建筑物沉降与变形观测

建筑物沉降与变形观测

4-6-1 沉降观测水准点的测设

4-6-1-1 水准点的布设

建筑物的沉降观测是根据建筑物附近的水准点进行的,所以这些水准点必须坚固稳定。为了对水准点进行相互校核,防止其本身产生变化,水准点的数目应尽量不少于3个,以组成水准网。对水准点要定期进行高程检测,以保证沉降观测成果的正确性。

在布设水准点时应考虑下列因素:

1.水准点应尽量与观测点接近,其距离不应超过100m,以保证观测的精度;

2.水准点应布设在受振区域以外的安全地点,以防止受到振动的影响;

3.离开公路、铁路、地下管道和滑坡至少5m。避免埋设在低洼易积水处及松软土地带;

4.为防止水准点受到冻胀的影响,水准点的埋设深度至少要在冰冻线下0.5m。

在一般情况下,可以利用工程施工时使用的水准点,作为沉降观测的水准基点。如果由于施工场地的水准点离建筑物较远或条件不好,为了便于进行沉降观测和提高精度,可在建筑物附近另行埋设水准基点。

4-6-1-2 水准点的形式与埋设

沉降观测水准点的形式与埋设要求,一般与三、四等水准点相同,但也应根据现场的具体条件、沉降观测在时间上的要求等决定。

当观测急剧沉降的建筑物和构筑物时,若建造水准点已来不及,可在已有房屋或结构物上设置标志作为水准点,但这些房屋或结构物的沉降必须证明已经达到终止。在山区建设中,建筑物附近常有基岩,可在岩石上凿一洞,用水泥砂浆直接将金属标志嵌固于岩层之中,但岩石必须稳固。当场地为砂土或其他不利情况下,应建造深埋水准点或专用水准点。

4-6-1-3 沉降观测水准点高程的测定

沉降观测水准点的高程应根据厂区永久水准基点引测,采用II等水准测量的方法测定。往返测误差不得超过±1nmm(n为测站数),或±4L。

如果沉降观测水准点与永久水准基点的距离超过2000m,则不必引测绝对标高,而采取假设高程。

4-6-1-4 观测点的布置和要求

观测点的位置和数量,应根据基础的构造、荷重以及工程地质和水文地质的情况而定。高层建筑物应沿其周围每隔15~30m设一点,房角、纵横墙连接处以及沉降缝的两旁均应设置观测点。工业厂房的观测点可布置在基础、柱子、承重墙及厂房转角处。点的密度视厂房结构、吊车起重量及地基土质情况而定。厂房扩建时,应在连接处两侧布置观测点。大型设备基础及较大动荷载的周围、基础形式改变处及地质条件变化之处,皆容易产生沉降,必须布设适量的观测点。烟囱、水塔、高炉、油罐、炼油塔等圆形构筑物,则应在其基础的对称轴线上布设观测点。总之,观测点应设置在能表示出沉降特征的地点。

观测点布置合理,就可以全面地精确地查明沉降情况。这项工作应由设计单位或施工技术部门负责确定。如观测点的布置不便于测量时,测量人员应与设计人员协商,选择合理的布置方案。所有观测点应以1:100~1:500的比例尺绘出平面图,并加以编号,以便进行观测和记录。

对观测点的要求如下:

1.观测点本身应牢固稳定,确保点位安全,能长期保存;

2.观测点的上部必须为突出的半球形状或有明显的突出之处,与柱身或墙身保持一定的足巨离;

3.要保证在点上能垂直置尺和良好的通视条件。

4-6-1-5 观测点的形式与埋设

沉降观测点的形式和设置方法应根据工程性质和施工条件来确定或设计。

1.民用建筑沉降观测点的型式和埋设

一般民用建筑沉降观测点,大都设置在外墙勒脚处。观测点埋在墙内的部分应大于露出墙外部分的5~7倍,以便保持观测点的稳定性。一般常用的几种观测

点如下:

(1)预制墙式观测点(图4-187),它是由混凝土预制而成,其大小可做成普通粘上砖规格的1~3倍,中间嵌以角钢,角钢棱角向上,并在一端露出50mm。在砌砖墙勒脚时,将预制块砌入墙内,角钢露出端与墙面夹角为50°~60°。

图4-187 预制墙式观测点

(2)利用直径20mm的钢筋,一端弯成90°角,一端制成燕尾形埋入墙内(图4-188)。

图4-188 燕尾形观测点

(3)用长120mm的角钢,在一端焊一铆钉头,另一端埋入墙内,并以1:2水泥砂浆填实(图4-189)。

图4-189 角钢埋设观测点

2.设备基础观测点的型式及埋设

一般利用铆钉或钢筋来制作,然后将其埋入混凝土内,其型式如下:

(1)垫板式 用长60mm、直径20mm的铆钉,下焊40mm×40mm×5mm的钢板(图4-190a)。

(2)弯钩式 将长约100mm、直径20mm的铆钉一端弯成直角(图4-190b)。

(3)燕尾式 将长80~100mm、直径20mm的铆钉,在尾部中间劈开,做成夹角为30°左右的燕尾形(图4-190c)。

(4) U字式 用直径20mm、长约220mm左右的钢筋弯成+U;形,倒埋在混凝土之中(图4-190d)。

图4-190 设备基础观测点

如观测点使用期长,应埋设有保护盖的永久性观测点(图4-191a)。对于一般工程,如因施工紧张而观测点加工不及时,可用直径20~30mm的铆钉或钢筋头(上部锉成半球状)埋置于混凝土中作为观测点(图4-191b)。

图4-191 永久性观测点

在埋设观测点时应注意下列事项:

(1)铆钉或钢筋埋在混凝土中露出的部分,不宜过高或太低,高了易被碰斜撞弯;低了不易寻找,而且水准尺置在点上会与混凝土面接触,影响观测质量。

(2)观测点应垂直埋设,与基础边缘的间距不得小于50mm,埋设后将四周混凝土压实,待混凝土凝固后用红油漆编号。

(3)埋点应在基础混凝土将达到设计标高时进行。如混凝土已凝固须增设观测点时,可用钢凿在混凝土面上确定的位置凿一洞,将标志埋入,再以1:2水泥砂浆灌实。

3.柱基础及柱身观测点

柱基础沉降观测点的型式和埋设方法与设备基础相同。但是当柱子安装后进行二次灌浆时,原设置的观测点将被砂浆埋掉,因而必须在二次灌浆前,及时在柱身上设置新的观测点。

柱身观测点的型式及设置方法如下:

(1)钢筋混凝土柱 用钢凿在柱子±0标高以上10~50cm处凿洞(或在预制时留孔),将直径20mm以上的钢筋或铆钉,制成弯钩形,平向插入洞内,再以1:2水泥砂浆填实(图4-192a)。亦可采用角钢作为标志,埋设时使其与柱面成50°~60°的倾斜角(图4-192b)。

图4-192 钢筋混凝土柱观测点

(2)钢柱 将角钢的一端切成使脊背与柱面成50°~60°的倾斜角,将此端焊在钢柱上(图4-193a);或者将铆钉弯成钩形,将其一端焊在钢柱上(图4-193b)。

图4-193 钢柱观测点

(3)在柱子上设置新的观测点时应注意事项:

1)新的观测点应在柱子校正后二次灌浆前,将高程引测至新的观测点上,以保持沉降观测的连贯性;

2)新旧观测点的水平距离不应大于1.5m,以保证新旧点的观测成果的相互

联系。新旧点的高差不应大于1.5m,以免由旧点高程引测于新点时,因增加转点而产生误差;

3)观测点与柱面应有30~40mm的空隙,以便于放置水准尺;

4)在混凝土柱上埋标时,埋入柱内的长度应大于露出的部分,以保证点位的稳定。

4-6-2 建筑物的沉降观测

4-6-2-1 沉降观测的方法和一般规定

1.沉降观测的时间和次数

沉降观测的时间和次数,应根据工程性质、工程进度、地基土质情况及基础荷重增加情况等决定。

在施工期间沉降观测次数:

