟觉得自己能行,又从哥哥那里拿来一半。哥哥不让,弟弟只好给哥哥5块,这样哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?
【分析】我们得先算出最后哥哥、弟弟各挑多少块。只要解一个“和差问题”就知道:哥哥挑“(26+2)÷2=14”块,弟弟挑“26-14=12”块。下面根据题意列表还原:
(交叉关系)
总之,数学题目展示给我们的就是一种或者几种等量关系,解决数学问题就是要我们把数学题目中的等量关系挖掘出来,利用数学知识解决未知量的问题。我认为,解数学应用题的关键不是知道几个题型,最关键的是我们要懂得数学的思维方法。
小学数学五年级上册应用题经典类型讲解(二)
二.应用题的解题思维过程
根据上面所讲的特点,我经过多年对数学应用题题型的钻研,依据小学生的年龄特点,发掘整理出一条解决应用题的途径,在这里分享给大家,希望能给大家以启迪。
我对应用题的分析流程是这样安排的:
1.划分应用题题意层次——2.提炼有效数据(包括未知数据)——3. 联系数学基本概念和基本计算建立数据关系模型——4.构思解题步骤——5.书写解题过程——6.数据检验。
例题:一只小船,第一次顺水航行20千米,又逆水航行3千米,共用了4小时;第二次顺水航行了17.6千米,又逆水航行了3.6千米,也用了4小时。求船在静水中的速度和水流速度。
应用题有两层意思:
第一次顺水航行20千米,又逆水航行3千米,共用了4小时
第二次顺水航行了17.6千米,又逆水航行了3.6千米,也用了4小时
有效数据:顺行20千米 又 逆行3千米 共 4小时
顺行17.6千米 又 逆行3.6千米 共 4小时
数据关系线段图
第一次:顺行 20 逆行3
第二次:顺行17.6 逆行3.6
分析:顺行20-17.6=2.4(千米) 逆行3.6-3=0.6(千米)用时相等
联系数学知识:时间相同时,速度与时间成反比,可得出顺行与逆行的速度关系
分析与解 比较两次航行的航程可知:在相同的时间内,顺水可航行20-17.6=2.4千米,逆水可航行3.6-3=0.6千米。于是求出在相同时间内顺水航程是逆水航程的2.4÷0.6=4倍。那么顺水行的航速也就是逆水行的航速的4倍,进而求出顺水与逆水的航速。
顺水航速为每小时:(20+3×4)÷4=8(千米)
逆水航速为每小时:8÷4=2(千米)
船在静水中的速度为每小时
(8+2)÷2=5(千米)
水流速度为每小时
(8-2)÷2=3(千米)
即船在静水中的速度为每小时5千米,水流速度为每小时3千米。
例题:一次象棋比赛共有10名选手参加,他们分别来自甲、乙、丙三个队。每个人都与其余九名选手各赛一盘,每盘棋的胜者得1分,负者得0分,平局各得 0.5分。结果,甲队选手平均得4.5分,乙队选手平均得3.6分,丙队选手平均得9分。那么,甲、乙、丙三队参赛选手的人数各是多少人?
这是一道竞赛题目,题中数据关系较为复杂,但只要我们划分提议层次,就不难看出等量关系
第一句话三个意思:共10名选手,分为三个队,各队人数不一等
每两人之间各一场比赛,即每人参赛9场
评判规则:胜一场得1分,平一场两人各得0.5分,负一场0分,向深处思维可知,比赛产生的总分数是不变的 第二句话:甲对平均4.5分,乙队平均3.6分,丙队平均9分
数据关系列表:
甲 乙 丙
总 分 数 ( ) + ( ) + ()=9+8+7+???+1=45
总平均分 45 ÷ 10 =4.5
各队平均分 4.5 3.6 9
分析与解:每人最多9场比赛,所以只有一人得最高分9分,可判断丙队1人;再看甲队平均分等于总平均分,所以,平均时只在乙队与丙队之间进行数据的移补,即丙队高于平总平均分部分补给乙队,因此有等量关系
(9-4.5)÷(4.5-3.6)=5 (人) 可判断乙队5人
甲队人数:10―1―5=4(人)
三. 熟练掌握课本中的数学概念、运算法则和常用公式
数学问题的叙述是建立在概念基础上的,因此,熟练的掌握数学基本概念可以使我们迅速捕捉应用题中的数学信息,帮助我们弄清题意。
例:数的有关概念:自然数、整数、小数(纯小数、带小数,有限小数、无限小数:无限不循环小数、无限循环小数,纯循环小数、混循环小数)、分数(真分数、假分数、带分数)、百分数、约数与倍数、质数与合数、奇数与偶数、公约数与公倍数、互质数、质因数等等
运算法则与常用公式是数学计算的基本方法,不但是计算过程中必须掌握的知识,在分析应用题的过程中也是很好的辅助工具,可以使我们简化思维过程,建立数据之间的逻辑关系。
例:小学数学基本公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2 2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab 4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2 6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 ?=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、长方体(正方体、圆柱体)的体
相关联的数量关系
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 、长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab
4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底三角形底=面积 ×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah
7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间 追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒
例题:3个相邻偶数的乘积是一个六位数8****2,求这3个偶数。
分析:由于乘积是一个六位数字,所以这3个相邻的偶数必须是两位数字。而这3个相邻的偶数的个位数字只能是0,2,4,6,8中相邻的3个,但要使它们的 乘积的个位数字为2,这3个相邻偶数的个位数字只能是4,6,7;由于3个100相乘等于一个小的七位数字1000000,所以可以估算出这3个相邻的偶 数为94,96,98。经计算知,要使乘积的第一位数字为8,这3个相邻的偶数只能是94,96.
