1.1-2探索勾股定理

第一章 勾股定理

1. 探索勾股定理(第2课时)

一、学生起点分析

学生的知识技能基础:学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.

学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在七年级《七巧板》及《图案设计》的学习中已经具备了一定的拼图活动经验.

二、教学任务分析

本节课是八(上)勾股定理第1节第2课时,是在上节课已探索得到勾股定理之后的内容,具体学习任务:通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力 ,为后面的学习打下基础.为此本节课的教学目标是:

1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.

2.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.

3.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.

用面积法验证勾股定理,应用勾股定理解决简单的实际问题是本节课的重点.

三、教学过程

本节课设计了七个教学环节:(一)复习设疑,激趣引入;(二)小组活动,拼图验证;(三)延伸拓展,能力提升 (四) 例题讲解,初步应用;(五) 追

溯历史,激发情感;;(六) 回顾反思,提炼升华;(七) 布置作业,课堂延伸. 第一环节: 复习设疑,激趣引入

内容:教师提出问题:

(1)勾股定理的内容是什么?(请一名学生回答)

(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.

意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.

效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.

第二环节:小组活动,拼图验证.

内容: 活动1: 教师导入,小组拼图.

教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)

活动2:层层设问,完成验证一.

学生通过自主探究,小组讨论得到两个图形:

图1 图2

在此基础上教师提问:

(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);

(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×ab+c2.并得到a2b2c2)

从而利用图1验证了勾股定理.

活动3 : 自主探究,完成验证二.

教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?

(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二)

意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.

效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重点内容之一,并突破了本节课的难点. 12

第三环节 延伸拓展,能力提升

1.议一议:观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c2

2.一个直角三角形的斜边为20cm ,且两直角边长度比为3:4,求两直角

意图:在前面已经讨论了直角三角形三边满足的关系,那么锐角三角形边的长。 或钝角三角形的三边 是否也满足这一关系呢?学生通过数格子的方法可以得

出:如果一个三角形不是直角三角形,那么它的三边a,b,c不满足a2+b2=c2。通过这个结论,学生将对直角三角形三边的关系有进一步的认识,并为后续直角三角形的判别打下基础。

第四环节: 例题讲解 初步应用

内容:例题:飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?

意图:(1)初步运用勾股定理解决实际问题,培养学生应用数学的意识和能力;(2)体会勾股定理的应用价值.

效果:学生对这样的实际问题很感兴趣,基本能把实际问题转化为数学问题并顺利解决.

第五环节: 追溯历史 激发情感

活动内容:由学生利用所搜集的与勾股定理相关的资料进行介绍.

国内调查组报告:用图2验证勾股定理的方法,据载最早是三国时期数学家赵爽在为《周髀算经》作注时给出的,我国历史上将图2弦上的正方形称为弦图 .2002年的数学家大会(ICM-2002)在北京召开,这届大会会标的中央图案正是经过艺术处理的弦图,这既标志着中国古代的数学成就 ,又像一只转动的风车,欢迎来自世界各地的数学家们!

国际调查组报告:勾股定理与第一次数学危机.

约公元前500年,毕达哥拉斯学派的弟子希帕索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线的长度是不可公度的.按照毕达哥拉斯定理(勾股定理),若正方形边长是1,则对角线的长不是一个有理数,它不能表示成两个整数之比,这一事实不但与毕氏学派的哲学信念大相径庭,而且建立在任何两个线段都可以公度基础上的几何学面临被推翻的威胁,第一次数学危机由此爆发.

据说,毕达哥拉斯学派对希帕索斯的发现十分惶恐、恼怒,为了保守秘密,最后将希帕索斯投入大海.

不能表示成两个整数之比的数,15世纪意大利著名画家达.芬奇称之为“无理的数”,无理数的英文“irrational”原义就是“不可比”.第一次数学危机一直持续到19世纪实数的基础建立以后才圆满解决.我们将在下一章学习有关实数的知识 .

趣闻调查组报告:勾股定理的总统证法.

