双污泥反硝化除磷系统中氨氮容积负荷的优化_刘青松_彭永臻_侯锋_张为堂_刘晔_王

第29卷 第21期 农 业 工 程 学 报 V ol.29 No.21

194 2013年 11月 Transactions of the Chinese Society of Agricultural Engineering Nov. 2013

双污泥反硝化除磷系统中氨氮容积负荷的优化

刘青松1,彭永臻1,侯 锋2,张为堂1,刘 晔1,王淑莹1

(1. 北京工业大学北京市水质科学与水环境恢复重点实验室,北京 100124;

2. 北京北华清创环境科技有限公司,北京 100124)

摘 要:农村生活污水具有处理量小,分散,日变化系数大等特点,分散处理成为农村污水处理的首要选择。该研究采用AAO 工艺与BAF 组成的双污泥反硝化除磷系统(anaerobic anoxic oxic-biological aerated filter,AAO-BAF )处理农村生活污水,探讨了氨氮容积负荷对该系统BAF 单元硝化性能及出水悬浮物(SS )的影响。通过改变水力

试验结果表明,负荷和有效滤料容积(即方式1和方式)2种方式,氨氮容积负荷在0.43~1.21 kg/(m3·d)之间变化。

随着氨氮容积负荷的增加,氨氮去除率呈现先缓慢降低后急剧减小的趋势,不同的是,出水SS 对方式1(即水力负荷的变化)更敏感。当氨氮容积负荷在0.43~1.12 kg/(m3·d)时,氨氮去除率大于81%;当氨氮容积负荷大于1.12 kg/(m3·d),氨氮去除率急剧降低,氨氮容积负荷为1.21 kg/(m3·d),2种运行方式的氨氮去除率分别为65%和68%。当氨氮容积负荷小于0.74 kg/(m3·d)时,出水SS 小于10 mg/L;当氨氮容积负荷大于0.74 kg/(m3·d)时,出水

方式1和方式2的出水SS 分别为21.8SS 急剧增加,但方式1增加得更快,氨氮容积负荷增加到1.21 kg/(m3·d)时,

和14.2 mg/L。所以,为保证BAF 出水水质达到国家一级A 排放标准,其氨氮容积负荷应小于0.74 kg/(m3·d)。 关键词:农村地区,污水处理,氨,氮,双污泥反硝化除磷系统,容积负荷,水力负荷 doi :10.3969/j.issn.1002-6819.2013.21.025

中图分类号:X703.1 文献标志码:A 文章编号:1002-6819(2013)-21-0194-07

刘青松,彭永臻,侯 锋,等. 双污泥反硝化除磷系统中氨氮容积负荷的优化[J]. 农业工程学报,2013,29(21):194-200.

Liu Qingsong, Peng Yongzhen, Hou Feng, et al. Optimization of ammonium volumetric loading in two-sludge denitrifying phosphorus removal process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(21): 194-200. (in Chinese with English abstract)

0 引 言

目前,大量农村生活污水未经处理直接排放,对水环境造成严重污染,其中氮磷等营养物质的超

农村村庄分标是引起水体富营养化的重要原因[1-3]。

散,人口分布不集中,污水收集管网缺乏,使得农村污水难以收集、处理和回用。因此,分散处理成为农村污水处理的首要选择[4-7]。

AAO-BAF 双污泥反硝化除磷系统是一种新型高效的生物脱氮除磷工艺。它将AAO 工艺与BAF 工艺相结合,应用反硝化除磷技术,不仅有效利用了原水中的碳源,还解决了传统AAO 工艺运行过程中聚磷菌与硝化菌污泥龄矛盾等问题,有利于提高脱氮除磷系

收稿日期:2013-07-14 修订日期:2013-10-03

基金项目:国家863计划项目(2012AA063406);北京市教委科技创新平台项目

作者简介:刘青松(1987-),女,主要研究方向为污水处理新理论与新技术。北京 北京工业大学北京市水质科学与水环境恢复重点实验室,100124。Email :[email protected]

※通信作者:彭永臻(1949-),男,博士生导师,主要研究方向:污水的生物处理法和过程控制。北京 北京工业大学北京市水质科学与水环境恢复重点实验室,100124。Email :[email protected]

统的效率和稳定性[8-10]。同时,由于AAO-BAF 系统具

有处理效率高,占地面积小,运行费用低,管理方便等优势,对处理水量小、分散、日变化系数大的农村生活污水处理尤为适用,具有广泛的应用前景[11-13]。

BAF 作为双污泥系统的重要组成部分,其工艺参数优化关系到系统的高效稳定运行。氨氮容积负荷是BAF 最重要的控制参数之一,在降低能耗的基础上,寻找最佳的氨氮容积负荷,可以增加处理容量并节省空间与成本,从而发挥反应器最大限度的单位处理能力[14]。氨氮容积负荷作为曝气生物滤池的工艺运行参数,相关文献已经进行了较为详细

然而,目前关于AAO-BAF 系统中BAF 的报道[15-17]。

单元的最佳氨氮容积负荷则较少有人报道。一般情况下,缩短水力停留时间可以增加氨氮容积负荷。缩短BAF 水力停留时间的方式有2种,一是提高水力负荷,二是减小滤料的有效容积[18]。

本试验以AAO-BAF 系统中AAO 反应器的出水为研究对象,通过调节水力负荷和有效容积2种方式(即方式1和方式2),考察了氨氮容积负荷对BAF 硝化性能和出水SS 的影响,确定了最佳氨氮容积负荷,优化AAO-BAF 系统参数,以期为该

第21期 刘青松等:双污泥反硝化除磷系统中氨氮容积负荷的优化

195

工艺在农村生活污水处理中推广应用奠定基础。

1 试验材料与方法

1.1 试验装置

图1为AAO-BAF 污水处理系统。生活污水首先进入AAO 系统,在AAO 系统进行反硝化除磷,经反硝化脱氮除磷后的污水进入曝气生物滤

池进行硝化,出水大部分回流到AAO 系统的缺氧段进行反硝化,少量排放[19-21]。BAF 反应器由有机玻璃制成,直径0.1 m,高1.8 m,内部填充陶粒。填料填充高度为1.25 m。BAF 设有9个采样口,从下至上依次记为B1,B2,B3…B9。在滤池承托层设穿孔曝气管, 为微生物的生长提供充足氧气。

注:B1,B2,B3…B9为BAF 的采样口。

Notes: B1,B2,B3…B9 were sampling points of the BAF.

图1 AAO-BAF工艺系统

Fig.1 Flow chart of AAO-BAF process

1.2 试验水质

AAO-BAF 系统的进水为北京工业大学教工住宅区化粪池生活污水,BAF 反应器的进水为AAO 反应器的出水。BAF 进水主要水质参数为:COD 质量浓度为39~71 mg/L,平均质量浓度53 mg/L;NH 4+-N 质量浓度为11.7~24.0 mg/L,平均质量浓度15.0 mg/L;NO 2--N 质量浓度为0~0.3 mg/L,平均质量浓度0.1 mg/L;NO 3--N 质量浓度为0~0.1 mg/L,平均质量浓度0.02 mg/L;SS 的质量浓度为18.1 mg/L。

1.2 分析项目、检测方法与仪器型号

NH 4+-N ,NO 3--N ,NO 2--N 均由流动注射分析仪测定(Lachat Quik-Chem8000,Lachat Instrument,Milwaukee ,USA );COD 按照标准方法(APHA ,2005)测定;浊度由浊度仪测定(Turbiquant 1100IR)。

出水SS 的测定参照翟世奎等[22-23]所述方法,做出SS 与浊度的相关曲线y =2.38007x +0.53759(R 2=0.99364),即可通过浊度测得出水SS 。 1.3 试验方案

试验分2个阶段,第1个阶段为期90 d,水力负荷的变化见表1;第2个阶段将水力负荷调回1.53 m3/(m2·h),逐步下调出水口(方式2),为期

60 d,BAF 有效容积的变化见表2。整个试验阶段维持AAO-BAF 系统的污泥回流比100%,硝化液回流比300%,BAF 系统的气水比3:1~4:1。

表1 方式1期间水力负荷变化

Table 1 Hydraulic load changes during mode 1

运行阶段 Operation phase

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ

运行时间 Time/d 1~11 12~29 30~55 56~75 76~83 84~90

水力负荷 Hydraulic load/(m3·m-2·h-1)

1.53

1.91 2.55 3.06 3.82 4.37

表2 方式2期间有效容积的变化 Table 2 Effective volume changes in mode 2

出水口编号 Effluent point

B9 B8 B7 B6 B5 B4 B3

运行时间 Time/d 91~97 98~105 106~115 116~123 124~131 132~145 146~150

填料高度 有效容积 Filling Effective height/cm volume/L

125 9.8 110 8.6 95 7.5 80 6.3 65 5.1 50 3.9 35 2.7

196

农业工程学报 2013年

2 结果与分析

2.1 方式1期间BAF 的运行性能 2.1.1 对BAF 硝化性能的影响

图2a 为方式1期间污染物的去除情况。为确定方式1期间BAF 的最佳氨氮容积负荷,阶段Ⅰ到阶段Ⅵ的平均氨氮容积负荷及其对氨氮的平均去除情况如图2b 所示。结合图2和表3可知,氨氮平均去除率随着水力负荷的增加呈先缓慢降低后急剧降低的趋势。当水力负荷小于3.82 m3/(m2·h)