(1)较大荷重增加前后(如基础浇灌、回填土、安装柱子、房架、砖墙每砌筑一层楼、设备安装、设备运转、工业炉砌筑期间、烟囱每增加15m左右等),均应进行观测;

(2)如施工期间中途停工时间较长,应在停工时和复工前进行观测;

(3)当基础附近地面荷重突然增加,周围大量积水及暴雨后,或周围大量挖方等,均应观测。

工程投产后的沉降观测时间:

工程投入生产后,应连续进行观测,观测时间的间隔,可按沉降量大小及速度而定,在开始时间隔短一些,以后随着沉降速度的减慢,可逐渐延长,直到沉降稳定为止。

2.沉降观测工作的要求

沉降观测是一项较长期的系统观测工作,为了保证观测成果的正确性,应尽可能做到四定:

(1)固定人员观测和整理成果;

(2)固定使用的水准仪及水准尺;

(3)使用固定的水准点;

(4)按规定的日期、方法及路线进行观测。

3.对使用仪器的要求

对于一般精度要求的沉降观测,要求仪器的望远镜放大率不得小于24倍,气泡灵敏度不得大于15"/2mm(有符合水准器的可放宽一倍)。可以采用适合四等水准测量的水准仪。但精度要求较高的沉降观测,应采用相当于N2或N3级的精密水准仪。

4.确定沉降观测的路线并绘制观测路线图

在进行沉降观测时,因施工或生产的影响,造成通视困难,往往为寻找设置仪器的适当位置而花费时间。因此对观测点较多的建筑物、构筑物进行沉降观测前,应到现场进行规划,确定安置仪器的位置,选定若干较稳定的沉降观测点或其他固定点作为临时水准点(转点),并与永久水准点组成环路。最后,应根据选定的临时水准点、设置仪器的位置以及观测路线,绘制沉降观测路线图(图4-194),以后每次都按固定的路线观测。采用这种方法进行沉降测量,不仅避免了寻找设置仪器位置的麻烦,加快施测进度;而且由于路线固定,比任意选择观测路线可以提高沉降测量的精度。但应注意必须在测定临时水准点高程的同一天内同时观测其他沉降观测点。

图4-194 沉降观测线路

1-沉降观测水准点;2-作为临时水准点的观测点;3-观测路线;

4-沉降观测点;5-前视线;6-置仪器位置

5.沉降观测点的首次高程测定

沉降观测点首次观测的高程值是以后各次观测用以进行比较的根据,如初测精度不够或存在错误,不仅无法补测,而且会造成沉降工作中的矛盾现象,因此

必须提高初测精度。如有条件,最好采用N2或N3类型的精密水准仪进行首次高程测定。同时每个沉降观测点首次高程,应在同期进行两次观测后决定。

6.作业中应遵守的规定

(1)观测应在成像清晰、稳定时进行;

(2)仪器离前、后视水准尺的距离要用皮尺丈量,或用视距法测量,视距一般不应超过50m。前后视距应尽可能相等;

(3)前、后视观测最好用同一根水准尺;

(4)前视各点观测完毕以后,应回视后视点,最后应闭合于水准点上。 4-6-2-2 沉桩过程中的变形观测

在软土地基上建造高层建筑,多采用桩基。如果采用钢管桩、钢筋混凝土打入桩,在打桩过程中由于土体受到挤压等原因而引起地表土的位移及隆起,因而影响周围的原有建(构)筑物等。为了顺利进行打桩施工,确保周围的安全,必须对周围的建(构)筑物等进行沉降、位移、裂缝和倾斜等变形观测。

沉降观测就是测定建(构)筑物上一些点子的高程随时间和打桩数量变化的工作。

位移观测就是测定建(构)筑物的平面位置随时间和打桩数量移动的工作。 裂缝观测就是测定建筑物随时间和打桩数量产生不均匀沉降出现裂缝进行观测的工作。

倾斜观测是用测量仪器或其他专用仪器测量建筑物的倾斜度随时间和打桩数量变化的工作。

1.沉降观测水准点的测设

(1)水准点的布设沉降观测一般应利用就近的城市水准点作为基准点引测,如果就近无城市水准点时,可以自行埋设水准点。

建筑物的沉降观测是根据建筑物附近的水准点进行的,所以这些水准点必须坚固稳定。为了对水准点进行相互校核,防止其本身产生变化,水准点的数目应不少于3个,以组成水准网,对水准点要进行定期高程检测,以保证沉降观测成果的正确性。

在布设水准点时应考虑下列因素:

1)水准点应尽量与观测点接近,其距离不应超过100m,以保证观测精度。

2)水准点应布置在受震区以外的安全地点,以防止受震动的影响。

3)水准点应埋设在坚实的土层,避免埋设在低洼积水和松软土地带。

(2)水准点的形式与埋设 沉降观测水准点的形式与埋设要求,一般与三、四等水准点相同,但也应根据现场的具体条件、沉降观测在时间上的要求等决定。

(3)沉降观测水准点高程的测定 沉降观测水准点的高程应根据城市永久水准点引测,采用II等水准测量的方法测定。往返测误差不得超过±1nmm(,为测站数),或±4L(L为公里数)。

如果沉降观测水准点与永久水准点的距离超过2000m,则不必引测绝对标高,而采用假设高程。

(4)观测点的布置和要求 观测点的位置选择和数量,应根据被观测物的具体状况和技术要求决定。如民用建筑物应布置在房角、纵横墙的交接处、沉降缝的两旁,工业建筑应布置在基础、柱子、承重墙或厂房转角处,地下管线设施应布置在管线设施的上方(最好应开挖暴露,直接布置其上)。总之,观测点应布置在能表示沉降特征的地点。

观测点布置合理,就可以全面地精确地查明沉降情况。这项工作应由设计单位或施工技术部门负责确定。所有观测点应绘制1:100或1:500平面图,并注意点位编号,以便进行观测和记录。

对观测点的要求如下:

1)观测点应埋设牢固稳定,能长期保存。

2)观测点的上部应制成蘑菇形状或有明显的突出处,与墙、柱身保持一定的距离。

3)要保证在点上能垂直置尺和通视条件良好。

(5)观测点的形式与埋设沉降观测点形式和埋设应根据工程性质和施工条件来确定或设计。高层建筑在打桩过程中对周围建(构)筑物的影响,为此观测点应设在原有的建(构)筑物上,一般常用的几种观测点如下:

1)利用直径20mm的钢筋,一端弯成90°角,一端制成燕尾形埋入墙内(图4-195)。

图4-195 燕尾形观测点

2)用长120mm的角钢,在一端焊一铆钉头,另一端埋入墙内,用1:2水泥砂浆填实(图4-196)。

图4-196 角钢埋设观测点

③管线上观测点,根据具体情况而定,最好将管线开挖暴露,直接进行观测其本身的升降量,或用间接观测的方法在管线旁边埋设观测点,推算其管线的升降量(图4-197)。

图4-197 地下管线观测点

2.建(构)筑物的沉降观测

(1)沉降观测的方法和一般规定:

1)沉降观测的时间和次数,应根据高层建筑的打桩数量和深度,工程进度,地基土质情况等决定。一般由甲方召集设计、施工、监测以及管线、房管、道路等有关部门协调会决定观测时间和次数。一般规定打桩期间每天观测一次,如科

研需要,需知回弹量,那么最好每天在打桩前和打桩后进行观测。如施工期间中途停工时间较长,应在停工时和复工前进行观测。

2)沉降观测工作的要求 沉降观测是一项较长期的系统观测工作,为了保证观测成果的正确性,应尽可能做到四定:①固定人员观测和整理成果;②固定使用的水准仪及水准尺;③使用固定的水准点;④按规定的日期、方法及路线进行观测。