小学数学五年级上册应用题经典类型讲解(三)
四.熟悉一些特殊应用题的解题思路
在小学数学中有许多特殊类型的应用题,这些应用题不是出题人故意的在难为同学们,有很多是从古至今的数学家总结生产、生活中的实际问题提炼出来的解决数学问题的途径,还有一些是现在数学解决问题过程中总结出来的一些解决问题的思维过程,这些途径很值得我们现在学习数学的借鉴,并且这些问题还可以开阔我们的 思路。
例题:老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?
分析:这个问题就是鸡兔同笼问题 我们分步来考虑:
①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。
②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。 ③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。
解:[6×10-(41+1)÷(6-4)
= 18÷2=9(条)
10-9=1(条)
答:有9条小船,1条大船。
五.学会数学积累
同学们从三年级就开始写日记了,并且语文老师把日记作为同学们的作业要求,为的是让同学们把语文知识与生活实际结合起来,积累我们的写作素材,更好的学习语文;数学也是一样,需要不断的积累,记数学日记就是一个很好的积累方法,数学日记的素材可以来源于课堂、作业、生活、疑问、新发现等等
指导: 1.记录当节当天当周课堂学习的学习、回顾与反思;
(内含:课堂印象深刻的教学环节、自己对新知识的理解、数学的学习心得困惑、对某题的独特思考、对知识的回顾等等)
2.记录生活中与数学知识相关的数学现象、数学活动;
3.记录数学有关的名人名言、名人故事;
4.介绍看到、听到、想到的数学知识;
5.编写数学童话、数学相声、数学游戏;
6.坦然与教师交流自己的心里话。
例文:
昨天我去买“香不佬”鸡腿,每3元一只,买了5只,共用了15元。后来想再买几只送给表弟吧,于是又回头买了4只,又用了12元。我算了算一共用去27 元。我想用另外的算法检验一下对不对,就想,先买5只,后买4只,共买9只,9个3元是27元。其实,3╳5+3╳4=15+12=27,就是5个3加上 4个3,等于9个3,9╳3=27。原来3╳5+3╳4=3╳9。
上个星期,我们学习了分数。分数有分子、分母和分数线,比如:1/3,3是分母,1是分子,中间一横是分数线。
活中有很多地方都要用到分数,比如:一本书有三十页,每一页是一本书的1/30。分数还可以用来加减呢!比如:二分之一加二分之一等于二分之二,也就是 1。为什么会这样呢?如果一个饼把它平均分成两份,每份就是这个饼的1/2,再把这两份拼起来,就是有2个1/2,刚好是一个饼。分数在加减时,如果分母 都是一样的,就不管分母,把分子相加就可以了。而2/2的分子和分母都一样,就是1了。
我还学会了比分数的大小,老师教了我们口诀:分子相同比分母,分母大的分数小,分母小的分数大;分母相同比分子,分子大的分数大,分子小的分数小。
老师还提醒我们,写分数时,一般先写分数线,表示平均分的意思,再写分母,最后写分子.
总之,数学的学习不只是解几道题的问题,主要是要学会数学的思维方法,头脑中有了数学思维,并能够灵活运用,数学应用题,以及数学应用于我们的生活都不是难题。 我们在学习数学时,要注意方法的积累,培养自己的数学思维方式,长此下去,数学不但变得容易,而且会很有趣。
应用题是数学能力的综合体验,我们必须熟悉数学知识的各部分内容以及应用,建立清晰的数学思维方法,才能灵活的应对应用题的变化,真正学好数学。
小学数学应用题类型及解题方法
一、和差问题:已知两个数的和与差,求这两个数的应用题,叫做和差问题。一般关系式有:
(和-差)÷2=较小数 (和+差)÷2=较大数
例:甲乙两数的和是24,甲数比乙数少4,求甲乙两数各是多少?
(24+4)÷2 =28÷2 =14 乙数 (24-4)÷2 =20÷2 =10 甲数
答:甲数是10,乙数是14
二、差倍问题:
已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题 基本关系式是:两数差÷倍数差=较小数 例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。原来两堆煤各有多少吨?