时,出水NH 4+-N (氨氮容积负荷小于1.13 kg/(m3·d))

质量浓度小于3.5 mg/L,NH 4+-N 平均去除率大于82%;调整水力负荷到4.37 m3/(m2·h),氨氮容积负荷增加到1.21 kg/(m3·d),出水NH 4+-N 质量浓度为7.7 mg/L,去除率为65%。

氮容积负荷增大,使滤池硝化能力略有减小。水力

BAF 对氨氮的去除率急负荷大于3.82 m3/(m2·h)时,

剧降低,这是由2方面原因造成的:一是水力负荷的进一步增加导致氨氮容积负荷的增加,单位时间内进入BAF 的氨氮量增加,超出了BAF 中硝化菌生长繁殖所需,部分氨氮未被硝化而随出水排出,导致去除率降低[24];二是由于硝化菌生长繁殖缓慢、世代时间长,过高的水力冲击加速了生物膜的

脱落,使硝化菌含量降低,导致氨氮去除率降低[25]。

表3 运行方式1时氨氮容积负荷的变化

Table 3 ammonium volumetric loading changes during mode1

运行阶段 Operation phase

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ

水力负荷 Hydraulic load /(m3·m-2·h-1) 1.53

1.91 2.55 3.06 3.82 4.37

氨氮容积负荷 Ammonium volumetric loading/(kg·m-3·d-1)

0.48

0.61 0.80 0.92 1.13 1.21

a. BAF出水中污染物质量浓度的变化和去除率

a. Pollutants concentration variation in BAF effluent and removal rates

b. 氨氮容积负荷对氨氮去除性能的影响

b. Effects of ammonium volumetric loading on the NH4+-N removal 注:方式1即通过调整BAF 的水力负荷来改变氨氮容积负荷;Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ为方式1运行阶段。

Notes: Mode 1 was a way that change ammonium volumetric loading by adjusting the BAF hydraulic load; Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ, Ⅵ were the operating phases of mode1.

图2 方式1对BAF 硝化性能的影响

Fig.2 Effect of mode 1 on BAF nitrification characteristics

水力负荷小于3.82 m3/(m2·h)时,BAF 对氨氮的平均去除率缓慢降低,这可能是由于随着水力负荷的增加,污水在BAF 中的水力停留时间降低,氨

由图2a 可知,在整个运行过程中,出水NO 3--N 在10~15mg/L之间,出水NO 2--N 基本上为0,无NO 2--N 积累。运行方式1时,要使出水氨氮满足城镇污水处理厂污染物排放标准(GB18918-2002)(即国家一级A 排放标准),氨氮容积负荷应小于1.13 kg/(m3·d)(水力负荷小于3.82 m3/(m2·h))。

氨这些试验结果明显不同于Jian 等[26]的报道:

氮容积负荷水力负荷从1.57 m3/(m2·h)增加到2.04 m3/(m2·h),氨氮去除率先增加后降低。这可能是由于Jian 等试验的进水氨氮质量浓度(37.98 mg/L)较高,超出了系统中硝化菌所需,当

氨氮去除率仅85%左水力负荷为1.57 m3/(m2·h)时,

右,增加水力负荷促进了曝气生物滤池内液相与生物相之间的传质过程,从而使硝化性能上升。而在本试验中,进水氨氮质量浓度低于25 mg/L,即在较低的氨氮浓度下,不需要增加传质就能获得较好的氨氮去除率。

2.1.2 对出水SS 的影响

由图3和表3可知,出水SS 随水力负荷的增

(水加而增加。当氨氮容积负荷小于0.80 kg/(m3·d)时

,出水SS 小于10 mg/L,力负荷小于2.55 m3/(m2·h))

满足国家一级A 的水质排放标准;当氨氮容积负荷大于0.8 kg/(m3·d)时,出水SS 开始急剧增加,氨氮容积负荷增加到1.21 kg/(m3·d)(水力负荷4.37 m3/(m2·h)),平均出水SS 为21.8 mg/L,甚至大于进水SS (18.1 mg/L)。上述结论进一步说明过大的水力冲击不利于使代谢繁殖缓慢、世代时间长的硝化菌生长,从而对BAF 硝化性能产生一定的影响。

第21期 刘青松等:双污泥反硝化除磷系统中氨氮容积负荷的优化

197

注:方式1即通过调整BAF 的水力负荷来改变氨氮容积负荷;Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ为方式1运行阶段。

Notes: Mode 1 was a way that change ammonium volumetric loading by adjusting the BAF hydraulic load; Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ, Ⅵ were operating phases of mode1.

a. BAF出水中污染物质量浓度的变化和去除率

a. Pollutants concentration variation in BAF effluent and removal rates

图3 方式1期间出水SS 随时间的变化规律 Fig.3 Effluent SS evolution with time during mode 1

2.2 方式2对BAF 性能的影响 2.2.1 对BAF 硝化性能的影响

图4a 为方式2期间污染物的去除情况。为确定BAF 的最佳氨氮容积负荷,出水口从B9逐步下调到B1的过程中,平均氨氮容积负荷及其对NH 4+-N 的去除情况如图4b 所示。结合图4和表4可知,氨氮去除率随有效容积的减小先逐渐降低后急剧减小。当滤池出水口逐步下调至B4,即填料有效容积大于3.9 L时,平均氨氮容积负荷小于1.12 kg/(m3·d),出水NH 4+-N 质量浓度小于3.6 mg/L,NH 4+-N 去除率大于81%;继续下调出水口至B3,BAF 有效容积为2.7 L,平均氨氮容积负荷为1.19 kg/(m3·d),出水NH 4+-N 质量浓度为5.7 mg/L,去除率仅为68%。

BAF 有效容积大于3.9 L时,氨氮去除率随容积变化逐步降低;BAF 有效容积小于3.9 L,氨氮去除率急剧降低。Fdz-Polanco F等[27]认为,由于COD 质量浓度的变化,曝气生物滤池沿程的菌群会有明显不同,在进水的前段,COD 质量浓度较高,异养菌占优势,随着沿程高度增加,COD 质量浓度降低,硝化菌占优势,硝化反应加强。当填料有效容积大于3.9 L时,填料高度足够,硝化菌占优势,硝化性能稳定;当有效容积降低到到3.9 L以下时,异样菌所占比重增加,同时由于氨氮容积负荷过高(大于1.12 kg/(m3·d),进水氨氮超出了硝化菌生长繁殖所需,导致部分来不及硝化的氨氮随出水排出。当有效容积小于3.9 L时,要达到较好的硝化效果,建议调整气水比,增加水中溶解氧含量,提高硝化菌的竞争能力[28-29]。

b. 氨氮容积负荷对氨氮去除性能的影响

b. Effects of ammonium volumetric loading on the NH4+-N removal 注:方式2即通过调整有效容积来改变氨氮容积负荷;B1,B2,B3…B9为BAF 的采样口。

Notes: Mode 2 was a way that change ammonium volumetric loading by adjusting the effective volume; B1, B2, B3…B9 were sampling points of BAF.

图4 方式2对曝气生物滤池硝化性能的影响

Fig.4 Effect of mode 1 on BAF nitrification characteristics 表4 运行方式2时氨氮容积负荷的变化

Table 4 Ammonium volumetric loading changes during mode 2

出水口编号 Effluent point

有效容积 氨氮容积负荷 Effective Ammonium Volumetric volume/L Loading/(kg·m-3·d-1)

B9 9.8 0.43 B8 8.6 B7 7.5 B6 6.3 B5 5.1 B4 3.9 B3 2.7

0.49 0.55 0.63 0.74 1.12 1.19

由图4a 可知,在整个运行过程中,出水NO 3--N 在10~17 mg/L之间,出水NO 2--N 基本为0 。运行方式2时,要使出水氨氮满足国家一级A 标准,氨氮容积负荷应小于1.12 kg/(m3·d) (有效容积大于3.9 L)。

2.2.2 对出水SS 的影响

由表4和图5可知,随着出水口下调,有效容积减小,出水SS 增加。当有效容积大于5.1 L,氨

198

农业工程学报 2013年

氮容积负荷小于0.74 kg/(m3·d),出水SS 小于10 mg/L,满足国家一级A 的水质排放标准;当有效容积减小到2.7L 时,氨氮容积负荷大于1.19 kg/(m3·d),平均出水SS 为14.2 mg/L。这是由于SS 的去除主要依赖于填料的过滤截留作用[30],填料高度越高截留效果越好。

准,建议氨氮容积负荷维持在0.74 kg/(m3·d)以下。

3 结 论

1)方式1期间,氨氮去除率随着水力负荷的增加呈现先缓慢降低后急剧降低的趋势,出水SS 随水力负荷的增加而增加。当氨氮容积负荷小于0.8 kg/(m3·d)时,出水氨氮质量浓度小于5 mg/L,出水SS 小于10 mg/L。

2)方式2期间,氨氮去除率随有效容积的减小先缓慢降低后急剧降低,出水SS 随着有效容积减小而逐渐增加。氨氮容积负荷小于0.74 kg/(m3·d)时,能够保证曝气生物滤池良好的硝化性能,满足国家一级A 排放标准。

3)2种运行方式调整氨氮容积负荷,对BAF 硝化效率的影响不大,但出水SS 对水力负荷的变化更敏感。氨氮容积负荷增加到1.21 kg/(m3·d)时,方式2的平均出水SS 为14.2 mg/L,方式1的出水SS 为21.8 mg/L,甚至大于进水SS (18.1 mg/L)。

[参 考 文 献]

Dubber D, Gray N F. The effect of anoxia and anaerobia on ciliate community in biological nutrient removal systems using Laboratoryscale sequencing batch reactors (SBRs)[J]. Water Research, 2011, 45(6): 2213-2226. 张文艺,姚立荣,王立岩,等. 植物浮岛湿地处理太湖流域农村生活污水效果[J]. 农业工程学报,2010,26(8):279-284.