在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景„„他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使他循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形„„

于是这位中年人不再散步,立即回家,潜心探讨小男孩给他留下的难题.他经过反复的思考与

演算,终于弄清楚了其中的道理,并给出了简洁的证明方法.C a B 1876年4月1日,他在《新英格兰教育日志》上发表了他对勾股定理的这一证法.

1881年,这位中年人—伽菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法.

说明:这个环节完全由学生来组织开展,教师可在两天前布置任务,让部分同学收集勾股定理的资料,并在上课前拷贝到教师用的课件中便于展示,内容可灵活安排.

意图:(1)介绍与勾股定理有关的历史,激发学生的爱国热情;(2)学生加强了对数学史的了解,培养学习数学的兴趣;(3)通过让部分学生搜集材料,展示材料,既让学生得到充分的锻炼,同时也活跃了课堂气氛.

效果:学生热情高涨,对勾股定理的历史充满了浓厚的兴趣,同时也为中国古代数学的成就感到自豪.也有同学提出:当代中国数学成就不够强,还应发奋努力.有同学能意识这一点,这让我喜出望外.

第六环节: 回顾反思 提炼升华

内容:教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.

目的:(1)归纳出本节课的知识要点,数形结合的思想方法;(2)教师了解学生对本节课的感受并进行总结;(3)培养学生的归纳概括能力.

效果:由于这节课自始至终都注意了调动学生学习的积极性,所以学生谈的收获很多,包括利用拼图验证勾股定理中蕴含的数形结合思想,学生对勾股定理的历史的感悟及对勾股定理应用的认识等等.

第七环节: 布置作业,课堂延伸

内容:教师布置作业

1.习题1.2 1,2,3

2.上网或查阅有关书籍,搜集至少1种勾股定理的其它证法,至少1个勾股定理的应用问题,一周后进行展评.

意图:(1)巩固本节课的内容.(2)充分发挥勾股定理的育人价值.

六、教学设计反思

1.设计说明

勾股定理作为“千古第一定理”其魅力在于其历史价值和应用价值,因此我注意充分挖掘了其内涵.特别是让学生事先进行调查,再在课堂上进行展示,这极大地调动了学生,既加深了对勾股定理文化的理解,又培养了他们收集、整理资料的能力.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,我设计了拼图活动,先让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究得到方法1,最后由学生独立探究得到方法2.这样学生较容易地突破了本节课的难点.

2.教学建议

如果学生的程度较好可以按照本教学设计进行教学,并且可以把分层练习中“知识拓展”作为课堂教学内容.如果学生程度稍差,可以舍弃第三环节以及第五环节中的(2)(3)两个问题.而把分层练习中“基础训练”作为课堂过关使用.

第一章 勾股定理

1. 探索勾股定理(第2课时)

一、学生起点分析

学生的知识技能基础:学生在七年级已经学习了整式的加、减、乘、除运算和等式的基本性质,并能进行简单的恒等变形;上节课又已经通过测量和数格子的方法,对具体的直角三角形探索并发现了勾股定理,但没有对一般的直角三角形进行验证.

学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在七年级《七巧板》及《图案设计》的学习中已经具备了一定的拼图活动经验.

二、教学任务分析

本节课是八(上)勾股定理第1节第2课时,是在上节课已探索得到勾股定理之后的内容,具体学习任务:通过拼图验证勾股定理并体会其中数形结合的思想;应用勾股定理解决一些实际问题,体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识和能力 ,为后面的学习打下基础.为此本节课的教学目标是:

1.掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.

2.在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.

3.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.

用面积法验证勾股定理,应用勾股定理解决简单的实际问题是本节课的重点.

三、教学过程

本节课设计了七个教学环节:(一)复习设疑,激趣引入;(二)小组活动,拼图验证;(三)延伸拓展,能力提升 (四) 例题讲解,初步应用;(五) 追

溯历史,激发情感;;(六) 回顾反思,提炼升华;(七) 布置作业,课堂延伸. 第一环节: 复习设疑,激趣引入

内容:教师提出问题:

(1)勾股定理的内容是什么?(请一名学生回答)

(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.