3)使用仪器工具的要求 高层建筑的沉降观测所用的仪器要求较高,一般都采用可测II等水准的精密水准仪和铟钢水准尺。

4)确定沉降观测线路并绘制观测路线图 进行沉降观测时,因施工或生产的影响,造成通视困难,往往为寻找设置仪器的适当位置而花费时间。因此对观测点较多的建筑物、构筑物进行沉降观测前,应到现场进行规划,确定安置仪器的位置,选定若干较稳定的沉降观测点或其他固定点作为临时水准点(转点),并与永久水准点组成环路。最后,应根据选定的水准点,设置仪器的位置以及观测路线,绘制沉降观测路线图,以后每次都按固定的路线观测。采用这种方法进行沉降测量,不仅可以避免寻找设置仪器的麻烦,加快施测进度;而且由于路线固定,比任意选择观测路线可以提高沉降测量的精度。但应注意必须在测定临时水准点高程的同一天内同时观测其他沉降观测点。

5)沉降观测点的首次高程测定 沉降观测点首次观测的高程值是以后各次观测用以比较的根据,如初测精度不够或存在错误,不仅无法补测,而且会造成沉降工作中的矛盾现象,因此必须提高初测精度。如有条件,最好采用N2或N3类型的精密水准仪进行首次测定。同时每个沉降观测点首次高程,应在同期进行两次观测后决定。

6)观测方法及作业中应遵守的规定 使用精密水准仪光学测微法后、前、前、后进行观测,观测应在成像清晰、稳定时进行,有多个前视观测点时前视各点观测完毕以后,应回测后视点,最后应闭合于水准点上。一个测站上观测限差如表4-48所示。

一个测站上观测限差 表4-48

(2)沉降观测的精度及成果整理。打桩期间的沉降观测是对施工区周围的建(构)筑物变化的观测,其精度可略低于高层建筑施工过程中的沉降观测。打桩期间一般规定沉降观测点相对于后视点高差测定的允许偏差为±1mm(即仪器在一测站观测完前视各点以后,再回测后视点,两次读数之差不得超过±1mm)。每次观测结束后,要检查记录计算是否正确,精度是否合格,并进行误差分配,然后将观测高程列入沉降观测成果表中,计算相邻两次观测之间的沉降量,并注明观测日期,为了更清楚地表示沉降与时间的相互关系,还要画出每一观测点的时间与沉降量的关系曲线图,如图4-198所示。

图4-198 沉降位移曲线图

3.位移观测

当要测定某大型建筑物和重要构筑物的水平位移时,可以根据建(构)筑物的形状和大小,布设各种形式的控制网进行水平位移观测。观测点与控制点应位于同一直线上。控制点至少须埋设三个,控制点之距离及观测点与相邻的控制点间的距离要大于30m,以保证测量的精度。当要测定建(构)筑物在某一特定方向上的位移量时,可以在垂直于待测定的方向上建立一条基准线,定期地测量观

测标志偏离基准线的距离,就可以了解建(构)筑物的水平位移情况。位移观测的控制点应设在打桩区影响之外(一般设在100m之外),打桩(特别是钢筋混凝土桩)的影响范围一般为桩长的1.5倍,如400mm×400mm×27000mm的混凝土方桩的影响范围在30~40m之间,当然它还与桩的密度,打桩的速率等有关。打桩过程中的变形观测,最好在打桩前和打桩后各测一次,也可以每天打桩后进行一次观测。观测后及时整理记录并于次日提交资料,一个阶段后除了提交观测资料外,还要绘制变形曲线图,以便及时分析原因,采取措施,防止事故的发生。

(1)视准线法 由经纬仪的视准面形成基准面的基准线法称为视准线法。视准线法又分为直接观测法、角度变化法(即小角法)和移位法(即活动觇牌法)三种。

1)直接观测法 可采用J2级经纬仪正倒镜投点的方法直接求出位移值,此种方法最简单且直接正确,为常用的方法之一,如图4-199所示。

图4-199 直接观测示意

仪器架在控制点A,正镜瞄准控制点B,投影至观测点1,用小钢皮尺直接读数;倒镜再瞄准B,投影至1再读数,取两读数的平均值,即观测点1的水平位移值。

2)小角法是利用精密经纬仪,精确测出基准线与置镜端点到观测点视线之间所夹的角度,如图4-200所示。

图4-200 小角法位移观测示意

如图4-200所示,A、B、C为控制点;M为观测点。控制点必须埋设牢固稳定的标桩,每次观测前对所使用的控制点应进行检查,以防止其变化。建(构)

筑物上的观测点标志要牢固、明显。

设第一次在A点所测之角度为β1,第二次测得之角度为β2,两次观测角度的差数

△β=β2-β1

则建筑物之位移值:



式中 δ——位移值; AM (4-70) "

AM——A点至M的距离;

ρ"=206265"。

3)激光准直法 激光准直法可分两类:第一类是激光束准直法。它是通过望远镜发射激光束,在需要准直的观测点上用光电探测器接收。由于这种方法是以可见光束代替望远镜视线,用光电探测器探测激光光斑能量中心,所以常用于施工机械导向的自动化和变形观测。第二类是波带板激光准直系统,波带板是一种特殊设计的屏,它能把一束单色相干光会聚成一个亮点。波带板激光准直系统由激光器点光源、波带板装置和光电探测器或自动数码显示器三部分组成。第二类方法的准直精度高于第一类,可达10-6~10-7以上。

(2)用前方交会法测定建筑物的水平位移 在测定大型工程建筑物(例如塔形建筑物、水工建筑物等)的水平位移时,可利用变形影响范围以外的控制点用前方交会法进行。

如图4-201所示,A、B点为相互通视的控制点,P为建筑物上的位移观测点。首先仪器架设A,后视B,前视P,测得角∠BAP的外角,α=(360°-α1),然后架设B,后视A,前视P,测得β,通过内业计算求得P点坐标。当α、β角值变化而P点坐标亦随之变化,再根据公式计算其位移量。

图4-201 前方交会示意

前方交会通用方法:

1)已知点的坐标反算

2)求待测边的方位角和边长

3)待测点的坐标计算

(4-71)

4-6-2-3 各施工阶段中的变形观测

前面介绍了打桩阶段的变形观测,下面分别介绍高层建筑其他各施工阶段的变形观测。

1.井点降水与挖土阶段的变形观测

在软土地基上建造高层建筑,采用桩基加箱基的较多,其特点是:(1)基础埋置较深,一般大多为5m,有的达10余米,视具体情况而定;(2)如地下水位较高,在基础施工时多采用井点降水法来降低地下水位,以便利开挖基础和基坑施工。由于井点降水和挖土的影响,施工地区及四周的地面会产生下沉,邻近建筑物受其影响亦同时下沉,这样就影响了邻近建筑物的正常使用。为此要在邻近建筑物上埋设变形观测点,一般要埋设沉降观测、位移观测、裂缝观测和倾斜观测点。图4-202所示为上海新锦江宾馆工程变形观测点的布置。在井点降水时,西侧民房沉降量超过了极限,达到184.2mm,裂缝宽度达到78mm,由于及时提供观测数据,为保证居民的安全让其搬迁后再继续进行井点降水及开挖。又如上海商城工程在8m深基础施工的井点降水和挖土阶段,西边民房最大的沉降量分别达到191.4mm和200.9mm,由于及时采取了加固措施才确保了居民和住宅的安全。

图4-202 新锦江宾馆变形观测点布置图

A'1、A6、A7、A11为基准点;Ai为平面位移兼沉降点;

Bi为墙上沉降点;D点为倾斜观测点

2.基础和结构施工阶段的变形观测

为了了解地基变形规律,要通过各阶段的实测沉降量与各阶段土工模拟试验所做的试验成果进行比较,以验证计算的精确度。因此,高层建筑的沉降观测应从基础施工开始一直进行观测,以便取得完整的资料。