Zhang Wenyi, Yao Lirong, Wang Liyan, et al. Effects of rural domestic sewage treatment in Taihu Lake Valley by wetland of plant floating island[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(8): 279-284. (in Chinese with English abstract)

龚灵潇,彭永臻,杨庆,等. 不同载体填充率下一体化A/O生物膜反应器的启动特性[J]. 中南大学学报:自然科学版,2013,44(3):1275-1282.

Gong Lingxiao, Peng Yongzhen, Yang Qing, et al. Start-up characteristics of integrated A/O biofilm reactor with different carrier packing rates[J]. Journal of Central South University: Science and Technology, 2013, 44(3): 1275-1282. (in Chinese with English abstract) 夏邦寿,胡启春,宋立. 村镇生活污水净化沼气池设计图例技术分析[J]. 农业工程学报,2008,24(11):197-201. Xia Bangshou, Hu Qichun, Song Li. Technical analysis of designs of biogas digesters for treating domesticsewage from ruralareas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(11): 197-201. (in Chinese with English abstract)

段增强,段婧婧,耿晨光,等. 园林地慢速渗滤系统处理农村分散式生活污水[J]. 农业工程学报,2012,28(23):192-199.

Duan Zengqiang, Duan Jingjing, Geng Chenguang, et al. Garden slow percolation system for processing rural distributed wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the

注:方式2即通过调整有效容积来改变氨氮容积负荷;B1,B2,B3…B9为BAF 的9个采样口。

Notes: Mode 2 was a way that change the ammonium volumetric loading by adjusting effective volume; B1,B2,B3…B9 were sampling points of BAF.

图5 方式2期间出水SS 随时间的变化规律 Fig.5 Effluent SS evolution with time during mode 2

[1]

2.3 2种运行方式对比

对比图2b 和图4b 可知,2种运行方式调整氨氮容积负荷时,对BAF 硝化效率的影响区别不大。随着氨氮容积负荷的增加,氨氮去除率均呈现先缓慢降低后急剧减小的趋势。当氨氮容积负荷小于

2种运行方式的平均NH 4+-N 去除1.12 kg/(m3·d)时,

率均大于81%;当氨氮容积负荷大于1.12 kg/(m3·d)时,两种运行方式的平均NH 4+-N 去除率急剧降低,氨氮容积负荷增加到1.2 kg/(m3·d)时,方式1和方式2的NH 4+-N 去除率分别65%和68%。

对比图3和图5可知,出水SS 对方式1更敏感。当氨氮容积负荷小于0.74 kg/(m3·d)时,2种运行方式的出水SS 均小于10 mg/L;当氨氮容积负荷大于0.74 kg/(m3·d)时,方式1和方式2的出水SS 均急剧增加,但方式1增加的更快,氨氮容积负荷

方式1和方式2的出水SS 增加到1.21 kg/(m3·d)时,

分别为21.8和14.2 mg/L。这说明水力冲击对出水SS 的影响很大。

运行方式1时,要使出水水质达到国家一级A 标准(氨氮小5 mg/L,SS 小于10 mg/L),氨氮容积负荷应该小于0.8 kg/(m3·d)(水力负荷小于2.55 m3/(m2·h));运行方式2时,要使出水达标,氨氮容积负荷应该小于0.74 kg/(m3·d)。因此,在实际运行过程中,为保证出水水质达到国家一级A 标

[2]

[3]

[4]

[5]

第21期 刘青松等:双污泥反硝化除磷系统中氨氮容积负荷的优化 CSAE), 2012, 28(23): 192-199. (in Chinese with English abstract)

Xu Defu, Xu Jianming, Wu Jianjun, et al. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems[J]. Chemosphere, 2006, 63(2): 344-352.

Wu Shubiao, Austin D, Liu Lin, et al. Performance of integrated household constructed wetland for domestic wastewater treatment in rural areas[J]. Ecological Engineering, 2011, 37(6): 948-954.

Wang Jianhua, Peng Yongzhen, Chen Yongzhi. Advanced nitrogen and phosphorus removal in A2O-BAF system treating low carbon-to-nitrogen ratio domestic wastewater[J]. Frontiers of Environmental Science and Engineering, 2011, 5(3): 474-480.

王建华,陈永志,彭永臻. 低碳氮比实际生活污水A 2O-BAF 工艺低温脱氮除磷[J]. 中国环境科学,2010,30(9):1195-1200.

Wang Jianhua, Chen Yongzhi, Peng Yongzhen. Biological nutrients removal from domestic wastewater with low carbon-to-nitrogen ratio in A2O-BAF system at low temperature[J]. China Environmental Science, 2010, 30(9): 1195-1200. (in Chinese with English abstract) 陈永志,彭永臻,王建华,等. 内循环对A 2/O-曝气生物滤池工艺脱氮除磷特性影响[J]. 环境科学,2011,32(1):193-198.

Chen, Yongzhi, Peng Yongzhen, Wang Jianhua, et al. Effect of internal recycle ratio on nitrogen and phosphorus removal characteristics in A2/O-BAF Process[J]. Environmental Science, 2011, 32(1): 193-198. (in Chinese with English abstract)

吴迪,高贤彪,李玉华,等. 两级回流生物膜工艺处理农村生活污水效果[J]. 农业工程学报,2013,29(1):218-224.

Wu Di, Gao Xianbiao, Li Yuhua, et al. Treatment effect of rural domestic sewage in rural area using biofilm with two-stage reflux[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(1): 218-224. (in Chinese with English abstract)

刘晓璐,牛宏斌,闫海,等. 农村生活污水生态处理工艺研究与应用[J]. 农业工程学报,2013,29(9):184-191. Liu Xiaolu, Niu Hongbin, Yan Hai, et al. Research and application of high-efficiency eco-engineering rural sewage treatment system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(9): 184-191. (in Chinese with English abstract)

Ye Fenxia, Li Ying. Enhancement of nitrogen removal in towery hybrid constructed wetland to treat domestic wastewater for small rural communities[J]. Ecological Engineering, 2009, 35(7): 1043-1050.

Qiu Liping, Zhang Shoubin, Wang Guangwei, et al. Performances and nitrification properties of biological aerated filters with zeolite, ceramic particle and carbonate media[J]. Bioresource Technology, 2010, 101(19): 7245-7251.

Gilmore K R, Husovitz K J, Holst T, et al. Influence of organic and ammonia loading on nitrifier activity and nitrification performance for a two-stage biological aerated filter system[J]. Water Science and Technology, 1999, 39(7): 227-234.

郭俊元,杨春平,曾龙云,等. 回流比水力负荷对前置反硝化生物滤池工艺处理污水的影响研究[J]. 环境科学学报,2010,30(8):1615-1621.

199

[6]

[17]

[7]

[8]

[18]

[9]

[19]

[10]

[20]

[21]

[11]

[22]

[12]

[23]

[13]

[24]

[14]

[25]

[15]

[26]

[16]

[27]

Guo Junyuan, Yang Chunping, Zeng Longyun, et al. Influence of reflux ratio and hydraulic loading on the performance of pre-denitrification BAF in wastewater treatment[J]. Acta Scientiae Circumstantiae, 2010, 30(8): 1615-1621. (in Chinese with English abstract)

Liu Fang, Zhao Chaocheng, Zhao Dongfeng, et al. Tertiary treatment of textile wastewater with combined media biological aerated filter (CMBAF) at different hydraulic loadings and dissolved oxygen concentrations[J]. Journal of Hazardous Materials, 2008, 160(1): 161-167.

高艳玲. 悬浮载体生物流化床反应器脱氮试验研究[D]. 哈尔滨:哈尔滨工业大学,2007.

