填料塔支承梁的设计计算

第3期               王 群 填料塔支承梁的设计计算・21・

填料塔支承梁的设计计算

 群

王群:1989年毕业于武汉化工学院化工设备与机械专业, 工程师, 从事化工设备设计工作。

, 建立了不同的力学模型, 推导并提设计人员可直接利用公式对支承梁进行设计计算。

关键词 填料塔 支承梁 设计计算

()

1 引 言

在填料塔的结构设计中, 需考虑填料支承装置下的支承梁设计。散堆填料, 目前较多采用波纹多孔板支承结构, 俗称“驼峰板”, 一般用不锈钢制造, 厚度2~3mm 。驼峰板不但要承受填料及其所含液体的重量, 而且要分布气体, 因此不仅要有足够的强度和刚度, 而且要有较大的开孔率。支承梁应能保证有足够的强度和刚度, 支承梁设计按下列选取。

塔径D N (mm )

D N ≤2500

M 2=P ×D/6=qD /

96

3

推荐支承梁数

012

图1 单梁载荷分布示意图

2500

D N >4000

  图1(d )  w 2=q ・D/2

R 3=w 2D/4=qD 2/8

M 3=R 3・D/2-w 2・D/4・D/8

2 力学模型及公式

在计算支承横梁载荷时, 考虑塔内支持圈的部分支承作用。同时, 将支承梁看成是承受均布载荷的简支梁, 略去填料对塔壁的摩擦阻力。2. 1 单梁计算方法

(c ) 、(d ) 载荷分布如图1(a ) , 可分解为(b ) 、

=3qD 3/64

则R =R 1+R 2+R 3

=w 1×D/2+qD 2/16+qD 2/8=w 1D/2+3qD 2/16

M =M 1+M 2+M 3

………(2-1)

三种受力状况进行叠加。

由材料力学理论可方便地求出以下公式:图1(b )  R 1=w 1×D/2

M 1=w 1D /8

2

=w 1D 2/8+qD 3/96+3qD 3/64=w 1D 2/8+11qD 3/192

2. 2 双梁计算方法

………(2-2)

图1(c )  P =q ×1/2×(D/4) 2×2

=q ×(D/4) 2

R 2=P =q ×(D/4) 2=qD 2/16

载荷分布如图2(g ) , 可分解成(h ) 、(i ) 、(j ) 3种受力状况进行叠加。

同理, 由材料力学理论可以求出以下公式:图2(h )  R 1=w 1×L /2

・22・

M 1=w 1L /8

2

化肥设计             2000年第38卷

  (4) 求梁的最大弯曲应力σ=M /W ;

(5) 满足σ≤[σ], 校核合格。

图2(i )  P =q ×1/2×(D/6+2D/6) ×L /4

=qDL /16

R 2=P =qDL /16

M 2=P ×5L /36=5qDL /576

2

4 符号说明

F ———一层填料段上的总载荷,N ; 包括湿填

图2(j )  w 2=q ×D/3

R 3=w 2L /4=qDL /12

M 3=R 3×L /2-w 2×L /4×L /8

=qDL 2/32

则R =R 1+R 2+R 3

=w 1/+/=w 1L /2/48…………(2-3)

M =M 1+M 2+M 3

料、填料支承板、液体再分布器及其内

D 2H γ×F (10-9/4+Q ) ×9. 81

G ———一根横梁上承受的载荷,N ; 包括湿填料重量及其它需要计及的重量。

G =(HS γ×10-9+Q ) ×9. 81H ———填料高度, mm ; S ———承载面积, mm 2; γ———填料和液体的组合堆积重度,kgf/m 3; 无确切数据时, 不锈钢填料可取填料

堆积重度的1. 4倍; 塑料填料可取塑料填料堆积重度与30%不锈钢填料堆积重度之和作为组合堆积重度。Q ———其他部件(如填料支承板、填料压板

等) 作用在梁上的载荷, kgf ;

q ———均布载荷,N/mm ;

q =F /πD /4=4F /πD D ———塔体内径, mm ; L ———支承横梁长度, mm ;