分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是: (40-5×2)÷(3-1)-5 =(40-10)÷2-5 =30÷2-5 =15-5 =10(吨) 第一堆煤的重量10+40=50(吨) →第二堆煤的重量 答:第一堆煤有10吨,第二堆煤有50吨。
三、还原问题:已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题。
还原问题是逆解应用题。一般根据加、减法,乘、除法的互逆运算的关系。由题目所叙述的的顺序,倒过来逆顺序的思考,从最后一个已知条件出发,逆推而上,求得结果。
例:仓库里有一些大米,第一天售出的重量比总数的一半少12吨。第二天售出的重量,比剩下的一半少12吨,结果还剩下19吨,这个仓库原来有大米多少吨?
分析:如果第二天刚好售出剩下的一半,就应是19+12吨。第一天售出以后,剩下的吨数是(19+12)×2吨。以下类推。 列式:[(19+12)×2-12]×2 =[31×2-12]×2 =[62-12]×2 =50×2 =100(吨)答:这个仓库原来有大米100吨。
四、置换问题:题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。其结果往往与条件不符合,再加以适当的调整,从而求出结果。
例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?
分析:先假定买来的100张邮票全部是20分一张的,那么总值应是20×100=2000(分),比原来的总值多2000-1880=120(分)。而这个多的120分,是把10分一张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。 列式:(2000-1880)÷(20-10) =120÷10 =12(张)→10分一张的张数
100-12=88(张)→20分一张的张数或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。
五、盈亏问题(盈不足问题):题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。
解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。其计算方法是:
当一次有余数,另一次不足时:每份数=(余数+不足数)÷两次每份数的差
当两次都有余数时: 总份数=(较大余数-较小数)÷两次每份数的差
当两次都不足时: 总份数=(较大不足数-较小不足数)÷两次每份数的差
例1、解放军某部的一个班,参加植树造林活动。如果每人栽5棵树苗,还剩下14棵树苗;如果每人栽7棵,就差4棵树苗。求这个班有多少人?一共有多少棵树苗
分析:由条件可知,这道题属第一种情况。
列式:(14+4)÷(7-5) =18÷2 = 9(人)
5×9+14 =45+14 =59(棵) 或:7×9-4 =63-4 =59(棵)
答:这个班有9人,一共有树苗59棵。
六、年龄问题:年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。常用的计算公式是:
成倍时小的年龄=大小年龄之差÷(倍数-1)
几年前的年龄=小的现年-成倍数时小的年龄
几年后的年龄=成倍时小的年龄-小的现在年龄
例父亲今年54岁,儿子今年12岁。几年后父亲的年龄是儿子年龄的4倍?
(54-12)÷(4-1) =42÷3 =14(岁)→儿子几年后的年龄
14-12=2(年)→2年后 答:2年后父亲的年龄是儿子的4倍。
例2、父亲今年的年龄是54岁,儿子今年有12岁。几年前父亲的年龄是儿子年龄的7倍?
(54-12)÷(7-1)=42÷6=7(岁)儿子几年前年龄12-7=5(年)5年前
答:5年前父亲的年龄是儿子的7倍。
例3、王刚父母今年的年龄和是148岁,父亲年龄的3倍与母亲年龄的差比年龄和多4岁。王刚父母亲今年的年龄各是多少岁? (148×2+4)÷(3+1)=300÷4 =75(岁)→父亲的年龄
148-75=73(岁)或:(148+2)÷2 =150÷2 =75(岁) 75-2=73(岁)
答:王刚的父亲今年75岁,母亲今年73岁。
七、鸡兔问题:已知鸡兔的总只数和总足数,求鸡兔各有多少只的一类应用题,叫做鸡兔问题,也叫“龟鹤问题”、“置换问题”。 一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。常用的基本公式有:(总足数-鸡足数×总只数)÷每只鸡兔足数的差=兔数 兔子只数=(总腿数-总头数×2) ÷2 鸡的只数=(总头数×4-总腿数) ÷2
(兔足数×总只数-总足数)÷每只鸡兔足数的差=鸡数
例:鸡兔同笼共有24只。有64条腿。求笼中的鸡和兔各有多少只?
(64-2×24)÷(4-2) =(64-48)÷(4-2)=16 ÷2 =8(只)→兔的只数 24-8=16(只)→鸡的只数 答:笼中的兔有8只,鸡有16只。
八、牛吃草问题(船漏水问题):若干头牛在一片有限范围内的草地上吃草。牛一边吃草,草地上一边长草。当增加(或减少)牛的数量时,这片草地上的草经过多少时间就刚好吃完呢?
例1、一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?