Gao Yanling. Experimental Study on Nitrogen Removal in Suspended Carriers Biological Fluidized Bed Reactor[D]. Harbin: Harbin Institute of Technology, 2007. (in Chinese with English abstract)

Chen Yongzhi, Peng Chengyao, Wang Jianhua, et al. Effect of nitrate recycling ratio on simultaneous biological nutrient removal in a novel anaerobic/anoxic/oxic(A2/O)-biological aerated filter (BAF) system[J]. Bioresource Technology, 2011, 102(10): 5722-5727.

陈永志,彭永臻,王建华,等. A2/O-曝气生物滤池工艺反硝化除磷[J]. 化工学报,2011,62(3):797-804. Chen Yongzhi, Peng Yongzhen, Wang Jianhua, et al. Denitrifying phosphorus removal in A2/O-BAF process[J]. CIESC Journal, 2011, 62(3): 797-804. (in Chinese with English abstract)

李欣,彭永臻,王建华,等. A2O-BAF与A2O 工艺处理较高C/N比生活污水时的污泥沉降性对比分析[J]. 中南大学学报:自然科学版,2012,43(3):1198-1203. Li Xin, Peng Yongzhen, Wang Jianhua, et al. Comparative analysis of sludge settleability of A2O-BAF process and A2O process treating higher C/N ratio domestic sewage[J]. Journal of Central South University: Science and Technology, 2012, 43(3): 1198-1203. (in Chinese with English abstract)

翟世奎,张怀静,范德江,等. 长江口及其邻近海域悬浮物浓度和浊度的对应关系[J]. 环境科学学报,2005,25(5):693-699.

Zhai Shikui, Zhang Huaijing, Fan Dejiang, et al. Corresponding relationship between suspended matter concentration and turbidity on Changjiang Estuary and adjacent sea area[J]. Acta Scientiae Circumstantiae, 2005, 25(5): 693-699. (in Chinese with English abstract)

Holliday C P, Rasmussen T C, Miller W P.Establishing the relationship between turbidity and total suspended sediment concentration[C]// Proceedings of the 2003 Georgia Water Resources Conference. Georgia: The University of Georgia, Institute of Ecology, 2003: 23-24. Vigne E, Choubert J, Canler J, et al. The role of loading rate, backwashing, water and air velocities in an up-flow nitrifying tertiary filter[J]. Bioresource Technology, 2011, 102(2): 904-912.

Pujol R. Process improvements for upflow submerged biofilters[J]. Water Science and Technology, 2002, 32(1): 25-29.

Jian Zhengrong, Zhou Lili, Yin Cuixia. Study on municipal wastewater treatment using biological aerated filter with pre-denitrification[C]// Bioinformatics and Biomedical Engineering, (iCBBE) 2011 5th International Conference on. Wuhan, China: IEEE Computer Society, 2011: 1-4.

Fdz-Polanco F, Mendez E, Uruena M A, et al. Spatial distribution of heterotrophs and nitrifiers in a submerged

200

农业工程学报 2013年

Aerated Filter (BAF) as alternative treatment for domestic sewage. Optimization of plant performance[J]. Journal of Hazardous Materials, 2009, 171(1): 1126-1132.

[30] Lu Shaoming, Niu Xiaojun, Ren Yuanyuan, et al.

Application of downflow-upflow biological aerated filter in the pretreatment of raw water containing high ammonia nitrogen[J]. Journal of Environmental Engineering, 2011, 137(12): 1193-1198.

biofilter for nitrification[J]. Water Research, 2000, 34(16): 4081-4089.

[28] Dou Nasha, Wang Lin, Huang Xuda. Effect of operation

parameters on the performance of biological aerated filter in a full-scale wastewater treatment plant[C]// Bioinformatics and Biomedical Engineering, (iCBBE) 2011 5th International Conference on.Wuhan, China: IEEE Computer Society, 2011: 1-4.

[29] Farabegoli G, Chiavola A, Rolle E. The Biological

Optimization of ammonium volumetric loading in two-sludge

denitrifying phosphorus removal process

Liu Qingsong, Peng Yongzhen, Hou Feng, Zhang Weitang1, Liu Ye1, Wang Shuying1

(1. Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, Beijing University of Technology,

Beijing 100124, China; 2. Beijing Beihuaqingchuang Environmental Science and Technology Co., Ltd, Beijing 100124, China )

1

1※

2

Abstract: The universal features of rural domestic wastewater were small quantity, scattered distribution, and great diurnal variation, etc. So it was difficult to centralize, treat, and reuse such wastewater. However, discharging such untreated rural domestic sewage with the characteristics of comparatively high nitrogen and phosphorus concentration to the environment brought about seriously eutrophication. Therefore, it was necessary to research and develop a treatment process which has the advantages of relatively high efficiency, less land occupied, investigated savings, and also easy management and maintenance for nutrient removal from the rural sewage. On the basis of these considerations above, an enhanced denitrifying phosphorus removal system, that is, a two-sludge process integrating anaerobic/anoxic/oxic (AAO) reactor with biological aerated filter (BAF)( AAO-BAF for short), was developed to treat domestic sewage, especially the decentralized sewage in rural areas. In this innovation system, the AAO unit, consisting of nine compartments in sequence, was used mainly for the removal of organic compounds and nutrients without ammonium oxidation, while the BAF unit was mainly responsible for nitrification. The BAF unit, an important component of the two-sludge system, was 1.8m in height and 10cm in diameter, with a light-weight ceramic filled in it. Nine sampling ports were placed along the BAF, marked as B1 to B9 from bottom to top in turn. In this study, a series of experiments were carried out to research the effect of the ammonium volumetric loading on nitrifying characteristics and effluent SS of the BAF. The ammonium volumetric loading, by changing the hydraulic loading (marked as mode 1) and adjusting the effective volume of the BAF unit (marked as mode 2), was varied from 0.43 kg/(m3·d) to 1.2 kg/(m3·d). Mode 1 lasted for 90 d, during which hydraulic loading soared from 1.53 m3/(m2·h) to 4.37 m3/(m2·h). Mode 2 ran for 60 d, and during that period BAF effective volume decreased from 9.8 L to 2.7 L, while hydraulic load maintained 1.53 m3/(m2·h). Throughout the total experimental period, the sludge reflux ratio was 100% maintained, with a nitrification reflux ratio of 300%, and the air-water ratio of BAF unit was set at 3:1~4:1.The results showed that, with the increase of ammonium volumetric loading, the ammonia nitrogen removal efficiency showed a tendency of slowly decreasing first and sharply dropping later during two operating modes. Effluent SS was more sensitive to changes in mode 1 than that in mode 2, which was the most significant difference between the two operating modes. When ammonia volumetric loading varied from 0.43 kg/m3·d to 1.12 kg/(m3·d), the nitrogen removal efficiency was over 81%; and when ammonia volumetric loading increased to 1.21 kg/(m3·d), ammonia removal efficiency decreased sharply to 65% and 68%, respectively. When the ammonia volumetric loading was below 0.74 kg/(m3·d), both effluent SS were lower than 10mg/L; and when ammonia volumetric loading varied from

kg/(m3·d), effluent SS soared much more sharply during mode 1, at the ammonia 0.74 kg/(m3·d) to 1.21

mg/L respectively. These findings volumetric loading of 1.21 kg/(m3·d), effluent SS was 21.8 mg/L and 14.2

determined that, to meet the first class of A standard, namely, the standard of ammonia nitrogen concentration less than 5 mg/L, and effluent SS lower than 10 mg/L, BAF unit should be operated at the condition of ammonium volumetric loading below 0.74 kg/(m3d).

Key words: rural areas, sewage treatment, ammonia, nitrogen, two-sludge denitrifying phosphorus removal process, volumetric loading, hydraulic load

(责任编辑:张俊芳)

第29卷 第21期 农 业 工 程 学 报 V ol.29 No.21

194 2013年 11月 Transactions of the Chinese Society of Agricultural Engineering Nov. 2013

双污泥反硝化除磷系统中氨氮容积负荷的优化

刘青松1,彭永臻1,侯 锋2,张为堂1,刘 晔1,王淑莹1

(1. 北京工业大学北京市水质科学与水环境恢复重点实验室,北京 100124;

2. 北京北华清创环境科技有限公司,北京 100124)

摘 要:农村生活污水具有处理量小,分散,日变化系数大等特点,分散处理成为农村污水处理的首要选择。该研究采用AAO 工艺与BAF 组成的双污泥反硝化除磷系统(anaerobic anoxic oxic-biological aerated filter,AAO-BAF )处理农村生活污水,探讨了氨氮容积负荷对该系统BAF 单元硝化性能及出水悬浮物(SS )的影响。通过改变水力

试验结果表明,负荷和有效滤料容积(即方式1和方式)2种方式,氨氮容积负荷在0.43~1.21 kg/(m3·d)之间变化。

随着氨氮容积负荷的增加,氨氮去除率呈现先缓慢降低后急剧减小的趋势,不同的是,出水SS 对方式1(即水力负荷的变化)更敏感。当氨氮容积负荷在0.43~1.12 kg/(m3·d)时,氨氮去除率大于81%;当氨氮容积负荷大于1.12 kg/(m3·d),氨氮去除率急剧降低,氨氮容积负荷为1.21 kg/(m3·d),2种运行方式的氨氮去除率分别为65%和68%。当氨氮容积负荷小于0.74 kg/(m3·d)时,出水SS 小于10 mg/L;当氨氮容积负荷大于0.74 kg/(m3·d)时,出水

方式1和方式2的出水SS 分别为21.8SS 急剧增加,但方式1增加得更快,氨氮容积负荷增加到1.21 kg/(m3·d)时,

和14.2 mg/L。所以,为保证BAF 出水水质达到国家一级A 排放标准,其氨氮容积负荷应小于0.74 kg/(m3·d)。 关键词:农村地区,污水处理,氨,氮,双污泥反硝化除磷系统,容积负荷,水力负荷 doi :10.3969/j.issn.1002-6819.2013.21.025

中图分类号:X703.1 文献标志码:A 文章编号:1002-6819(2013)-21-0194-07

刘青松,彭永臻,侯 锋,等. 双污泥反硝化除磷系统中氨氮容积负荷的优化[J]. 农业工程学报,2013,29(21):194-200.