2

2

2

=w 1L 2/8+5qDL 2/576+qDL 2/32=w 1L 2/8+23qDL 2/576……(2-4)

σ———设计温度下梁的最大弯曲应力, MPa ; [σ]———设计温度下梁的许用弯曲应力,

MPa ;

图2 双梁载荷分布示意图

M ———梁上的总弯矩, N -mm ;

M =M 1+M 2+M 3

W ———梁的抗弯截面模数, mm 3;

R ———总支点反力, N ;  R =R 1+R 2+R 3P ———集中力, N ; T ———梁的自重, kgf ;

w 1———梁单位长度自重载荷, N/mm ;

w 1=T/L 9. 81

w 2———梁中部单位长度均布载荷, N/mm ; C ———腐蚀裕量, mm ;

(收稿日期 2000-02-29)

3 设计步骤

(1) 根据塔径、受到的载荷及其工作要求,

选择适当的材料, 确定型钢梁的数量、截面形状

和尺寸;

(2) 根据公式(2-1) 、(2-2) 和(2-3) 、(2-4) , 按不同情况求梁的最大弯矩M ;

(3) 计算型钢梁的抗弯截面模数W (计算时

应考虑双面腐蚀, 即截面的计算厚度δ=δn -2C ) ;

 CHEMICAL FERTIL IZER DESIGN   

・3・

Vol. 38 No. 3 June  2000(total No. 195)

Advance of GT L T echnology in The World

Zheng Zhenan

are studied. An optimized case of steam balance for Braun type plant is presented.

K ey w ords  Braun process , balance , optimization

Abstract  It reviews the advance of TG L technology from large petrochemical companies in the world. It is considered that setting up some GTL plant at moderate scale in remote area is suitable for purpose of environment protection and rational gas.

K ey w ords  GTL , , , Exxon A GC -21, syntroleum

eight of C atalyst Layer ’s

Sinking in Ammonia Converter

Chen FengJi ng

Abstract  Catalyst layer ’s sinking in ammonia converter is an 2alyzed. A model , in which pile porosity and thermal deforming are considered , and a general formula to calculate the height of sinking ,

Analysis to C ause of Deterioration of All Low T emp Shift C atalyst and Count Measures

Zhou Hongj un , W ang Dongmei , W u Quangui etal.

are derived.

K ey w ords  catalyst bed , pile porosity , thermal deforming , sinking height , rate of sinking

Abstract  Cause of deterioration of all low temperature shift catalyst is analyzed , Count measures are put forward.

K ey w ords  shift process all under low temperature , catalyst , deterioration

Output Pow er C alculation for G L 20Scraper

L i Yeqi n

Abstract  Method and formula to calculate output power of G L20scraper , which is used at the bottom of urea prilling tower are

Study on R eactor and Process in Double N eutralizing Method to Produce DAP from MAP Slurry

Xia Daikuan , W ang Jianhua , L i u Qichong

introduced in detail.

K ey w ords  G L20type scraper , output power , calculation

C alculation of Support B eam in P acking Tow er

W ang Qun

Abstract  The property of concentrated MAP slurry , which is made from wet phosphoric acid and mid grade phosphate rock , is studied. Tubing reactor ’s structure and design parameter are de 2scribed. Double neutralization process is determined. Tubing reactor at scale of 33104t DAP/a is designed. 72hours test production has been achieved in steady and reliable condition. Now 63104t DAP/a plant is under construction.

K ey w ords  double neutralization , tubing reactor , new process

Abstract  Mechanic models for different diameter of packing tower and operation condition are set up. Calculation formula for supporting beam (either single or double beam ) are deducted and put forward for the purpose of easy use to designer.