为了确保第一性资料的正确,沉降观测点、临时点、永久点均必须牢固,不易损坏。

设备基础观测点的埋设一般利用铆钉或钢筋来制作,然后将其埋入混凝土内,其形式如4-6-1-5的埋设形式。

3.柱基础及柱身观测点

详见4-6-1-5。

4-6-2-4 建筑物全部竣工后的沉降变形观测

在高层建筑的施工过程中,由于速度较快,土层不可能立即承受到全部的荷载,随着时间的进展,沉降量也随之增加。因此,高层建筑竣工后亦需进行变形观测。从积累以往的资料来分析,竣工后第一年应每月一次,第二年每两个月一次、第三年每半年一次,第四年开始每年观测一次,直至稳定为止。但在软土层地基建造高层,虽采取了打桩,深基础等措施,沉降是不可避免的。为此,可以进行长期观测,确保建筑物的安全。如有不均匀沉降,可及时采取措施。

高层建筑中的沉降观测以II等水准精度要求。位移观测准确至毫米,读数至0.5mm。用角度观测时必须用2"级以上精度的经纬仪进行观测,能算至0.5mm为宜。

4-6-2-5 沉降观测的精度及成果整理

沉降观测的精度一般应符合下列规定:

1.连续生产设备基础和动力设备基础、高层钢筋混凝土框架结构及地基土质不均匀的重要建筑物,沉降观测点相对于后视点高差测定的允许偏差为±1mm(即仪器在每一测站观测完前视各点以后,再回视后视点,两次读数之差不得超过1mm)。

2.一般厂房、基础和构筑物,沉降观测点相对于后视点高差测定的允许偏差为±2mm。

3.每次观测结束后,要检查记录计算是否正确,精度是否合格,并进行误差分配,然后将观测高程列入沉降观测成果表中,计算相邻两次观测之间的沉降量,并注明观测日期和荷重情况。为了更清楚地表示沉降、时间、荷重之间的相互关系,还要画出每一观测点的时间与沉降量的关系曲线及时间与荷重的关系曲线,如图4-203所示。

图4-203 沉降曲线

时间与沉降量的关系曲线,系以沉降量S为纵轴,时间T为横轴,根据每次观测日期和每次下沉量按比例画出各点,然后将各点连接起来,并在曲线的一端注明观测点号。

时间与荷重的关系曲线,系以荷载的重量P为纵轴,时间T为横轴,根据每次观测日期和每次的荷载重量画出各点,然后将各点连接起来。

两种关系曲线合画在同一图上,以便能更清楚地表明每个观测点在一定时间内,所受到的荷重及沉降量。

4-6-3 沉降观测中常遇到的问题及其处理

在沉降观测工作中常遇到一些矛盾现象,并从沉降与时间关系曲线上表现出来。对于这些问题,必须分析产生的原因,予以合理的处理。兹将常见的几种现象分述如下:

4-6-3-1 曲线在首次观测后即发生回升现象

在第二次观测时即发现曲线上升,至第三次后,曲线又逐渐下降。发生此种现象,一般都是由于初测精度不高,而使观测成果存在较大误差所引起的。

在处理这种情况时,如曲线回升超过5mm,应将第一次观测成果作废,而采用第二次观测成果作为初测成果;如曲线回升在5mm之内,则可调整初测标高与第二次观测标高一致。

4-6-3-2 曲线在中间某点突然回升

发生此种现象的原因,多半是因为水准点或观测点被碰动所致;而且只有当水准点碰动后低于被碰前的标高及观测点被碰后高于被碰前的标高时,才有出现回升现象的可能。

由于水准点或观测点被碰撞,其外形必有损伤,比较容易发现。如水准点被碰动时,可改用其他水准点来继续观测。如观测点被碰后已活动,则需另行埋设新点;若碰后点位尚牢固,则可继续使用。但因为标高改变,对这个问题必须进行合理的处理,其办法是:选择结构、荷重及地质等条件都相同的邻近另一沉降观测点,取该点在同一期间内的沉降量,作为被碰观测点之沉降量。此法虽不能真正反映被碰观测点的沉降量,但如选择适当,可得到比较接近实际情况的结果。 4-6-3-3 曲线自某点起渐渐回升

产生此种现象一般是由于水准点下沉所致,如采用设置于建筑物上的水准点,由于建筑物尚未稳定而下沉;或者新埋设的水准点,由于埋设地点不当,时间不长,以致发生下沉现象。水准点是逐渐下沉的,而且沉降量较小,但建筑物初期沉降量较大,即当建筑物沉降量大于水准点沉降量时,曲线不发生回升。到了后期,建筑物下沉逐渐稳定,如水准点继续下沉,则曲线就会发生逐渐回升现象。

因此在选择或埋设水准点时,特别是在建筑物上设置水准点时,应保证其点位的稳定性。如已查明确系水准点下沉而使曲线渐渐回升,则应测出水准点的下沉量,以便修正观测点的标高。

4-6-3-4 曲线的波浪起伏现象

曲线在后期呈现波浪起伏现象,此种现象在沉降观测中最常遇到。其原因并非建筑物下沉所致,而是测量误差所造成的。曲线在前期波浪起伏所以不突出,是因下沉量大于测量误差之故;但到后期,由于建筑物下沉极微或已接近稳定,因此在曲线上就出现测量误差比较突出的现象。

处理这种现象时,应根据整个情况进行分析,决定自某点起,将波浪形曲线改成为水平线。

4-6-3-5 曲线中断现象

由于沉降观测点开始是埋设在柱基础面上进行观测,在柱基础二次灌浆时没有埋设新点并进行观测;或者由于观测点被碰毁,后来设置之观测点绝对标高不一致,而使曲线中断。

为了将中断曲线连接起来,可按照处理曲线在中间某点突然回升现象的办法,估求出未作观测期间的沉降量;并将新设置的沉降点不计其绝对标高,而取其沉降量,一并加在旧沉降点的累计沉降量中去(图4-204)。

图4-204 沉降曲线中断示意

4-6-4 建筑物变形与裂缝观测

4-6-4-1 倾斜观测

在进行观测之前,首先要在进行倾斜观测的建筑物上设置上、下两点或上、中、下三点标志,作为观测点,各点应位于同一垂直视准面内。如图4-205所示,M、N为观测点。如果建筑物发生倾斜,MN将由垂直线变为倾斜线。观测时,经纬仪的位置距离建筑物应大于建筑物的高度,瞄准上部观测点M,用正倒镜法

建筑物沉降与变形观测

4-6-1 沉降观测水准点的测设

4-6-1-1 水准点的布设

建筑物的沉降观测是根据建筑物附近的水准点进行的,所以这些水准点必须坚固稳定。为了对水准点进行相互校核,防止其本身产生变化,水准点的数目应尽量不少于3个,以组成水准网。对水准点要定期进行高程检测,以保证沉降观测成果的正确性。

在布设水准点时应考虑下列因素:

1.水准点应尽量与观测点接近,其距离不应超过100m,以保证观测的精度;

2.水准点应布设在受振区域以外的安全地点,以防止受到振动的影响;

3.离开公路、铁路、地下管道和滑坡至少5m。避免埋设在低洼易积水处及松软土地带;

4.为防止水准点受到冻胀的影响,水准点的埋设深度至少要在冰冻线下0.5m。

在一般情况下,可以利用工程施工时使用的水准点,作为沉降观测的水准基点。如果由于施工场地的水准点离建筑物较远或条件不好,为了便于进行沉降观测和提高精度,可在建筑物附近另行埋设水准基点。

4-6-1-2 水准点的形式与埋设

沉降观测水准点的形式与埋设要求,一般与三、四等水准点相同,但也应根据现场的具体条件、沉降观测在时间上的要求等决定。

当观测急剧沉降的建筑物和构筑物时,若建造水准点已来不及,可在已有房屋或结构物上设置标志作为水准点,但这些房屋或结构物的沉降必须证明已经达到终止。在山区建设中,建筑物附近常有基岩,可在岩石上凿一洞,用水泥砂浆直接将金属标志嵌固于岩层之中,但岩石必须稳固。当场地为砂土或其他不利情况下,应建造深埋水准点或专用水准点。