Liu Qingsong, Peng Yongzhen, Hou Feng, et al. Optimization of ammonium volumetric loading in two-sludge denitrifying phosphorus removal process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(21): 194-200. (in Chinese with English abstract)

0 引 言

目前,大量农村生活污水未经处理直接排放,对水环境造成严重污染,其中氮磷等营养物质的超

农村村庄分标是引起水体富营养化的重要原因[1-3]。

散,人口分布不集中,污水收集管网缺乏,使得农村污水难以收集、处理和回用。因此,分散处理成为农村污水处理的首要选择[4-7]。

AAO-BAF 双污泥反硝化除磷系统是一种新型高效的生物脱氮除磷工艺。它将AAO 工艺与BAF 工艺相结合,应用反硝化除磷技术,不仅有效利用了原水中的碳源,还解决了传统AAO 工艺运行过程中聚磷菌与硝化菌污泥龄矛盾等问题,有利于提高脱氮除磷系

收稿日期:2013-07-14 修订日期:2013-10-03

基金项目:国家863计划项目(2012AA063406);北京市教委科技创新平台项目

作者简介:刘青松(1987-),女,主要研究方向为污水处理新理论与新技术。北京 北京工业大学北京市水质科学与水环境恢复重点实验室,100124。Email :[email protected]

※通信作者:彭永臻(1949-),男,博士生导师,主要研究方向:污水的生物处理法和过程控制。北京 北京工业大学北京市水质科学与水环境恢复重点实验室,100124。Email :[email protected]

统的效率和稳定性[8-10]。同时,由于AAO-BAF 系统具

有处理效率高,占地面积小,运行费用低,管理方便等优势,对处理水量小、分散、日变化系数大的农村生活污水处理尤为适用,具有广泛的应用前景[11-13]。

BAF 作为双污泥系统的重要组成部分,其工艺参数优化关系到系统的高效稳定运行。氨氮容积负荷是BAF 最重要的控制参数之一,在降低能耗的基础上,寻找最佳的氨氮容积负荷,可以增加处理容量并节省空间与成本,从而发挥反应器最大限度的单位处理能力[14]。氨氮容积负荷作为曝气生物滤池的工艺运行参数,相关文献已经进行了较为详细

然而,目前关于AAO-BAF 系统中BAF 的报道[15-17]。

单元的最佳氨氮容积负荷则较少有人报道。一般情况下,缩短水力停留时间可以增加氨氮容积负荷。缩短BAF 水力停留时间的方式有2种,一是提高水力负荷,二是减小滤料的有效容积[18]。

本试验以AAO-BAF 系统中AAO 反应器的出水为研究对象,通过调节水力负荷和有效容积2种方式(即方式1和方式2),考察了氨氮容积负荷对BAF 硝化性能和出水SS 的影响,确定了最佳氨氮容积负荷,优化AAO-BAF 系统参数,以期为该

第21期 刘青松等:双污泥反硝化除磷系统中氨氮容积负荷的优化

195

工艺在农村生活污水处理中推广应用奠定基础。

1 试验材料与方法

1.1 试验装置

图1为AAO-BAF 污水处理系统。生活污水首先进入AAO 系统,在AAO 系统进行反硝化除磷,经反硝化脱氮除磷后的污水进入曝气生物滤

池进行硝化,出水大部分回流到AAO 系统的缺氧段进行反硝化,少量排放[19-21]。BAF 反应器由有机玻璃制成,直径0.1 m,高1.8 m,内部填充陶粒。填料填充高度为1.25 m。BAF 设有9个采样口,从下至上依次记为B1,B2,B3…B9。在滤池承托层设穿孔曝气管, 为微生物的生长提供充足氧气。

注:B1,B2,B3…B9为BAF 的采样口。

Notes: B1,B2,B3…B9 were sampling points of the BAF.

图1 AAO-BAF工艺系统

Fig.1 Flow chart of AAO-BAF process

1.2 试验水质

AAO-BAF 系统的进水为北京工业大学教工住宅区化粪池生活污水,BAF 反应器的进水为AAO 反应器的出水。BAF 进水主要水质参数为:COD 质量浓度为39~71 mg/L,平均质量浓度53 mg/L;NH 4+-N 质量浓度为11.7~24.0 mg/L,平均质量浓度15.0 mg/L;NO 2--N 质量浓度为0~0.3 mg/L,平均质量浓度0.1 mg/L;NO 3--N 质量浓度为0~0.1 mg/L,平均质量浓度0.02 mg/L;SS 的质量浓度为18.1 mg/L。

1.2 分析项目、检测方法与仪器型号

NH 4+-N ,NO 3--N ,NO 2--N 均由流动注射分析仪测定(Lachat Quik-Chem8000,Lachat Instrument,Milwaukee ,USA );COD 按照标准方法(APHA ,2005)测定;浊度由浊度仪测定(Turbiquant 1100IR)。

出水SS 的测定参照翟世奎等[22-23]所述方法,做出SS 与浊度的相关曲线y =2.38007x +0.53759(R 2=0.99364),即可通过浊度测得出水SS 。 1.3 试验方案

试验分2个阶段,第1个阶段为期90 d,水力负荷的变化见表1;第2个阶段将水力负荷调回1.53 m3/(m2·h),逐步下调出水口(方式2),为期

60 d,BAF 有效容积的变化见表2。整个试验阶段维持AAO-BAF 系统的污泥回流比100%,硝化液回流比300%,BAF 系统的气水比3:1~4:1。

表1 方式1期间水力负荷变化

Table 1 Hydraulic load changes during mode 1

运行阶段 Operation phase

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ

运行时间 Time/d 1~11 12~29 30~55 56~75 76~83 84~90

水力负荷 Hydraulic load/(m3·m-2·h-1)

1.53

1.91 2.55 3.06 3.82 4.37

表2 方式2期间有效容积的变化 Table 2 Effective volume changes in mode 2

出水口编号 Effluent point

B9 B8 B7 B6 B5 B4 B3

运行时间 Time/d 91~97 98~105 106~115 116~123 124~131 132~145 146~150

填料高度 有效容积 Filling Effective height/cm volume/L

125 9.8 110 8.6 95 7.5 80 6.3 65 5.1 50 3.9 35 2.7

196

农业工程学报 2013年

2 结果与分析

2.1 方式1期间BAF 的运行性能 2.1.1 对BAF 硝化性能的影响

图2a 为方式1期间污染物的去除情况。为确定方式1期间BAF 的最佳氨氮容积负荷,阶段Ⅰ到阶段Ⅵ的平均氨氮容积负荷及其对氨氮的平均去除情况如图2b 所示。结合图2和表3可知,氨氮平均去除率随着水力负荷的增加呈先缓慢降低后急剧降低的趋势。当水力负荷小于3.82 m3/(m2·h)

时,出水NH 4+-N (氨氮容积负荷小于1.13 kg/(m3·d))

质量浓度小于3.5 mg/L,NH 4+-N 平均去除率大于82%;调整水力负荷到4.37 m3/(m2·h),氨氮容积负荷增加到1.21 kg/(m3·d),出水NH 4+-N 质量浓度为7.7 mg/L,去除率为65%。

氮容积负荷增大,使滤池硝化能力略有减小。水力

BAF 对氨氮的去除率急负荷大于3.82 m3/(m2·h)时,

剧降低,这是由2方面原因造成的:一是水力负荷的进一步增加导致氨氮容积负荷的增加,单位时间内进入BAF 的氨氮量增加,超出了BAF 中硝化菌生长繁殖所需,部分氨氮未被硝化而随出水排出,导致去除率降低[24];二是由于硝化菌生长繁殖缓慢、世代时间长,过高的水力冲击加速了生物膜的

脱落,使硝化菌含量降低,导致氨氮去除率降低[25]。

表3 运行方式1时氨氮容积负荷的变化

Table 3 ammonium volumetric loading changes during mode1

运行阶段 Operation phase

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ

水力负荷 Hydraulic load /(m3·m-2·h-1) 1.53

1.91 2.55 3.06 3.82 4.37

氨氮容积负荷 Ammonium volumetric loading/(kg·m-3·d-1)

0.48

0.61 0.80 0.92 1.13 1.21

a. BAF出水中污染物质量浓度的变化和去除率

a. Pollutants concentration variation in BAF effluent and removal rates

b. 氨氮容积负荷对氨氮去除性能的影响

b. Effects of ammonium volumetric loading on the NH4+-N removal 注:方式1即通过调整BAF 的水力负荷来改变氨氮容积负荷;Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ为方式1运行阶段。

Notes: Mode 1 was a way that change ammonium volumetric loading by adjusting the BAF hydraulic load; Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ, Ⅵ were the operating phases of mode1.