K ey w ords  packing tower , support beam , calculation

R adar Liquid Level T ransmitter

and Its Application

Optimization of Steam System in B raun Type Ammonia Plant

Kang W anz hong , Xiao Zhenpi ng

Peng Ji ng

Abstract  Radar liquid level transmitter becomes widely used in chemical fields. It introduces principle of application. Some items in the selection and installation are described.

K ey w ords  Radar liquid lever transmitter , metrology

Abstract  Based on the existed problems in steam balance at the second fertilizer plant of Urmoqi Petrochemical Corp. Different cases

第3期               王 群 填料塔支承梁的设计计算・21・

填料塔支承梁的设计计算

 群

王群:1989年毕业于武汉化工学院化工设备与机械专业, 工程师, 从事化工设备设计工作。

, 建立了不同的力学模型, 推导并提设计人员可直接利用公式对支承梁进行设计计算。

关键词 填料塔 支承梁 设计计算

()

1 引 言

在填料塔的结构设计中, 需考虑填料支承装置下的支承梁设计。散堆填料, 目前较多采用波纹多孔板支承结构, 俗称“驼峰板”, 一般用不锈钢制造, 厚度2~3mm 。驼峰板不但要承受填料及其所含液体的重量, 而且要分布气体, 因此不仅要有足够的强度和刚度, 而且要有较大的开孔率。支承梁应能保证有足够的强度和刚度, 支承梁设计按下列选取。

塔径D N (mm )

D N ≤2500

M 2=P ×D/6=qD /

96

3

推荐支承梁数

012

图1 单梁载荷分布示意图

2500

D N >4000

  图1(d )  w 2=q ・D/2

R 3=w 2D/4=qD 2/8

M 3=R 3・D/2-w 2・D/4・D/8

2 力学模型及公式

在计算支承横梁载荷时, 考虑塔内支持圈的部分支承作用。同时, 将支承梁看成是承受均布载荷的简支梁, 略去填料对塔壁的摩擦阻力。2. 1 单梁计算方法

(c ) 、(d ) 载荷分布如图1(a ) , 可分解为(b ) 、

=3qD 3/64

则R =R 1+R 2+R 3

=w 1×D/2+qD 2/16+qD 2/8=w 1D/2+3qD 2/16

M =M 1+M 2+M 3

………(2-1)

三种受力状况进行叠加。

由材料力学理论可方便地求出以下公式:图1(b )  R 1=w 1×D/2

M 1=w 1D /8

2

=w 1D 2/8+qD 3/96+3qD 3/64=w 1D 2/8+11qD 3/192

2. 2 双梁计算方法

………(2-2)

图1(c )  P =q ×1/2×(D/4) 2×2

=q ×(D/4) 2

R 2=P =q ×(D/4) 2=qD 2/16

载荷分布如图2(g ) , 可分解成(h ) 、(i ) 、(j ) 3种受力状况进行叠加。

同理, 由材料力学理论可以求出以下公式:图2(h )  R 1=w 1×L /2

・22・

M 1=w 1L /8

2

化肥设计             2000年第38卷

  (4) 求梁的最大弯曲应力σ=M /W ;

(5) 满足σ≤[σ], 校核合格。

图2(i )  P =q ×1/2×(D/6+2D/6) ×L /4

=qDL /16

R 2=P =qDL /16

M 2=P ×5L /36=5qDL /576

2

4 符号说明

F ———一层填料段上的总载荷,N ; 包括湿填

图2(j )  w 2=q ×D/3

R 3=w 2L /4=qDL /12

M 3=R 3×L /2-w 2×L /4×L /8

=qDL 2/32

则R =R 1+R 2+R 3

=w 1/+/=w 1L /2/48…………(2-3)

M =M 1+M 2+M 3

料、填料支承板、液体再分布器及其内

D 2H γ×F (10-9/4+Q ) ×9. 81

G ———一根横梁上承受的载荷,N ; 包括湿填料重量及其它需要计及的重量。

G =(HS γ×10-9+Q ) ×9. 81H ———填料高度, mm ; S ———承载面积, mm 2; γ———填料和液体的组合堆积重度,kgf/m 3; 无确切数据时, 不锈钢填料可取填料