4-6-1-3 沉降观测水准点高程的测定

沉降观测水准点的高程应根据厂区永久水准基点引测,采用II等水准测量的方法测定。往返测误差不得超过±1nmm(n为测站数),或±4L。

如果沉降观测水准点与永久水准基点的距离超过2000m,则不必引测绝对标高,而采取假设高程。

4-6-1-4 观测点的布置和要求

观测点的位置和数量,应根据基础的构造、荷重以及工程地质和水文地质的情况而定。高层建筑物应沿其周围每隔15~30m设一点,房角、纵横墙连接处以及沉降缝的两旁均应设置观测点。工业厂房的观测点可布置在基础、柱子、承重墙及厂房转角处。点的密度视厂房结构、吊车起重量及地基土质情况而定。厂房扩建时,应在连接处两侧布置观测点。大型设备基础及较大动荷载的周围、基础形式改变处及地质条件变化之处,皆容易产生沉降,必须布设适量的观测点。烟囱、水塔、高炉、油罐、炼油塔等圆形构筑物,则应在其基础的对称轴线上布设观测点。总之,观测点应设置在能表示出沉降特征的地点。

观测点布置合理,就可以全面地精确地查明沉降情况。这项工作应由设计单位或施工技术部门负责确定。如观测点的布置不便于测量时,测量人员应与设计人员协商,选择合理的布置方案。所有观测点应以1:100~1:500的比例尺绘出平面图,并加以编号,以便进行观测和记录。

对观测点的要求如下:

1.观测点本身应牢固稳定,确保点位安全,能长期保存;

2.观测点的上部必须为突出的半球形状或有明显的突出之处,与柱身或墙身保持一定的足巨离;

3.要保证在点上能垂直置尺和良好的通视条件。

4-6-1-5 观测点的形式与埋设

沉降观测点的形式和设置方法应根据工程性质和施工条件来确定或设计。

1.民用建筑沉降观测点的型式和埋设

一般民用建筑沉降观测点,大都设置在外墙勒脚处。观测点埋在墙内的部分应大于露出墙外部分的5~7倍,以便保持观测点的稳定性。一般常用的几种观测

点如下:

(1)预制墙式观测点(图4-187),它是由混凝土预制而成,其大小可做成普通粘上砖规格的1~3倍,中间嵌以角钢,角钢棱角向上,并在一端露出50mm。在砌砖墙勒脚时,将预制块砌入墙内,角钢露出端与墙面夹角为50°~60°。

图4-187 预制墙式观测点

(2)利用直径20mm的钢筋,一端弯成90°角,一端制成燕尾形埋入墙内(图4-188)。

图4-188 燕尾形观测点

(3)用长120mm的角钢,在一端焊一铆钉头,另一端埋入墙内,并以1:2水泥砂浆填实(图4-189)。

图4-189 角钢埋设观测点

2.设备基础观测点的型式及埋设

一般利用铆钉或钢筋来制作,然后将其埋入混凝土内,其型式如下:

(1)垫板式 用长60mm、直径20mm的铆钉,下焊40mm×40mm×5mm的钢板(图4-190a)。

(2)弯钩式 将长约100mm、直径20mm的铆钉一端弯成直角(图4-190b)。

(3)燕尾式 将长80~100mm、直径20mm的铆钉,在尾部中间劈开,做成夹角为30°左右的燕尾形(图4-190c)。

(4) U字式 用直径20mm、长约220mm左右的钢筋弯成+U;形,倒埋在混凝土之中(图4-190d)。

图4-190 设备基础观测点

如观测点使用期长,应埋设有保护盖的永久性观测点(图4-191a)。对于一般工程,如因施工紧张而观测点加工不及时,可用直径20~30mm的铆钉或钢筋头(上部锉成半球状)埋置于混凝土中作为观测点(图4-191b)。

图4-191 永久性观测点

在埋设观测点时应注意下列事项:

(1)铆钉或钢筋埋在混凝土中露出的部分,不宜过高或太低,高了易被碰斜撞弯;低了不易寻找,而且水准尺置在点上会与混凝土面接触,影响观测质量。

(2)观测点应垂直埋设,与基础边缘的间距不得小于50mm,埋设后将四周混凝土压实,待混凝土凝固后用红油漆编号。

(3)埋点应在基础混凝土将达到设计标高时进行。如混凝土已凝固须增设观测点时,可用钢凿在混凝土面上确定的位置凿一洞,将标志埋入,再以1:2水泥砂浆灌实。

3.柱基础及柱身观测点

柱基础沉降观测点的型式和埋设方法与设备基础相同。但是当柱子安装后进行二次灌浆时,原设置的观测点将被砂浆埋掉,因而必须在二次灌浆前,及时在柱身上设置新的观测点。

柱身观测点的型式及设置方法如下:

(1)钢筋混凝土柱 用钢凿在柱子±0标高以上10~50cm处凿洞(或在预制时留孔),将直径20mm以上的钢筋或铆钉,制成弯钩形,平向插入洞内,再以1:2水泥砂浆填实(图4-192a)。亦可采用角钢作为标志,埋设时使其与柱面成50°~60°的倾斜角(图4-192b)。

图4-192 钢筋混凝土柱观测点

(2)钢柱 将角钢的一端切成使脊背与柱面成50°~60°的倾斜角,将此端焊在钢柱上(图4-193a);或者将铆钉弯成钩形,将其一端焊在钢柱上(图4-193b)。

图4-193 钢柱观测点

(3)在柱子上设置新的观测点时应注意事项:

1)新的观测点应在柱子校正后二次灌浆前,将高程引测至新的观测点上,以保持沉降观测的连贯性;

2)新旧观测点的水平距离不应大于1.5m,以保证新旧点的观测成果的相互

联系。新旧点的高差不应大于1.5m,以免由旧点高程引测于新点时,因增加转点而产生误差;

3)观测点与柱面应有30~40mm的空隙,以便于放置水准尺;

4)在混凝土柱上埋标时,埋入柱内的长度应大于露出的部分,以保证点位的稳定。

4-6-2 建筑物的沉降观测

4-6-2-1 沉降观测的方法和一般规定

1.沉降观测的时间和次数

沉降观测的时间和次数,应根据工程性质、工程进度、地基土质情况及基础荷重增加情况等决定。

在施工期间沉降观测次数:

(1)较大荷重增加前后(如基础浇灌、回填土、安装柱子、房架、砖墙每砌筑一层楼、设备安装、设备运转、工业炉砌筑期间、烟囱每增加15m左右等),均应进行观测;

(2)如施工期间中途停工时间较长,应在停工时和复工前进行观测;

(3)当基础附近地面荷重突然增加,周围大量积水及暴雨后,或周围大量挖方等,均应观测。

工程投产后的沉降观测时间:

工程投入生产后,应连续进行观测,观测时间的间隔,可按沉降量大小及速度而定,在开始时间隔短一些,以后随着沉降速度的减慢,可逐渐延长,直到沉降稳定为止。

2.沉降观测工作的要求

沉降观测是一项较长期的系统观测工作,为了保证观测成果的正确性,应尽可能做到四定:

(1)固定人员观测和整理成果;

(2)固定使用的水准仪及水准尺;

(3)使用固定的水准点;

(4)按规定的日期、方法及路线进行观测。

3.对使用仪器的要求

对于一般精度要求的沉降观测,要求仪器的望远镜放大率不得小于24倍,气泡灵敏度不得大于15"/2mm(有符合水准器的可放宽一倍)。可以采用适合四等水准测量的水准仪。但精度要求较高的沉降观测,应采用相当于N2或N3级的精密水准仪。