分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推„„其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。原因是因为其一,用的时间少;其二,对应的长出来的草也少。这个差就是这片草地5天长出来的草。每天长出来的草可供5头牛吃一天。如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。
(15×10-25×5)÷(10-5)=(150-125)÷(10-5) =25÷5 =5(头)→可供5头牛吃一天。
150-10×5 =150-50 =100(头)草地上原有草供100头牛吃一天
100÷(10-5) =100÷5 =20(天)答:若供10头牛吃,可以吃20天。
例2、一口井匀速往上涌水,用4部抽水机100分钟可以抽干;若用6部同样的抽水机则50分钟可以抽干。现在用7部同样的抽水机,多少分钟可以抽干这口井里的水?
(100×4-50×6)÷(100-50)=(400-300)÷(100-50)=100÷50 =2
400-100×2 =400-200=200 200÷(7-2)=200÷5 =40(分)
答:用7部同样的抽水机,40分钟可以抽干这口井里的水。
九、公约数、公倍数问题:运用最大公约数或最小公倍数解答应用题,叫做公约数、公倍数问题。
例1:一块长方体木料,长2.5米,宽1.75米,厚0.75米。如果把这块木料锯成同样大小的正方体木块,不准有剩余,而且每块的体积尽可能的大,那么,正方体木块的棱长是多少?共锯了多少块?
分析:2.5=250厘米 1.75=175厘米0.75=75厘米
其中250、175、75的最大公约数是25,所以正方体的棱长是25CM
(250÷25)×(175÷25)×(75÷25) =10×7×3 =210(块)
答:正方体的棱长是25厘米,共锯了210块。
例2、两啮合齿轮,一个有24个齿,另一个有40个齿,求某一对齿从第一次接触到第二次接触,每个齿轮至少要转多少周? 分析:因为24和40的最小公倍数是120,也就是两个齿轮都转120个齿时,第一次接触的一对齿,刚好第二次接触。 120÷24=5(周) 120÷40=3(周)
答:每个齿轮分别要转5周、3周。
十、分数应用题:指用分数计算来解答的应用题,叫做分数应用题,也叫分数问题。
分数应用题一般分为三类:1.求一个数是另一个数的几分之几。
2.求一个数的几分之几是多少。3.已知一个数的几分之几是多少,求这个数。
其中每一类别又分为二种,其一:一般分数应用题;其二:较复杂的分数应用题。
例1:育才小学有学生1000人,其中三好学生250人。三好学生占全校学生的几分之几?
例2:一堆煤有180吨,运走了3/5 。运走了多少吨?
例3:某农机厂去年生产农机1800台,今年计划比去年增加1/3 。今年计划生产多少台?1800×(1+1/3 )=1800×4/3=2400(台)
答:今年计划生产2400台。
例4:修一条长2400米的公路,第一天修完全长的1/3 ,第二天修完余下的1/4 。还剩下多少米?
2400×(1-1/3 )×(1-1/4 )=2400×2/3 ×3/4=1200(米)
答:还剩下1200米。
例5:一个学校有三好学生168人,占全校学生人数的4/7 。全校有学生多少人?
例6:甲库存粮120吨,比乙库的存粮少1/3 。乙库存粮多少吨?
120÷(1-1/3) =120×3/2 =180(吨)答:乙库存粮180吨。
例7:一堆煤,第一次运走全部的1/2 ,第二次运走全部的1/3 ,第二次比第一次少运8吨。这堆煤原有多少吨?8÷( 1/2-1/3 )= 8÷1/6 =48(吨)
答:这堆煤原有48吨。
十一、工程问题:它是分数应用题的一个特例。是已知工作量、工作时间和工作效率,三个量中的两个求第三个量的问题。 解答工程问题时,一般要把全部工程看作“1”,然后根据下面的数量关系进行解答:工作效率×工作时间=工作量
工作量÷工作时间=工作效率
工作量÷工作效率=工作时间?
例1:一项工程,甲队单独做需要18天,乙队单独做需要24天。如果两队合作8天后,余下的工程由甲队单独做,还要几天完成?
例2:一个水池,装有甲、乙两个进水管,一个出水管。单开甲管2小时可以注满;单开乙管3小时可以注满;单开出水管6小时可以放完。现在三管在池空时齐开,多少小时可以把水池注满?