图2 方式1对BAF 硝化性能的影响

Fig.2 Effect of mode 1 on BAF nitrification characteristics

水力负荷小于3.82 m3/(m2·h)时,BAF 对氨氮的平均去除率缓慢降低,这可能是由于随着水力负荷的增加,污水在BAF 中的水力停留时间降低,氨

由图2a 可知,在整个运行过程中,出水NO 3--N 在10~15mg/L之间,出水NO 2--N 基本上为0,无NO 2--N 积累。运行方式1时,要使出水氨氮满足城镇污水处理厂污染物排放标准(GB18918-2002)(即国家一级A 排放标准),氨氮容积负荷应小于1.13 kg/(m3·d)(水力负荷小于3.82 m3/(m2·h))。

氨这些试验结果明显不同于Jian 等[26]的报道:

氮容积负荷水力负荷从1.57 m3/(m2·h)增加到2.04 m3/(m2·h),氨氮去除率先增加后降低。这可能是由于Jian 等试验的进水氨氮质量浓度(37.98 mg/L)较高,超出了系统中硝化菌所需,当

氨氮去除率仅85%左水力负荷为1.57 m3/(m2·h)时,

右,增加水力负荷促进了曝气生物滤池内液相与生物相之间的传质过程,从而使硝化性能上升。而在本试验中,进水氨氮质量浓度低于25 mg/L,即在较低的氨氮浓度下,不需要增加传质就能获得较好的氨氮去除率。

2.1.2 对出水SS 的影响

由图3和表3可知,出水SS 随水力负荷的增

(水加而增加。当氨氮容积负荷小于0.80 kg/(m3·d)时

,出水SS 小于10 mg/L,力负荷小于2.55 m3/(m2·h))

满足国家一级A 的水质排放标准;当氨氮容积负荷大于0.8 kg/(m3·d)时,出水SS 开始急剧增加,氨氮容积负荷增加到1.21 kg/(m3·d)(水力负荷4.37 m3/(m2·h)),平均出水SS 为21.8 mg/L,甚至大于进水SS (18.1 mg/L)。上述结论进一步说明过大的水力冲击不利于使代谢繁殖缓慢、世代时间长的硝化菌生长,从而对BAF 硝化性能产生一定的影响。

第21期 刘青松等:双污泥反硝化除磷系统中氨氮容积负荷的优化

197

注:方式1即通过调整BAF 的水力负荷来改变氨氮容积负荷;Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ为方式1运行阶段。

Notes: Mode 1 was a way that change ammonium volumetric loading by adjusting the BAF hydraulic load; Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ, Ⅵ were operating phases of mode1.

a. BAF出水中污染物质量浓度的变化和去除率

a. Pollutants concentration variation in BAF effluent and removal rates

图3 方式1期间出水SS 随时间的变化规律 Fig.3 Effluent SS evolution with time during mode 1

2.2 方式2对BAF 性能的影响 2.2.1 对BAF 硝化性能的影响

图4a 为方式2期间污染物的去除情况。为确定BAF 的最佳氨氮容积负荷,出水口从B9逐步下调到B1的过程中,平均氨氮容积负荷及其对NH 4+-N 的去除情况如图4b 所示。结合图4和表4可知,氨氮去除率随有效容积的减小先逐渐降低后急剧减小。当滤池出水口逐步下调至B4,即填料有效容积大于3.9 L时,平均氨氮容积负荷小于1.12 kg/(m3·d),出水NH 4+-N 质量浓度小于3.6 mg/L,NH 4+-N 去除率大于81%;继续下调出水口至B3,BAF 有效容积为2.7 L,平均氨氮容积负荷为1.19 kg/(m3·d),出水NH 4+-N 质量浓度为5.7 mg/L,去除率仅为68%。

BAF 有效容积大于3.9 L时,氨氮去除率随容积变化逐步降低;BAF 有效容积小于3.9 L,氨氮去除率急剧降低。Fdz-Polanco F等[27]认为,由于COD 质量浓度的变化,曝气生物滤池沿程的菌群会有明显不同,在进水的前段,COD 质量浓度较高,异养菌占优势,随着沿程高度增加,COD 质量浓度降低,硝化菌占优势,硝化反应加强。当填料有效容积大于3.9 L时,填料高度足够,硝化菌占优势,硝化性能稳定;当有效容积降低到到3.9 L以下时,异样菌所占比重增加,同时由于氨氮容积负荷过高(大于1.12 kg/(m3·d),进水氨氮超出了硝化菌生长繁殖所需,导致部分来不及硝化的氨氮随出水排出。当有效容积小于3.9 L时,要达到较好的硝化效果,建议调整气水比,增加水中溶解氧含量,提高硝化菌的竞争能力[28-29]。

b. 氨氮容积负荷对氨氮去除性能的影响

b. Effects of ammonium volumetric loading on the NH4+-N removal 注:方式2即通过调整有效容积来改变氨氮容积负荷;B1,B2,B3…B9为BAF 的采样口。

Notes: Mode 2 was a way that change ammonium volumetric loading by adjusting the effective volume; B1, B2, B3…B9 were sampling points of BAF.

图4 方式2对曝气生物滤池硝化性能的影响

Fig.4 Effect of mode 1 on BAF nitrification characteristics 表4 运行方式2时氨氮容积负荷的变化

Table 4 Ammonium volumetric loading changes during mode 2

出水口编号 Effluent point

有效容积 氨氮容积负荷 Effective Ammonium Volumetric volume/L Loading/(kg·m-3·d-1)

B9 9.8 0.43 B8 8.6 B7 7.5 B6 6.3 B5 5.1 B4 3.9 B3 2.7

0.49 0.55 0.63 0.74 1.12 1.19

由图4a 可知,在整个运行过程中,出水NO 3--N 在10~17 mg/L之间,出水NO 2--N 基本为0 。运行方式2时,要使出水氨氮满足国家一级A 标准,氨氮容积负荷应小于1.12 kg/(m3·d) (有效容积大于3.9 L)。

2.2.2 对出水SS 的影响

由表4和图5可知,随着出水口下调,有效容积减小,出水SS 增加。当有效容积大于5.1 L,氨

198

农业工程学报 2013年

氮容积负荷小于0.74 kg/(m3·d),出水SS 小于10 mg/L,满足国家一级A 的水质排放标准;当有效容积减小到2.7L 时,氨氮容积负荷大于1.19 kg/(m3·d),平均出水SS 为14.2 mg/L。这是由于SS 的去除主要依赖于填料的过滤截留作用[30],填料高度越高截留效果越好。

准,建议氨氮容积负荷维持在0.74 kg/(m3·d)以下。

3 结 论

1)方式1期间,氨氮去除率随着水力负荷的增加呈现先缓慢降低后急剧降低的趋势,出水SS 随水力负荷的增加而增加。当氨氮容积负荷小于0.8 kg/(m3·d)时,出水氨氮质量浓度小于5 mg/L,出水SS 小于10 mg/L。

2)方式2期间,氨氮去除率随有效容积的减小先缓慢降低后急剧降低,出水SS 随着有效容积减小而逐渐增加。氨氮容积负荷小于0.74 kg/(m3·d)时,能够保证曝气生物滤池良好的硝化性能,满足国家一级A 排放标准。

3)2种运行方式调整氨氮容积负荷,对BAF 硝化效率的影响不大,但出水SS 对水力负荷的变化更敏感。氨氮容积负荷增加到1.21 kg/(m3·d)时,方式2的平均出水SS 为14.2 mg/L,方式1的出水SS 为21.8 mg/L,甚至大于进水SS (18.1 mg/L)。

[参 考 文 献]

Dubber D, Gray N F. The effect of anoxia and anaerobia on ciliate community in biological nutrient removal systems using Laboratoryscale sequencing batch reactors (SBRs)[J]. Water Research, 2011, 45(6): 2213-2226. 张文艺,姚立荣,王立岩,等. 植物浮岛湿地处理太湖流域农村生活污水效果[J]. 农业工程学报,2010,26(8):279-284.

Zhang Wenyi, Yao Lirong, Wang Liyan, et al. Effects of rural domestic sewage treatment in Taihu Lake Valley by wetland of plant floating island[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(8): 279-284. (in Chinese with English abstract)

龚灵潇,彭永臻,杨庆,等. 不同载体填充率下一体化A/O生物膜反应器的启动特性[J]. 中南大学学报:自然科学版,2013,44(3):1275-1282.