4.确定沉降观测的路线并绘制观测路线图

在进行沉降观测时,因施工或生产的影响,造成通视困难,往往为寻找设置仪器的适当位置而花费时间。因此对观测点较多的建筑物、构筑物进行沉降观测前,应到现场进行规划,确定安置仪器的位置,选定若干较稳定的沉降观测点或其他固定点作为临时水准点(转点),并与永久水准点组成环路。最后,应根据选定的临时水准点、设置仪器的位置以及观测路线,绘制沉降观测路线图(图4-194),以后每次都按固定的路线观测。采用这种方法进行沉降测量,不仅避免了寻找设置仪器位置的麻烦,加快施测进度;而且由于路线固定,比任意选择观测路线可以提高沉降测量的精度。但应注意必须在测定临时水准点高程的同一天内同时观测其他沉降观测点。

图4-194 沉降观测线路

1-沉降观测水准点;2-作为临时水准点的观测点;3-观测路线;

4-沉降观测点;5-前视线;6-置仪器位置

5.沉降观测点的首次高程测定

沉降观测点首次观测的高程值是以后各次观测用以进行比较的根据,如初测精度不够或存在错误,不仅无法补测,而且会造成沉降工作中的矛盾现象,因此

必须提高初测精度。如有条件,最好采用N2或N3类型的精密水准仪进行首次高程测定。同时每个沉降观测点首次高程,应在同期进行两次观测后决定。

6.作业中应遵守的规定

(1)观测应在成像清晰、稳定时进行;

(2)仪器离前、后视水准尺的距离要用皮尺丈量,或用视距法测量,视距一般不应超过50m。前后视距应尽可能相等;

(3)前、后视观测最好用同一根水准尺;

(4)前视各点观测完毕以后,应回视后视点,最后应闭合于水准点上。 4-6-2-2 沉桩过程中的变形观测

在软土地基上建造高层建筑,多采用桩基。如果采用钢管桩、钢筋混凝土打入桩,在打桩过程中由于土体受到挤压等原因而引起地表土的位移及隆起,因而影响周围的原有建(构)筑物等。为了顺利进行打桩施工,确保周围的安全,必须对周围的建(构)筑物等进行沉降、位移、裂缝和倾斜等变形观测。

沉降观测就是测定建(构)筑物上一些点子的高程随时间和打桩数量变化的工作。

位移观测就是测定建(构)筑物的平面位置随时间和打桩数量移动的工作。 裂缝观测就是测定建筑物随时间和打桩数量产生不均匀沉降出现裂缝进行观测的工作。

倾斜观测是用测量仪器或其他专用仪器测量建筑物的倾斜度随时间和打桩数量变化的工作。

1.沉降观测水准点的测设

(1)水准点的布设沉降观测一般应利用就近的城市水准点作为基准点引测,如果就近无城市水准点时,可以自行埋设水准点。

建筑物的沉降观测是根据建筑物附近的水准点进行的,所以这些水准点必须坚固稳定。为了对水准点进行相互校核,防止其本身产生变化,水准点的数目应不少于3个,以组成水准网,对水准点要进行定期高程检测,以保证沉降观测成果的正确性。

在布设水准点时应考虑下列因素:

1)水准点应尽量与观测点接近,其距离不应超过100m,以保证观测精度。

2)水准点应布置在受震区以外的安全地点,以防止受震动的影响。

3)水准点应埋设在坚实的土层,避免埋设在低洼积水和松软土地带。

(2)水准点的形式与埋设 沉降观测水准点的形式与埋设要求,一般与三、四等水准点相同,但也应根据现场的具体条件、沉降观测在时间上的要求等决定。

(3)沉降观测水准点高程的测定 沉降观测水准点的高程应根据城市永久水准点引测,采用II等水准测量的方法测定。往返测误差不得超过±1nmm(,为测站数),或±4L(L为公里数)。

如果沉降观测水准点与永久水准点的距离超过2000m,则不必引测绝对标高,而采用假设高程。

(4)观测点的布置和要求 观测点的位置选择和数量,应根据被观测物的具体状况和技术要求决定。如民用建筑物应布置在房角、纵横墙的交接处、沉降缝的两旁,工业建筑应布置在基础、柱子、承重墙或厂房转角处,地下管线设施应布置在管线设施的上方(最好应开挖暴露,直接布置其上)。总之,观测点应布置在能表示沉降特征的地点。

观测点布置合理,就可以全面地精确地查明沉降情况。这项工作应由设计单位或施工技术部门负责确定。所有观测点应绘制1:100或1:500平面图,并注意点位编号,以便进行观测和记录。

对观测点的要求如下:

1)观测点应埋设牢固稳定,能长期保存。

2)观测点的上部应制成蘑菇形状或有明显的突出处,与墙、柱身保持一定的距离。

3)要保证在点上能垂直置尺和通视条件良好。

(5)观测点的形式与埋设沉降观测点形式和埋设应根据工程性质和施工条件来确定或设计。高层建筑在打桩过程中对周围建(构)筑物的影响,为此观测点应设在原有的建(构)筑物上,一般常用的几种观测点如下:

1)利用直径20mm的钢筋,一端弯成90°角,一端制成燕尾形埋入墙内(图4-195)。

图4-195 燕尾形观测点

2)用长120mm的角钢,在一端焊一铆钉头,另一端埋入墙内,用1:2水泥砂浆填实(图4-196)。

图4-196 角钢埋设观测点

③管线上观测点,根据具体情况而定,最好将管线开挖暴露,直接进行观测其本身的升降量,或用间接观测的方法在管线旁边埋设观测点,推算其管线的升降量(图4-197)。

图4-197 地下管线观测点

2.建(构)筑物的沉降观测

(1)沉降观测的方法和一般规定:

1)沉降观测的时间和次数,应根据高层建筑的打桩数量和深度,工程进度,地基土质情况等决定。一般由甲方召集设计、施工、监测以及管线、房管、道路等有关部门协调会决定观测时间和次数。一般规定打桩期间每天观测一次,如科

研需要,需知回弹量,那么最好每天在打桩前和打桩后进行观测。如施工期间中途停工时间较长,应在停工时和复工前进行观测。

2)沉降观测工作的要求 沉降观测是一项较长期的系统观测工作,为了保证观测成果的正确性,应尽可能做到四定:①固定人员观测和整理成果;②固定使用的水准仪及水准尺;③使用固定的水准点;④按规定的日期、方法及路线进行观测。

3)使用仪器工具的要求 高层建筑的沉降观测所用的仪器要求较高,一般都采用可测II等水准的精密水准仪和铟钢水准尺。

4)确定沉降观测线路并绘制观测路线图 进行沉降观测时,因施工或生产的影响,造成通视困难,往往为寻找设置仪器的适当位置而花费时间。因此对观测点较多的建筑物、构筑物进行沉降观测前,应到现场进行规划,确定安置仪器的位置,选定若干较稳定的沉降观测点或其他固定点作为临时水准点(转点),并与永久水准点组成环路。最后,应根据选定的水准点,设置仪器的位置以及观测路线,绘制沉降观测路线图,以后每次都按固定的路线观测。采用这种方法进行沉降测量,不仅可以避免寻找设置仪器的麻烦,加快施测进度;而且由于路线固定,比任意选择观测路线可以提高沉降测量的精度。但应注意必须在测定临时水准点高程的同一天内同时观测其他沉降观测点。

5)沉降观测点的首次高程测定 沉降观测点首次观测的高程值是以后各次观测用以比较的根据,如初测精度不够或存在错误,不仅无法补测,而且会造成沉降工作中的矛盾现象,因此必须提高初测精度。如有条件,最好采用N2或N3类型的精密水准仪进行首次测定。同时每个沉降观测点首次高程,应在同期进行两次观测后决定。

6)观测方法及作业中应遵守的规定 使用精密水准仪光学测微法后、前、前、后进行观测,观测应在成像清晰、稳定时进行,有多个前视观测点时前视各点观测完毕以后,应回测后视点,最后应闭合于水准点上。一个测站上观测限差如表4-48所示。