堆积重度的1. 4倍; 塑料填料可取塑料填料堆积重度与30%不锈钢填料堆积重度之和作为组合堆积重度。Q ———其他部件(如填料支承板、填料压板

等) 作用在梁上的载荷, kgf ;

q ———均布载荷,N/mm ;

q =F /πD /4=4F /πD D ———塔体内径, mm ; L ———支承横梁长度, mm ;

2

2

2

=w 1L 2/8+5qDL 2/576+qDL 2/32=w 1L 2/8+23qDL 2/576……(2-4)

σ———设计温度下梁的最大弯曲应力, MPa ; [σ]———设计温度下梁的许用弯曲应力,

MPa ;

图2 双梁载荷分布示意图

M ———梁上的总弯矩, N -mm ;

M =M 1+M 2+M 3

W ———梁的抗弯截面模数, mm 3;

R ———总支点反力, N ;  R =R 1+R 2+R 3P ———集中力, N ; T ———梁的自重, kgf ;

w 1———梁单位长度自重载荷, N/mm ;

w 1=T/L 9. 81

w 2———梁中部单位长度均布载荷, N/mm ; C ———腐蚀裕量, mm ;

(收稿日期 2000-02-29)

3 设计步骤

(1) 根据塔径、受到的载荷及其工作要求,

选择适当的材料, 确定型钢梁的数量、截面形状

和尺寸;

(2) 根据公式(2-1) 、(2-2) 和(2-3) 、(2-4) , 按不同情况求梁的最大弯矩M ;

(3) 计算型钢梁的抗弯截面模数W (计算时

应考虑双面腐蚀, 即截面的计算厚度δ=δn -2C ) ;

 CHEMICAL FERTIL IZER DESIGN   

・3・

Vol. 38 No. 3 June  2000(total No. 195)

Advance of GT L T echnology in The World

Zheng Zhenan

are studied. An optimized case of steam balance for Braun type plant is presented.

K ey w ords  Braun process , balance , optimization

Abstract  It reviews the advance of TG L technology from large petrochemical companies in the world. It is considered that setting up some GTL plant at moderate scale in remote area is suitable for purpose of environment protection and rational gas.

K ey w ords  GTL , , , Exxon A GC -21, syntroleum

eight of C atalyst Layer ’s

Sinking in Ammonia Converter

Chen FengJi ng

Abstract  Catalyst layer ’s sinking in ammonia converter is an 2alyzed. A model , in which pile porosity and thermal deforming are considered , and a general formula to calculate the height of sinking ,

Analysis to C ause of Deterioration of All Low T emp Shift C atalyst and Count Measures

Zhou Hongj un , W ang Dongmei , W u Quangui etal.

are derived.

K ey w ords  catalyst bed , pile porosity , thermal deforming , sinking height , rate of sinking

Abstract  Cause of deterioration of all low temperature shift catalyst is analyzed , Count measures are put forward.

K ey w ords  shift process all under low temperature , catalyst , deterioration

Output Pow er C alculation for G L 20Scraper

L i Yeqi n

Abstract  Method and formula to calculate output power of G L20scraper , which is used at the bottom of urea prilling tower are

Study on R eactor and Process in Double N eutralizing Method to Produce DAP from MAP Slurry

Xia Daikuan , W ang Jianhua , L i u Qichong

introduced in detail.

K ey w ords  G L20type scraper , output power , calculation

C alculation of Support B eam in P acking Tow er

W ang Qun

Abstract  The property of concentrated MAP slurry , which is made from wet phosphoric acid and mid grade phosphate rock , is studied. Tubing reactor ’s structure and design parameter are de 2scribed. Double neutralization process is determined. Tubing reactor at scale of 33104t DAP/a is designed. 72hours test production has been achieved in steady and reliable condition. Now 63104t DAP/a plant is under construction.