百分数应用题:这类应用题与分数应用题的解答方式大致相同,仅求“率”时,表达方式不同,意义不同。
十二、过桥问题,从车头上桥,到车尾离开桥,求所用的时间。
路程=桥长+列车长度。
十三、流水问题,求船在流水中航行的时间。
船速+水速=顺流速度,船速-水速=逆流速度。
十四、线上植树问题,求植树的株数。
在封闭的线上植树。 路长=株距×株数 株距=路长÷株数 株数=路长÷株距。
在不封闭的线上植树,两端都植树。
路长=株距×(株数-1) 株距=路长÷(株数-1) 株数=路长÷株距+1。
十五、面上植树问题,求植树的株数。
当长方形土地的长、宽分别能被株距、行距整除时。
行距×株距=每株植物的占地面积,土地面积÷每株植物的占地面积=株数。
当长方形土地的长、宽不能被株距、行距整除时。 可以按线上植树问题解题。
十六、盈亏问题,求分配的人数。
剩余物品的个数差÷分配方法的个数差=分配的人数。
十七、时钟问题,求时针和分针重合、成直线或直角的时间。
两针重合时间=两针间隔格数÷11/12。
两针成直线时间=(两针间隔格数±30)÷11/12。
两针成直角时间=(两针间隔格数±15或45)÷11/12。
十八、时间差问题,计算几月几日到几月几日的时间差。
先计算首月和尾月,再计算中间几个月。
十九、预测星期几问题,已知今天是星期几,计算经过多少天是星期几。
用经过的天数除以7,求出剩余的天数,再计算是星期几。
1、求平均数应用题解题方法:
①读题,找出总数量;②找出总份数;③平均数=总数量÷总份数 [总数量=平均数×总份数总份数=总数量÷平均数]
2、分数(百分数)应用题解题方法(三步走):
①读题,找准题里单位“ 1”的量;
②确定单位“1”是已知,还是未知。单位“1”已知,用乘法:[单位“1”的量×分率=分率对应量];单位“1”未知,用除法或方程:[分率对应量(已知数)÷对应分率=单位“1”的量]
③比单位“1”多就用[单位“1”的量+多的]或(1+﹍),比单位“1”少就用[单位“1”的量-少的]或(1-﹍)。
3、工程问题解题方法:
①读题,根据所求问题找出需要完成的工作量和各自的工作效率;(注意要对应:求谁的时间就去找他需要完成的工作量和他的工作效率);
②工作时间=工作总量÷工作效率 [工作总量=工作效率×工作时间工作效率=工作总量÷工作时间]
4、相遇问题解题方法:
①读题,从问题入手;②总路程=速度和×相遇时间 [ 相遇时间=总路程÷速度和速度和=总路程÷相遇时间 ]。
5、按比例分配应用题解题方法:
①读题,找出总数量(各部分的总和);②根据各部分的比找出总份数;③用总数量乘以各部分占总数的分率。
6、几何形体应用题解题方法:
①读题,看清是什么形体;②分析,是计算它的什么;③该怎样计算(相关计算公式);④注意单位。
7、列方程解应用题解题方法:
①根据题意,找出未知数并用x表示;②分析题里数量之间的相等关系(找出等量关系)列方程;③解方程;④检验,写出答案。
8、用比例知识解应用题解题方法:
①读题,找准题里一定的量;②判断题里的比例关系(是成正还是反比例);③列比例(成正比例,比值相等;成反比例,乘积相等)。④解比例。
9、一般应用题(通用)解题方法:
①弄清题意,找出已知条件和所求问题;②分析题里数量之间的关系,确定先算什么、再算什么、最后算什么;
③确定每一步该怎样算;④列出算式,算出得数。
小学数学五年级上册应用题经典类型讲解二
二.应用题的解题思维过程
根据上面所讲的特点,我经过多年对数学应用题题型的钻研,依据小学生的年龄特点,发掘整理出一条解决应用题的途径,在这里分享给大家,希望能给大家以启迪。
我对应用题的分析流程是这样安排的:
1.划分应用题题意层次——2.提炼有效数据(包括未知数据)——3. 联系数学基本概念和基本计算建立数据关系模型——4.构思解题步骤——5.书写解题过程——6.数据检验。
例题:一只小船,第一次顺水航行20千米,又逆水航行3千米,共用了4小时;第二次顺水航行了17.6千米,又逆水航行了3.6千米,也用了4小时。求船在静水中的速度和水流速度。
应用题有两层意思:
第一次顺水航行20千米,又逆水航行3千米,共用了4小时
第二次顺水航行了17.6千米,又逆水航行了3.6千米,也用了4小时
有效数据:顺行20千米 又 逆行3千米 共 4小时
顺行17.6千米 又 逆行3.6千米 共 4小时
数据关系线段图
第一次:顺行 20 逆行3
第二次:顺行17.6 逆行3.6
分析:顺行20-17.6=2.4(千米) 逆行3.6-3=0.6(千米)用时相等
联系数学知识:时间相同时,速度与时间成反比,可得出顺行与逆行的速度关系
分析与解 比较两次航行的航程可知:在相同的时间内,顺水可航行20-17.6=2.4千米,逆水可航行3.6-3=0.6千米。于是求
出在相同时间内顺水航程是逆水航程的2.4÷0.6=4倍。那么顺水行的航速也就是逆水行的航速的4倍,进而求出顺水与逆水的航速。
顺水航速为每小时:(20+3×4)÷4=8(千米)
逆水航速为每小时:8÷4=2(千米)
船在静水中的速度为每小时
(8+2)÷2=5(千米)
水流速度为每小时
(8-2)÷2=3(千米)
即船在静水中的速度为每小时5千米,水流速度为每小时3千米。
例题:一次象棋比赛共有10名选手参加,他们分别来自甲、乙、丙三个队。每个人都与其余九名选手各赛一盘,每盘棋的胜者得1分,负者得0分,平局各得 0.5分。结果,甲队选手平均得4.5分,乙队选手平均得3.6分,丙队选手平均得9分。那么,甲、乙、丙三队参赛选手的人数各是多少人?