一个测站上观测限差 表4-48

(2)沉降观测的精度及成果整理。打桩期间的沉降观测是对施工区周围的建(构)筑物变化的观测,其精度可略低于高层建筑施工过程中的沉降观测。打桩期间一般规定沉降观测点相对于后视点高差测定的允许偏差为±1mm(即仪器在一测站观测完前视各点以后,再回测后视点,两次读数之差不得超过±1mm)。每次观测结束后,要检查记录计算是否正确,精度是否合格,并进行误差分配,然后将观测高程列入沉降观测成果表中,计算相邻两次观测之间的沉降量,并注明观测日期,为了更清楚地表示沉降与时间的相互关系,还要画出每一观测点的时间与沉降量的关系曲线图,如图4-198所示。

图4-198 沉降位移曲线图

3.位移观测

当要测定某大型建筑物和重要构筑物的水平位移时,可以根据建(构)筑物的形状和大小,布设各种形式的控制网进行水平位移观测。观测点与控制点应位于同一直线上。控制点至少须埋设三个,控制点之距离及观测点与相邻的控制点间的距离要大于30m,以保证测量的精度。当要测定建(构)筑物在某一特定方向上的位移量时,可以在垂直于待测定的方向上建立一条基准线,定期地测量观

测标志偏离基准线的距离,就可以了解建(构)筑物的水平位移情况。位移观测的控制点应设在打桩区影响之外(一般设在100m之外),打桩(特别是钢筋混凝土桩)的影响范围一般为桩长的1.5倍,如400mm×400mm×27000mm的混凝土方桩的影响范围在30~40m之间,当然它还与桩的密度,打桩的速率等有关。打桩过程中的变形观测,最好在打桩前和打桩后各测一次,也可以每天打桩后进行一次观测。观测后及时整理记录并于次日提交资料,一个阶段后除了提交观测资料外,还要绘制变形曲线图,以便及时分析原因,采取措施,防止事故的发生。

(1)视准线法 由经纬仪的视准面形成基准面的基准线法称为视准线法。视准线法又分为直接观测法、角度变化法(即小角法)和移位法(即活动觇牌法)三种。

1)直接观测法 可采用J2级经纬仪正倒镜投点的方法直接求出位移值,此种方法最简单且直接正确,为常用的方法之一,如图4-199所示。

图4-199 直接观测示意

仪器架在控制点A,正镜瞄准控制点B,投影至观测点1,用小钢皮尺直接读数;倒镜再瞄准B,投影至1再读数,取两读数的平均值,即观测点1的水平位移值。

2)小角法是利用精密经纬仪,精确测出基准线与置镜端点到观测点视线之间所夹的角度,如图4-200所示。

图4-200 小角法位移观测示意

如图4-200所示,A、B、C为控制点;M为观测点。控制点必须埋设牢固稳定的标桩,每次观测前对所使用的控制点应进行检查,以防止其变化。建(构)

筑物上的观测点标志要牢固、明显。

设第一次在A点所测之角度为β1,第二次测得之角度为β2,两次观测角度的差数

△β=β2-β1

则建筑物之位移值:



式中 δ——位移值; AM (4-70) "

AM——A点至M的距离;

ρ"=206265"。

3)激光准直法 激光准直法可分两类:第一类是激光束准直法。它是通过望远镜发射激光束,在需要准直的观测点上用光电探测器接收。由于这种方法是以可见光束代替望远镜视线,用光电探测器探测激光光斑能量中心,所以常用于施工机械导向的自动化和变形观测。第二类是波带板激光准直系统,波带板是一种特殊设计的屏,它能把一束单色相干光会聚成一个亮点。波带板激光准直系统由激光器点光源、波带板装置和光电探测器或自动数码显示器三部分组成。第二类方法的准直精度高于第一类,可达10-6~10-7以上。

(2)用前方交会法测定建筑物的水平位移 在测定大型工程建筑物(例如塔形建筑物、水工建筑物等)的水平位移时,可利用变形影响范围以外的控制点用前方交会法进行。

如图4-201所示,A、B点为相互通视的控制点,P为建筑物上的位移观测点。首先仪器架设A,后视B,前视P,测得角∠BAP的外角,α=(360°-α1),然后架设B,后视A,前视P,测得β,通过内业计算求得P点坐标。当α、β角值变化而P点坐标亦随之变化,再根据公式计算其位移量。

图4-201 前方交会示意

前方交会通用方法:

1)已知点的坐标反算

2)求待测边的方位角和边长

3)待测点的坐标计算

(4-71)

4-6-2-3 各施工阶段中的变形观测

前面介绍了打桩阶段的变形观测,下面分别介绍高层建筑其他各施工阶段的变形观测。

1.井点降水与挖土阶段的变形观测

在软土地基上建造高层建筑,采用桩基加箱基的较多,其特点是:(1)基础埋置较深,一般大多为5m,有的达10余米,视具体情况而定;(2)如地下水位较高,在基础施工时多采用井点降水法来降低地下水位,以便利开挖基础和基坑施工。由于井点降水和挖土的影响,施工地区及四周的地面会产生下沉,邻近建筑物受其影响亦同时下沉,这样就影响了邻近建筑物的正常使用。为此要在邻近建筑物上埋设变形观测点,一般要埋设沉降观测、位移观测、裂缝观测和倾斜观测点。图4-202所示为上海新锦江宾馆工程变形观测点的布置。在井点降水时,西侧民房沉降量超过了极限,达到184.2mm,裂缝宽度达到78mm,由于及时提供观测数据,为保证居民的安全让其搬迁后再继续进行井点降水及开挖。又如上海商城工程在8m深基础施工的井点降水和挖土阶段,西边民房最大的沉降量分别达到191.4mm和200.9mm,由于及时采取了加固措施才确保了居民和住宅的安全。

图4-202 新锦江宾馆变形观测点布置图

A'1、A6、A7、A11为基准点;Ai为平面位移兼沉降点;

Bi为墙上沉降点;D点为倾斜观测点

2.基础和结构施工阶段的变形观测

为了了解地基变形规律,要通过各阶段的实测沉降量与各阶段土工模拟试验所做的试验成果进行比较,以验证计算的精确度。因此,高层建筑的沉降观测应从基础施工开始一直进行观测,以便取得完整的资料。

为了确保第一性资料的正确,沉降观测点、临时点、永久点均必须牢固,不易损坏。

设备基础观测点的埋设一般利用铆钉或钢筋来制作,然后将其埋入混凝土内,其形式如4-6-1-5的埋设形式。

3.柱基础及柱身观测点

详见4-6-1-5。

4-6-2-4 建筑物全部竣工后的沉降变形观测

在高层建筑的施工过程中,由于速度较快,土层不可能立即承受到全部的荷载,随着时间的进展,沉降量也随之增加。因此,高层建筑竣工后亦需进行变形观测。从积累以往的资料来分析,竣工后第一年应每月一次,第二年每两个月一次、第三年每半年一次,第四年开始每年观测一次,直至稳定为止。但在软土层地基建造高层,虽采取了打桩,深基础等措施,沉降是不可避免的。为此,可以进行长期观测,确保建筑物的安全。如有不均匀沉降,可及时采取措施。

高层建筑中的沉降观测以II等水准精度要求。位移观测准确至毫米,读数至0.5mm。用角度观测时必须用2"级以上精度的经纬仪进行观测,能算至0.5mm为宜。

4-6-2-5 沉降观测的精度及成果整理

沉降观测的精度一般应符合下列规定:

1.连续生产设备基础和动力设备基础、高层钢筋混凝土框架结构及地基土质不均匀的重要建筑物,沉降观测点相对于后视点高差测定的允许偏差为±1mm(即仪器在每一测站观测完前视各点以后,再回视后视点,两次读数之差不得超过1mm)。

2.一般厂房、基础和构筑物,沉降观测点相对于后视点高差测定的允许偏差为±2mm。

3.每次观测结束后,要检查记录计算是否正确,精度是否合格,并进行误差分配,然后将观测高程列入沉降观测成果表中,计算相邻两次观测之间的沉降量,并注明观测日期和荷重情况。为了更清楚地表示沉降、时间、荷重之间的相互关系,还要画出每一观测点的时间与沉降量的关系曲线及时间与荷重的关系曲线,如图4-203所示。