K ey w ords  double neutralization , tubing reactor , new process

Abstract  Mechanic models for different diameter of packing tower and operation condition are set up. Calculation formula for supporting beam (either single or double beam ) are deducted and put forward for the purpose of easy use to designer.

K ey w ords  packing tower , support beam , calculation

R adar Liquid Level T ransmitter

and Its Application

Optimization of Steam System in B raun Type Ammonia Plant

Kang W anz hong , Xiao Zhenpi ng

Peng Ji ng

Abstract  Radar liquid level transmitter becomes widely used in chemical fields. It introduces principle of application. Some items in the selection and installation are described.

K ey w ords  Radar liquid lever transmitter , metrology

Abstract  Based on the existed problems in steam balance at the second fertilizer plant of Urmoqi Petrochemical Corp. Different cases


相关文章

  • 填料吸收塔的设计
  • 填料吸收塔的设计 水吸收氯化氢课程设计 教 学 院 专业班级 学生姓名 学生学号 指导教师 时 间 目 录 第一节 前言 ........................................................... ...查看


  • 本章符号说明英文字母
  • 本章符号说明英文字母 a --填料的有效比表面积,m 2/m3 a t --填料的总比表面积,m 2/m3 a W --填料的润湿比表面积,m 2/m3 A T --塔截面积,m 2: C --计算u max 时的负荷系数,m/s: C s ...查看


  • 化工原理课程设计水吸收氨气填料塔设计
  • <化工原理>课程设计 --水吸收氨气填料塔设计 学 院 专 业 班 级 姓 名 学 号 指导教师 2012年12月11 日 设计任务书 水吸收氨气填料塔设计 (一) 设计题目 试设计一座填料吸收塔,采用清水吸收混于空气中的氨气. ...查看


  • 锚定板挡土墙设计总结
  • 班级:交工082班 姓名:崔明 学号:200800617 锚定板挡土墙 一.锚定板挡土墙概述 1.1锚定板结构与挡土原理 锚定板挡土墙由墙面系.钢拉杆及锚定板和填料共同组成,如图1所示.墙面系由预制的钢筋混凝土肋柱和挡土板拼装,或者直接用预 ...查看


  • 城市供热管道工程施工
  • 1K415020城市供热管道工程施工 1K415021掌握供热管道施工与安装要求 一.施工前的准备工作 (一)技术准备 1,组织有关技术人员熟悉施工图纸,搞好各专业施工图纸的会审,了解工程的特点.重点.难点所在.认真听取设计人员的技术交底, ...查看


  • 40m3 h溶解乙炔生产工艺设计
  • 40m 3/h溶解乙炔生产工艺设计 The Process Design of Dissolved-acetylene of 40m3/h 目 录 摘要 . ......................................... ...查看


  • 化工设备基础知识
  • 化工设备基础知识 一.化工设备的概念 化工设备是指化工生产中静止的或配有少量传动机构组成的装置, 主要用于完成传热.传质和化学反应等过程,或用于储存物料. 二.化工设备的分类 1.按结构特征和用途分为容器.塔器.换热器.反应器(包括各种反应 ...查看


  • 减压蒸馏塔设计-吴江龙
  • 减压蒸馏塔设计 学 院: 职业技术学院 专业班级: 化机1131 姓 名: 何佳学 指导教师: 孔祥军 2014年 6 月 毕业设计(论文)任务书 毕业设计(论文)任务书 毕业设计(论文)评阅书 毕业设计(论文)评阅书 毕业答辩情况表 前言 ...查看


  • 5.2城市供热管道工程施工
  • 1K415020城市供热管道工程施工 1K415021掌握供热管道施工与安装要求 一.施工前的准备工作 ㈠技术准备 ⒈组织有关技术人员熟悉施工图纸,搞好各专业图纸的会审,了解工程的特点.重点.难点所在.认真听取设计人员的技术交底,领会设计意 ...查看


热门内容