这是一道竞赛题目,题中数据关系较为复杂,但只要我们划分提议层次,就不难看出等量关系
第一句话三个意思:共10名选手,分为三个队,各队人数不一等
每两人之间各一场比赛,即每人参赛9场
评判规则:胜一场得1分,平一场两人各得0.5分,负一场0分,向深处思维可知,比赛产生的总分数是不变的 第二句话:甲对平均4.5分,乙队平均3.6分,丙队平均9分
数据关系列表:
甲 乙 丙
总 分 数 ( ) + ( ) + ()=9+8+7+???+1=45
总平均分 45 ÷ 10 =4.5
各队平均分 4.5 3.6 9
分析与解:每人最多9场比赛,所以只有一人得最高分9分,可判断丙队1人;再看甲队平均分等于总平均分,所以,平均时只在乙队与丙队之间进行数据的移补,即丙队高于平总平均分部分补给乙队,因此有等量关系
(9-4.5)÷(4.5-3.6)=5 (人) 可判断乙队5人
甲队人数:10―1―5=4(人)
三. 熟练掌握课本中的数学概念、运算法则和常用公式
数学问题的叙述是建立在概念基础上的,因此,熟练的掌握数学基本概念可以使我们迅速捕捉应用题中的数学信息,帮助我们弄清题意。
例:数的有关概念:自然数、整数、小数(纯小数、带小数,有限小数、无限小数:无限不循环小数、无限循环小数,纯循环小数、混循环小数)、分数(真分数、假分数、带分数)、百分数、约数与倍数、质数与合数、奇数与偶数、公约数与公倍数、互质数、质因数等等
运算法则与常用公式是数学计算的基本方法,不但是计算过程中必须掌握的知识,在分析应用题的过程中也是很好的辅助工具,可以使我们简化思维过程,建立数据之间的逻辑关系。
例:小学数学基本公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2 2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab 4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2 6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 ?=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、长方体(正方体、圆柱体)的体
相关联的数量关系
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab
4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高
6 平行四边形 s面积 a底 h高 面积=底×高 s=ah
7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏
9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径
10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间 追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒
例题:3个相邻偶数的乘积是一个六位数8****2,求这3个偶数。
分析:由于乘积是一个六位数字,所以这3个相邻的偶数必须是两位数字。而这3个相邻的偶数的个位数字只能是0,2,4,6,8中相邻的3个,但要使它们的 乘积的个位数字为2,这3个相邻偶数的个位数字只能是4,6,7;由于3个100相乘等于一个小的七位数字1000000,所以可以估算出这3个相邻的偶 数为94,96,98。经计算知,要使乘积的第一位数字为8,这3个相邻的偶数只能是94,96. 小学五年级上册应用题经典类型讲解(一)
今天我给想给大家探讨的是《小学应用题思维方法》。应用题是我们小学数学中常见的题目,也是我们把数学知识应用于实际的一个途径。常见的应用题有文字题目、情景题目、图形题目、算式应用题等等,类型很多。每一种形式的应用题又分多种类 型,比如文字题目中有:还原问题、行程问题、鸡兔同笼、流水问题、平均数问题、工程问题等等,随着考试的不断发展,特别是奥数理论的发展,近几年又出现了更多更新颖的数学题目,在给我们同学增添数学学习兴趣的同时,也给我们同学增加了不小的难度。如何解决学习中的这些问题呢?我认为:主要是数学思维问题。 从出题老师的角度看,数学题目的发展变化,不是为了难倒同学们,而是为了开发同学们的智力,发展同学们的数学思维,如果我们能够很好的掌握数学的思维方法,任何应用题都会迎刃而解。我今天就以文字应用题为例,与同学们共同探讨应用题的思维方法。
一. 数学题目的特点:
较为复杂的题目一般会出现两个以上的等量关系,而这些等量关系之间有存在着相互的联系,联系的方式我这里给大家分为三种,即:递进关系、并列关系和交叉关系。
例如:甲、乙、丙三人步行的速度分别是每分钟30米、40米、50米,甲、乙在A地,而丙在B地同时出发相向而行,丙遇乙后10分钟和甲相遇。A、B两地间的路长多少米?
分析与解答:从图中可以看出,丙和乙相遇后又经过10分钟和甲相遇,10分钟内甲丙两人共行(30+50)×10=800米。这800米就是乙、丙相遇比 甲多行的路程。乙每分钟比甲多行40-30=10米,现在乙比甲多行800米,也就是行了80÷10=80分钟。因此,AB两地间的路程为(50+40)×80=7200米。
(递进关系)
一个植树小组植树。如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。这个植树小组有多少人?一共有多少棵树?