图4-203 沉降曲线

时间与沉降量的关系曲线,系以沉降量S为纵轴,时间T为横轴,根据每次观测日期和每次下沉量按比例画出各点,然后将各点连接起来,并在曲线的一端注明观测点号。

时间与荷重的关系曲线,系以荷载的重量P为纵轴,时间T为横轴,根据每次观测日期和每次的荷载重量画出各点,然后将各点连接起来。

两种关系曲线合画在同一图上,以便能更清楚地表明每个观测点在一定时间内,所受到的荷重及沉降量。

4-6-3 沉降观测中常遇到的问题及其处理

在沉降观测工作中常遇到一些矛盾现象,并从沉降与时间关系曲线上表现出来。对于这些问题,必须分析产生的原因,予以合理的处理。兹将常见的几种现象分述如下:

4-6-3-1 曲线在首次观测后即发生回升现象

在第二次观测时即发现曲线上升,至第三次后,曲线又逐渐下降。发生此种现象,一般都是由于初测精度不高,而使观测成果存在较大误差所引起的。

在处理这种情况时,如曲线回升超过5mm,应将第一次观测成果作废,而采用第二次观测成果作为初测成果;如曲线回升在5mm之内,则可调整初测标高与第二次观测标高一致。

4-6-3-2 曲线在中间某点突然回升

发生此种现象的原因,多半是因为水准点或观测点被碰动所致;而且只有当水准点碰动后低于被碰前的标高及观测点被碰后高于被碰前的标高时,才有出现回升现象的可能。

由于水准点或观测点被碰撞,其外形必有损伤,比较容易发现。如水准点被碰动时,可改用其他水准点来继续观测。如观测点被碰后已活动,则需另行埋设新点;若碰后点位尚牢固,则可继续使用。但因为标高改变,对这个问题必须进行合理的处理,其办法是:选择结构、荷重及地质等条件都相同的邻近另一沉降观测点,取该点在同一期间内的沉降量,作为被碰观测点之沉降量。此法虽不能真正反映被碰观测点的沉降量,但如选择适当,可得到比较接近实际情况的结果。 4-6-3-3 曲线自某点起渐渐回升

产生此种现象一般是由于水准点下沉所致,如采用设置于建筑物上的水准点,由于建筑物尚未稳定而下沉;或者新埋设的水准点,由于埋设地点不当,时间不长,以致发生下沉现象。水准点是逐渐下沉的,而且沉降量较小,但建筑物初期沉降量较大,即当建筑物沉降量大于水准点沉降量时,曲线不发生回升。到了后期,建筑物下沉逐渐稳定,如水准点继续下沉,则曲线就会发生逐渐回升现象。

因此在选择或埋设水准点时,特别是在建筑物上设置水准点时,应保证其点位的稳定性。如已查明确系水准点下沉而使曲线渐渐回升,则应测出水准点的下沉量,以便修正观测点的标高。

4-6-3-4 曲线的波浪起伏现象

曲线在后期呈现波浪起伏现象,此种现象在沉降观测中最常遇到。其原因并非建筑物下沉所致,而是测量误差所造成的。曲线在前期波浪起伏所以不突出,是因下沉量大于测量误差之故;但到后期,由于建筑物下沉极微或已接近稳定,因此在曲线上就出现测量误差比较突出的现象。

处理这种现象时,应根据整个情况进行分析,决定自某点起,将波浪形曲线改成为水平线。

4-6-3-5 曲线中断现象

由于沉降观测点开始是埋设在柱基础面上进行观测,在柱基础二次灌浆时没有埋设新点并进行观测;或者由于观测点被碰毁,后来设置之观测点绝对标高不一致,而使曲线中断。

为了将中断曲线连接起来,可按照处理曲线在中间某点突然回升现象的办法,估求出未作观测期间的沉降量;并将新设置的沉降点不计其绝对标高,而取其沉降量,一并加在旧沉降点的累计沉降量中去(图4-204)。

图4-204 沉降曲线中断示意

4-6-4 建筑物变形与裂缝观测

4-6-4-1 倾斜观测

在进行观测之前,首先要在进行倾斜观测的建筑物上设置上、下两点或上、中、下三点标志,作为观测点,各点应位于同一垂直视准面内。如图4-205所示,M、N为观测点。如果建筑物发生倾斜,MN将由垂直线变为倾斜线。观测时,经纬仪的位置距离建筑物应大于建筑物的高度,瞄准上部观测点M,用正倒镜法


相关文章

  • 大专毕业设计
  • 二 ○ 一 ○ 届 毕 业 设 计 高速铁路墩身承台沉降观测 系 部:道桥工程系 专 业:工程测量技术 姓 名:王武斌 学 号:[1**********] 指导教师:谢忠俍 完成时间:2009.12 二〇〇年一二月 毕业设计成绩评定表 注: ...查看


  • 基坑监测报告书
  • 成都市锦江区沙河一号(二期) 基坑水平位移观测及周边建筑物沉降观测 技术报告书 中节能建设工程设计院有限公司 (原中机工程勘察设计研究院) 2012年1月 成都市锦江区沙河一号(二期) 基坑水平位移观测及周边建筑物沉降观测 技术报告书 工程 ...查看


  • 沉降观测报告 1
  • 中铁新城区4号地块北区住宅小区23#楼沉降观测报告 1.工程概况 中铁新城区4号地块北区住宅小区位于徐州市新城区1#路与5#路交叉口东南侧.本次沉降观测建筑为其中的11层及18层建筑,共计26栋.按有关规范规定,建筑物施工期间应进行沉降观测 ...查看


  • 辽宁科技大学变形监测设计书
  • 辽宁科技大学 设计题目: 学 院: 土木工程学院 专业班级: 测绘2011-2班 学生姓名: 刘九阳 学 号: [1**********]1 任课教师: 宁殿民 成 绩: 目 录 一.图书馆的地理概况.................... ...查看


  • 边坡沉降观测方案
  • 一.工程概况 新密电厂二期2×1000MW机组扩建工程输煤系统建筑工程1#转运站位于二期工程西南边.结构轴线东西方向宽19.5米,南北长15米,结构为整板基础,箱式地下结构.基础底标高为-20.50米(相当于绝对标高128.10米).1#转 ...查看


  • 5#楼沉降观测方案
  • 中国农业银行新疆分行碱泉街高层住宅5#楼 沉降观测工作方案 本工程为中国农业银行新疆分行碱泉街高层住宅小区1#楼工程,位于乌鲁木齐翠泉路239号,西邻翠泉路,北侧与司法警官学校毗邻. 建筑面积:11627.48㎡,地下面积:432.84 m ...查看


  • 变形监测方案
  • 东莞市旗峰路嘉裕楼基坑支护工程 变形监测方案 一.工程概况 东莞市旗峰路嘉裕楼基坑支护工程位于莞城内,拟建六层建筑物,一层地下室,用地面积3177.76平方,现状场地较平整.基坑开挖深度为3.25~6.90米,东.南.北三面均为道路,东侧为 ...查看


  • 基坑监测方法
  • 基坑监测方法 孙凤江 (邯郸市安装工程有限责任公司 河北邯郸 056000) [摘要]深基坑工程施工过程中往往会引起支护结构内力和位移以及基坑内外土体变形发生种种意外变,通过施工监测对得到的信息进行分析,及时发现问题,为施工提供及时的反馈信 ...查看


  • 沉降.变形观测方案
  • 基坑沉降变形观测方案 一.监测意义 基坑与环境的安全与稳定,集中体现在土体的变位,边坡水平位移和沉降.随着土方开挖深度的增加,大面积降水的影响,以及静压桩施工引起土体位移,边坡周围土体会产生一些变化,如应力重新分布.渗排水后土固结等引起土体 ...查看


热门内容