Gong Lingxiao, Peng Yongzhen, Yang Qing, et al. Start-up characteristics of integrated A/O biofilm reactor with different carrier packing rates[J]. Journal of Central South University: Science and Technology, 2013, 44(3): 1275-1282. (in Chinese with English abstract) 夏邦寿,胡启春,宋立. 村镇生活污水净化沼气池设计图例技术分析[J]. 农业工程学报,2008,24(11):197-201. Xia Bangshou, Hu Qichun, Song Li. Technical analysis of designs of biogas digesters for treating domesticsewage from ruralareas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(11): 197-201. (in Chinese with English abstract)

段增强,段婧婧,耿晨光,等. 园林地慢速渗滤系统处理农村分散式生活污水[J]. 农业工程学报,2012,28(23):192-199.

Duan Zengqiang, Duan Jingjing, Geng Chenguang, et al. Garden slow percolation system for processing rural distributed wastewater[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the

注:方式2即通过调整有效容积来改变氨氮容积负荷;B1,B2,B3…B9为BAF 的9个采样口。

Notes: Mode 2 was a way that change the ammonium volumetric loading by adjusting effective volume; B1,B2,B3…B9 were sampling points of BAF.

图5 方式2期间出水SS 随时间的变化规律 Fig.5 Effluent SS evolution with time during mode 2

[1]

2.3 2种运行方式对比

对比图2b 和图4b 可知,2种运行方式调整氨氮容积负荷时,对BAF 硝化效率的影响区别不大。随着氨氮容积负荷的增加,氨氮去除率均呈现先缓慢降低后急剧减小的趋势。当氨氮容积负荷小于

2种运行方式的平均NH 4+-N 去除1.12 kg/(m3·d)时,

率均大于81%;当氨氮容积负荷大于1.12 kg/(m3·d)时,两种运行方式的平均NH 4+-N 去除率急剧降低,氨氮容积负荷增加到1.2 kg/(m3·d)时,方式1和方式2的NH 4+-N 去除率分别65%和68%。

对比图3和图5可知,出水SS 对方式1更敏感。当氨氮容积负荷小于0.74 kg/(m3·d)时,2种运行方式的出水SS 均小于10 mg/L;当氨氮容积负荷大于0.74 kg/(m3·d)时,方式1和方式2的出水SS 均急剧增加,但方式1增加的更快,氨氮容积负荷

方式1和方式2的出水SS 增加到1.21 kg/(m3·d)时,

分别为21.8和14.2 mg/L。这说明水力冲击对出水SS 的影响很大。

运行方式1时,要使出水水质达到国家一级A 标准(氨氮小5 mg/L,SS 小于10 mg/L),氨氮容积负荷应该小于0.8 kg/(m3·d)(水力负荷小于2.55 m3/(m2·h));运行方式2时,要使出水达标,氨氮容积负荷应该小于0.74 kg/(m3·d)。因此,在实际运行过程中,为保证出水水质达到国家一级A 标

[2]

[3]

[4]

[5]

第21期 刘青松等:双污泥反硝化除磷系统中氨氮容积负荷的优化 CSAE), 2012, 28(23): 192-199. (in Chinese with English abstract)

Xu Defu, Xu Jianming, Wu Jianjun, et al. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems[J]. Chemosphere, 2006, 63(2): 344-352.

Wu Shubiao, Austin D, Liu Lin, et al. Performance of integrated household constructed wetland for domestic wastewater treatment in rural areas[J]. Ecological Engineering, 2011, 37(6): 948-954.

Wang Jianhua, Peng Yongzhen, Chen Yongzhi. Advanced nitrogen and phosphorus removal in A2O-BAF system treating low carbon-to-nitrogen ratio domestic wastewater[J]. Frontiers of Environmental Science and Engineering, 2011, 5(3): 474-480.

王建华,陈永志,彭永臻. 低碳氮比实际生活污水A 2O-BAF 工艺低温脱氮除磷[J]. 中国环境科学,2010,30(9):1195-1200.

Wang Jianhua, Chen Yongzhi, Peng Yongzhen. Biological nutrients removal from domestic wastewater with low carbon-to-nitrogen ratio in A2O-BAF system at low temperature[J]. China Environmental Science, 2010, 30(9): 1195-1200. (in Chinese with English abstract) 陈永志,彭永臻,王建华,等. 内循环对A 2/O-曝气生物滤池工艺脱氮除磷特性影响[J]. 环境科学,2011,32(1):193-198.

Chen, Yongzhi, Peng Yongzhen, Wang Jianhua, et al. Effect of internal recycle ratio on nitrogen and phosphorus removal characteristics in A2/O-BAF Process[J]. Environmental Science, 2011, 32(1): 193-198. (in Chinese with English abstract)

吴迪,高贤彪,李玉华,等. 两级回流生物膜工艺处理农村生活污水效果[J]. 农业工程学报,2013,29(1):218-224.

Wu Di, Gao Xianbiao, Li Yuhua, et al. Treatment effect of rural domestic sewage in rural area using biofilm with two-stage reflux[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(1): 218-224. (in Chinese with English abstract)

刘晓璐,牛宏斌,闫海,等. 农村生活污水生态处理工艺研究与应用[J]. 农业工程学报,2013,29(9):184-191. Liu Xiaolu, Niu Hongbin, Yan Hai, et al. Research and application of high-efficiency eco-engineering rural sewage treatment system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(9): 184-191. (in Chinese with English abstract)

Ye Fenxia, Li Ying. Enhancement of nitrogen removal in towery hybrid constructed wetland to treat domestic wastewater for small rural communities[J]. Ecological Engineering, 2009, 35(7): 1043-1050.

Qiu Liping, Zhang Shoubin, Wang Guangwei, et al. Performances and nitrification properties of biological aerated filters with zeolite, ceramic particle and carbonate media[J]. Bioresource Technology, 2010, 101(19): 7245-7251.

Gilmore K R, Husovitz K J, Holst T, et al. Influence of organic and ammonia loading on nitrifier activity and nitrification performance for a two-stage biological aerated filter system[J]. Water Science and Technology, 1999, 39(7): 227-234.

郭俊元,杨春平,曾龙云,等. 回流比水力负荷对前置反硝化生物滤池工艺处理污水的影响研究[J]. 环境科学学报,2010,30(8):1615-1621.

199

[6]

[17]

[7]

[8]

[18]

[9]

[19]

[10]

[20]

[21]

[11]

[22]

[12]

[23]

[13]

[24]

[14]

[25]

[15]

[26]

[16]

[27]

Guo Junyuan, Yang Chunping, Zeng Longyun, et al. Influence of reflux ratio and hydraulic loading on the performance of pre-denitrification BAF in wastewater treatment[J]. Acta Scientiae Circumstantiae, 2010, 30(8): 1615-1621. (in Chinese with English abstract)

Liu Fang, Zhao Chaocheng, Zhao Dongfeng, et al. Tertiary treatment of textile wastewater with combined media biological aerated filter (CMBAF) at different hydraulic loadings and dissolved oxygen concentrations[J]. Journal of Hazardous Materials, 2008, 160(1): 161-167.

高艳玲. 悬浮载体生物流化床反应器脱氮试验研究[D]. 哈尔滨:哈尔滨工业大学,2007.

Gao Yanling. Experimental Study on Nitrogen Removal in Suspended Carriers Biological Fluidized Bed Reactor[D]. Harbin: Harbin Institute of Technology, 2007. (in Chinese with English abstract)

Chen Yongzhi, Peng Chengyao, Wang Jianhua, et al. Effect of nitrate recycling ratio on simultaneous biological nutrient removal in a novel anaerobic/anoxic/oxic(A2/O)-biological aerated filter (BAF) system[J]. Bioresource Technology, 2011, 102(10): 5722-5727.

陈永志,彭永臻,王建华,等. A2/O-曝气生物滤池工艺反硝化除磷[J]. 化工学报,2011,62(3):797-804. Chen Yongzhi, Peng Yongzhen, Wang Jianhua, et al. Denitrifying phosphorus removal in A2/O-BAF process[J]. CIESC Journal, 2011, 62(3): 797-804. (in Chinese with English abstract)

李欣,彭永臻,王建华,等. A2O-BAF与A2O 工艺处理较高C/N比生活污水时的污泥沉降性对比分析[J]. 中南大学学报:自然科学版,2012,43(3):1198-1203. Li Xin, Peng Yongzhen, Wang Jianhua, et al. Comparative analysis of sludge settleability of A2O-BAF process and A2O process treating higher C/N ratio domestic sewage[J]. Journal of Central South University: Science and Technology, 2012, 43(3): 1198-1203. (in Chinese with English abstract)

翟世奎,张怀静,范德江,等. 长江口及其邻近海域悬浮物浓度和浊度的对应关系[J]. 环境科学学报,2005,25(5):693-699.