由题意可知,植树的人数和树的棵数是不变的。比较两种分配方案,结果相差14+4=18棵,即第一种方案的结果比第二种多18棵。这是因为两种分配方案每人植树的棵数相差7-5=2棵。所以植树小组有18÷2=9人,一共有5×9+14=59棵树。
(并列关系)
有26块砖,兄弟2人争着去挑,弟弟抢在前面,刚摆好砖,哥哥赶来了。哥哥看弟弟挑得太多,就拿来一半给自己。弟弟觉得自己能行,又从哥哥那里拿来一半。哥哥不让,弟弟只好给哥哥5块,这样哥哥比弟弟多挑2块。问最初弟弟准备挑多少块?
【分析】我们得先算出最后哥哥、弟弟各挑多少块。只要解一个“和差问题”就知道:哥哥挑“(26+2)÷2=14”块,弟弟挑“26-14=12”块。下面根据题意列表还原:
(交叉关系)
总之,数学题目展示给我们的就是一种或者几种等量关系,解决数学问题就是要我们把数学题目中的等量关系挖掘出来,利用数学知识解决未知量的问题。我认为,解数学应用题的关键不是知道几个题型,最关键的是我们要懂得数学的思维方法。
小学数学五年级上册应用题经典类型讲解(二)
二.应用题的解题思维过程
根据上面所讲的特点,我经过多年对数学应用题题型的钻研,依据小学生的年龄特点,发掘整理出一条解决应用题的途径,在这里分享给大家,希望能给大家以启迪。
我对应用题的分析流程是这样安排的:
1.划分应用题题意层次——2.提炼有效数据(包括未知数据)——3. 联系数学基本概念和基本计算建立数据关系模型——4.构思解题步骤——5.书写解题过程——6.数据检验。
例题:一只小船,第一次顺水航行20千米,又逆水航行3千米,共用了4小时;第二次顺水航行了17.6千米,又逆水航行了3.6千米,也用了4小时。求船在静水中的速度和水流速度。
应用题有两层意思:
第一次顺水航行20千米,又逆水航行3千米,共用了4小时
第二次顺水航行了17.6千米,又逆水航行了3.6千米,也用了4小时
有效数据:顺行20千米 又 逆行3千米 共 4小时
顺行17.6千米 又 逆行3.6千米 共 4小时
数据关系线段图
第一次:顺行 20 逆行3
第二次:顺行17.6 逆行3.6
分析:顺行20-17.6=2.4(千米) 逆行3.6-3=0.6(千米)用时相等
联系数学知识:时间相同时,速度与时间成反比,可得出顺行与逆行的速度关系
分析与解 比较两次航行的航程可知:在相同的时间内,顺水可航行20-17.6=2.4千米,逆水可航行3.6-3=0.6千米。于是求出在相同时间内顺水航程是逆水航程的2.4÷0.6=4倍。那么顺水行的航速也就是逆水行的航速的4倍,进而求出顺水与逆水的航速。
顺水航速为每小时:(20+3×4)÷4=8(千米)
逆水航速为每小时:8÷4=2(千米)
船在静水中的速度为每小时
(8+2)÷2=5(千米)
水流速度为每小时
(8-2)÷2=3(千米)
即船在静水中的速度为每小时5千米,水流速度为每小时3千米。
例题:一次象棋比赛共有10名选手参加,他们分别来自甲、乙、丙三个队。每个人都与其余九名选手各赛一盘,每盘棋的胜者得1分,负者得0分,平局各得 0.5分。结果,甲队选手平均得4.5分,乙队选手平均得3.6分,丙队选手平均得9分。那么,甲、乙、丙三队参赛选手的人数各是多少人?
这是一道竞赛题目,题中数据关系较为复杂,但只要我们划分提议层次,就不难看出等量关系
第一句话三个意思:共10名选手,分为三个队,各队人数不一等
每两人之间各一场比赛,即每人参赛9场
评判规则:胜一场得1分,平一场两人各得0.5分,负一场0分,向深处思维可知,比赛产生的总分数是不变的 第二句话:甲对平均4.5分,乙队平均3.6分,丙队平均9分
数据关系列表:
甲 乙 丙
总 分 数 ( ) + ( ) + ()=9+8+7+???+1=45
总平均分 45 ÷ 10 =4.5
各队平均分 4.5 3.6 9
分析与解:每人最多9场比赛,所以只有一人得最高分9分,可判断丙队1人;再看甲队平均分等于总平均分,所以,平均时只在乙队与丙队之间进行数据的移补,即丙队高于平总平均分部分补给乙队,因此有等量关系
(9-4.5)÷(4.5-3.6)=5 (人) 可判断乙队5人
甲队人数:10―1―5=4(人)
三. 熟练掌握课本中的数学概念、运算法则和常用公式
数学问题的叙述是建立在概念基础上的,因此,熟练的掌握数学基本概念可以使我们迅速捕捉应用题中的数学信息,帮助我们弄清题意。
例:数的有关概念:自然数、整数、小数(纯小数、带小数,有限小数、无限小数:无限不循环小数、无限循环小数,纯循环小数、混循环小数)、分数(真分数、假分数、带分数)、百分数、约数与倍数、质数与合数、奇数与偶数、公约数与公倍数、互质数、质因数等等
运算法则与常用公式是数学计算的基本方法,不但是计算过程中必须掌握的知识,在分析应用题的过程中也是很好的辅助工具,可以使我们简化思维过程,建立数据之间的逻辑关系。
例:小学数学基本公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2 2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab 4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2 6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 ?=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、长方体(正方体、圆柱体)的体
相关联的数量关系
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 、长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab
4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)
(2)体积=长×宽×高 V=abh
5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底三角形底=面积 ×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah
7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数 (和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间 追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒
例题:3个相邻偶数的乘积是一个六位数8****2,求这3个偶数。
分析:由于乘积是一个六位数字,所以这3个相邻的偶数必须是两位数字。而这3个相邻的偶数的个位数字只能是0,2,4,6,8中相邻的3个,但要使它们的 乘积的个位数字为2,这3个相邻偶数的个位数字只能是4,6,7;由于3个100相乘等于一个小的七位数字1000000,所以可以估算出这3个相邻的偶 数为94,96,98。经计算知,要使乘积的第一位数字为8,这3个相邻的偶数只能是94,96.
小学数学五年级上册应用题经典类型讲解(三)
四.熟悉一些特殊应用题的解题思路
在小学数学中有许多特殊类型的应用题,这些应用题不是出题人故意的在难为同学们,有很多是从古至今的数学家总结生产、生活中的实际问题提炼出来的解决数学问题的途径,还有一些是现在数学解决问题过程中总结出来的一些解决问题的思维过程,这些途径很值得我们现在学习数学的借鉴,并且这些问题还可以开阔我们的 思路。
例题:老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?
分析:这个问题就是鸡兔同笼问题 我们分步来考虑:
①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。
②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。 ③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。
解:[6×10-(41+1)÷(6-4)
= 18÷2=9(条)
10-9=1(条)
答:有9条小船,1条大船。
五.学会数学积累
同学们从三年级就开始写日记了,并且语文老师把日记作为同学们的作业要求,为的是让同学们把语文知识与生活实际结合起来,积累我们的写作素材,更好的学习语文;数学也是一样,需要不断的积累,记数学日记就是一个很好的积累方法,数学日记的素材可以来源于课堂、作业、生活、疑问、新发现等等
指导: 1.记录当节当天当周课堂学习的学习、回顾与反思;
(内含:课堂印象深刻的教学环节、自己对新知识的理解、数学的学习心得困惑、对某题的独特思考、对知识的回顾等等)
2.记录生活中与数学知识相关的数学现象、数学活动;
3.记录数学有关的名人名言、名人故事;
4.介绍看到、听到、想到的数学知识;
5.编写数学童话、数学相声、数学游戏;
6.坦然与教师交流自己的心里话。
例文:
昨天我去买“香不佬”鸡腿,每3元一只,买了5只,共用了15元。后来想再买几只送给表弟吧,于是又回头买了4只,又用了12元。我算了算一共用去27 元。我想用另外的算法检验一下对不对,就想,先买5只,后买4只,共买9只,9个3元是27元。其实,3╳5+3╳4=15+12=27,就是5个3加上 4个3,等于9个3,9╳3=27。原来3╳5+3╳4=3╳9。
上个星期,我们学习了分数。分数有分子、分母和分数线,比如:1/3,3是分母,1是分子,中间一横是分数线。
活中有很多地方都要用到分数,比如:一本书有三十页,每一页是一本书的1/30。分数还可以用来加减呢!比如:二分之一加二分之一等于二分之二,也就是 1。为什么会这样呢?如果一个饼把它平均分成两份,每份就是这个饼的1/2,再把这两份拼起来,就是有2个1/2,刚好是一个饼。分数在加减时,如果分母 都是一样的,就不管分母,把分子相加就可以了。而2/2的分子和分母都一样,就是1了。
我还学会了比分数的大小,老师教了我们口诀:分子相同比分母,分母大的分数小,分母小的分数大;分母相同比分子,分子大的分数大,分子小的分数小。
老师还提醒我们,写分数时,一般先写分数线,表示平均分的意思,再写分母,最后写分子.
总之,数学的学习不只是解几道题的问题,主要是要学会数学的思维方法,头脑中有了数学思维,并能够灵活运用,数学应用题,以及数学应用于我们的生活都不是难题。 我们在学习数学时,要注意方法的积累,培养自己的数学思维方式,长此下去,数学不但变得容易,而且会很有趣。
应用题是数学能力的综合体验,我们必须熟悉数学知识的各部分内容以及应用,建立清晰的数学思维方法,才能灵活的应对应用题的变化,真正学好数学。