Zhai Shikui, Zhang Huaijing, Fan Dejiang, et al. Corresponding relationship between suspended matter concentration and turbidity on Changjiang Estuary and adjacent sea area[J]. Acta Scientiae Circumstantiae, 2005, 25(5): 693-699. (in Chinese with English abstract)

Holliday C P, Rasmussen T C, Miller W P.Establishing the relationship between turbidity and total suspended sediment concentration[C]// Proceedings of the 2003 Georgia Water Resources Conference. Georgia: The University of Georgia, Institute of Ecology, 2003: 23-24. Vigne E, Choubert J, Canler J, et al. The role of loading rate, backwashing, water and air velocities in an up-flow nitrifying tertiary filter[J]. Bioresource Technology, 2011, 102(2): 904-912.

Pujol R. Process improvements for upflow submerged biofilters[J]. Water Science and Technology, 2002, 32(1): 25-29.

Jian Zhengrong, Zhou Lili, Yin Cuixia. Study on municipal wastewater treatment using biological aerated filter with pre-denitrification[C]// Bioinformatics and Biomedical Engineering, (iCBBE) 2011 5th International Conference on. Wuhan, China: IEEE Computer Society, 2011: 1-4.

Fdz-Polanco F, Mendez E, Uruena M A, et al. Spatial distribution of heterotrophs and nitrifiers in a submerged

200

农业工程学报 2013年

Aerated Filter (BAF) as alternative treatment for domestic sewage. Optimization of plant performance[J]. Journal of Hazardous Materials, 2009, 171(1): 1126-1132.

[30] Lu Shaoming, Niu Xiaojun, Ren Yuanyuan, et al.

Application of downflow-upflow biological aerated filter in the pretreatment of raw water containing high ammonia nitrogen[J]. Journal of Environmental Engineering, 2011, 137(12): 1193-1198.

biofilter for nitrification[J]. Water Research, 2000, 34(16): 4081-4089.

[28] Dou Nasha, Wang Lin, Huang Xuda. Effect of operation

parameters on the performance of biological aerated filter in a full-scale wastewater treatment plant[C]// Bioinformatics and Biomedical Engineering, (iCBBE) 2011 5th International Conference on.Wuhan, China: IEEE Computer Society, 2011: 1-4.

[29] Farabegoli G, Chiavola A, Rolle E. The Biological

Optimization of ammonium volumetric loading in two-sludge

denitrifying phosphorus removal process

Liu Qingsong, Peng Yongzhen, Hou Feng, Zhang Weitang1, Liu Ye1, Wang Shuying1

(1. Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, Beijing University of Technology,

Beijing 100124, China; 2. Beijing Beihuaqingchuang Environmental Science and Technology Co., Ltd, Beijing 100124, China )

1

1※

2

Abstract: The universal features of rural domestic wastewater were small quantity, scattered distribution, and great diurnal variation, etc. So it was difficult to centralize, treat, and reuse such wastewater. However, discharging such untreated rural domestic sewage with the characteristics of comparatively high nitrogen and phosphorus concentration to the environment brought about seriously eutrophication. Therefore, it was necessary to research and develop a treatment process which has the advantages of relatively high efficiency, less land occupied, investigated savings, and also easy management and maintenance for nutrient removal from the rural sewage. On the basis of these considerations above, an enhanced denitrifying phosphorus removal system, that is, a two-sludge process integrating anaerobic/anoxic/oxic (AAO) reactor with biological aerated filter (BAF)( AAO-BAF for short), was developed to treat domestic sewage, especially the decentralized sewage in rural areas. In this innovation system, the AAO unit, consisting of nine compartments in sequence, was used mainly for the removal of organic compounds and nutrients without ammonium oxidation, while the BAF unit was mainly responsible for nitrification. The BAF unit, an important component of the two-sludge system, was 1.8m in height and 10cm in diameter, with a light-weight ceramic filled in it. Nine sampling ports were placed along the BAF, marked as B1 to B9 from bottom to top in turn. In this study, a series of experiments were carried out to research the effect of the ammonium volumetric loading on nitrifying characteristics and effluent SS of the BAF. The ammonium volumetric loading, by changing the hydraulic loading (marked as mode 1) and adjusting the effective volume of the BAF unit (marked as mode 2), was varied from 0.43 kg/(m3·d) to 1.2 kg/(m3·d). Mode 1 lasted for 90 d, during which hydraulic loading soared from 1.53 m3/(m2·h) to 4.37 m3/(m2·h). Mode 2 ran for 60 d, and during that period BAF effective volume decreased from 9.8 L to 2.7 L, while hydraulic load maintained 1.53 m3/(m2·h). Throughout the total experimental period, the sludge reflux ratio was 100% maintained, with a nitrification reflux ratio of 300%, and the air-water ratio of BAF unit was set at 3:1~4:1.The results showed that, with the increase of ammonium volumetric loading, the ammonia nitrogen removal efficiency showed a tendency of slowly decreasing first and sharply dropping later during two operating modes. Effluent SS was more sensitive to changes in mode 1 than that in mode 2, which was the most significant difference between the two operating modes. When ammonia volumetric loading varied from 0.43 kg/m3·d to 1.12 kg/(m3·d), the nitrogen removal efficiency was over 81%; and when ammonia volumetric loading increased to 1.21 kg/(m3·d), ammonia removal efficiency decreased sharply to 65% and 68%, respectively. When the ammonia volumetric loading was below 0.74 kg/(m3·d), both effluent SS were lower than 10mg/L; and when ammonia volumetric loading varied from

kg/(m3·d), effluent SS soared much more sharply during mode 1, at the ammonia 0.74 kg/(m3·d) to 1.21

mg/L respectively. These findings volumetric loading of 1.21 kg/(m3·d), effluent SS was 21.8 mg/L and 14.2

determined that, to meet the first class of A standard, namely, the standard of ammonia nitrogen concentration less than 5 mg/L, and effluent SS lower than 10 mg/L, BAF unit should be operated at the condition of ammonium volumetric loading below 0.74 kg/(m3d).

Key words: rural areas, sewage treatment, ammonia, nitrogen, two-sludge denitrifying phosphorus removal process, volumetric loading, hydraulic load

(责任编辑:张俊芳)


相关文章

  • 好氧颗粒污泥处理高盐榨菜废水除污特性研究
  • 含盐废水因其盐度会对微生物生长产生抑制作用而成为目前较难处理的工业废水之一[1].目前国内外学者采用SBR.生物接触氧化.物化生化组合等多种不同的处理工艺研究了含盐废水生物处理效能,并得出了一系列含盐废水生化处理系统的关键参数[1, 2], ...查看


  • 红薯淀粉生产废水处理方案1500吨
  • 红薯淀粉污水处理工程 设 计 方 案 江苏俪腾环保科技有限公司 2011年12月28日 目 录 第一章 概 述 .............................................................. 1 ...查看


  • 垃圾填埋场渗滤液的处理工艺介绍
  • 垃圾填埋场渗滤液的处理工艺介绍徐高平 垃圾填埋场渗滤液的处理工艺介绍 徐高平 (中冶赛迪工程技术股份有限公司,四川 重庆400013) 摘要:城市垃圾渗滤液是一种成分复杂的高浓度有机废水,若不加处理直接排放,会造成严重的环境污染.以保护环境 ...查看


  • 焦化污水处理方案
  • 100万吨/年焦碳项目 100m/h废水处理工程 3 设计方案 2005年08月22日 1. 目 录 1.目录-------------------------- 2 2.设计规范.范围及原则------------------ 4 2.1 ...查看


  • 污水综合治理小结
  • NaOH 2.主要设备 (1) 隔油沉淀池:入口设格栅,沉淀来自氨醇,尿素工段废水 中的易沉淀物质,减轻后续工序的负荷,分离出比重小于1的油状物质,用撇渣刮泥机将油与沉淀物送入污泥干化场. (2)集水池:废水隔油沉淀后,在此加NaOH 调P ...查看


  • 生物脱氮工艺发展综述
  • 生物脱氮工艺的发展 摘要:在阐述水体中氮的危害.城市污水生物脱氮机理的基础上,分析生物脱氮的常见工艺.回顾传统生物脱氮工艺的基本原理和工艺发展,针对传统生物脱氮技术在工业废水等高氮低磁废水处理的不足.介绍新型生物脱氮技术的基本理论和工艺. ...查看


  • 污水处理工艺的特点及工艺比较
  • 污水处理各种工艺优缺点对比 (2011-03-20 08:55:11) 一.A/O工艺 1.基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前 ...查看


  • 生活污水处理设施运行说明
  • 生活污水处理设施 运行说明 府谷县瑞泰煤矿 一.概况 本污水处理系统污水来源为生活污,如果直接排放会污染周边环境,因此必须对排放的污水进行处理,使处理后的排放水达标排放,处理能力5吨/小时. 根据实际情况,针对本处理工程,在处理工艺上采用曝 ...查看


  • 生物处理方法
  • 好氧处理 (1) 生物曝气过滤工艺 生物曝气过滤工艺是一生物过滤池,内设特制的微生物附着生长必需的颗粒性滤料.为达到生物氧化有机物和氨氮的目的,滤池需进行曝气.一般生物曝气过滤工艺主要用于生物处理出水的进一步硝化,去除生物处理出水中残余的氨 ...查看


热门内容