意图:(1)复习勾股定理内容;(2)回顾上节课探索过程,强调仍需对一般的直角三角形进行验证,培养学生严谨的科学态度;(3)介绍世界上有数百种验证方法,激发学生兴趣.

效果:通过这一环节,学生明确了:仅仅探索得到勾股定理还不够,还需进行验证.当学生听到有数百种验证方法时,马上就有了去寻求属于自己的方法的渴望.

第二环节:小组活动,拼图验证.

内容: 活动1: 教师导入,小组拼图.

教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.(请每位同学用2分钟时间独立拼图,然后再4人小组讨论.)

活动2:层层设问,完成验证一.

学生通过自主探究,小组讨论得到两个图形:

图1 图2

在此基础上教师提问:

(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);

(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×ab+c2.并得到a2b2c2)

从而利用图1验证了勾股定理.

活动3 : 自主探究,完成验证二.

教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?

(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二)

意图:设计活动1的目的是为了让学生在活动中体会图形的构成,既为勾股定理的验证作铺垫,同时也培养学生的动手、创新能力.在活动2中,学生在教师的层层设问引导下完成对勾股定理的验证,完成本节课的一个重点内容.设计活动3,让学生利用另一个拼图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐.

效果:学生通过先拼图从形上感知,再分析面积验证,比较容易地掌握了本节课的重点内容之一,并突破了本节课的难点. 12

第三环节 延伸拓展,能力提升

1.议一议:观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c2

2.一个直角三角形的斜边为20cm ,且两直角边长度比为3:4,求两直角

意图:在前面已经讨论了直角三角形三边满足的关系,那么锐角三角形边的长。 或钝角三角形的三边 是否也满足这一关系呢?学生通过数格子的方法可以得

出:如果一个三角形不是直角三角形,那么它的三边a,b,c不满足a2+b2=c2。通过这个结论,学生将对直角三角形三边的关系有进一步的认识,并为后续直角三角形的判别打下基础。

第四环节: 例题讲解 初步应用

内容:例题:飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?

意图:(1)初步运用勾股定理解决实际问题,培养学生应用数学的意识和能力;(2)体会勾股定理的应用价值.

效果:学生对这样的实际问题很感兴趣,基本能把实际问题转化为数学问题并顺利解决.

第五环节: 追溯历史 激发情感

活动内容:由学生利用所搜集的与勾股定理相关的资料进行介绍.

国内调查组报告:用图2验证勾股定理的方法,据载最早是三国时期数学家赵爽在为《周髀算经》作注时给出的,我国历史上将图2弦上的正方形称为弦图 .2002年的数学家大会(ICM-2002)在北京召开,这届大会会标的中央图案正是经过艺术处理的弦图,这既标志着中国古代的数学成就 ,又像一只转动的风车,欢迎来自世界各地的数学家们!

国际调查组报告:勾股定理与第一次数学危机.

约公元前500年,毕达哥拉斯学派的弟子希帕索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线的长度是不可公度的.按照毕达哥拉斯定理(勾股定理),若正方形边长是1,则对角线的长不是一个有理数,它不能表示成两个整数之比,这一事实不但与毕氏学派的哲学信念大相径庭,而且建立在任何两个线段都可以公度基础上的几何学面临被推翻的威胁,第一次数学危机由此爆发.

据说,毕达哥拉斯学派对希帕索斯的发现十分惶恐、恼怒,为了保守秘密,最后将希帕索斯投入大海.

不能表示成两个整数之比的数,15世纪意大利著名画家达.芬奇称之为“无理的数”,无理数的英文“irrational”原义就是“不可比”.第一次数学危机一直持续到19世纪实数的基础建立以后才圆满解决.我们将在下一章学习有关实数的知识 .

趣闻调查组报告:勾股定理的总统证法.

在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景„„他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使他循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形„„

于是这位中年人不再散步,立即回家,潜心探讨小男孩给他留下的难题.他经过反复的思考与

演算,终于弄清楚了其中的道理,并给出了简洁的证明方法.C a B 1876年4月1日,他在《新英格兰教育日志》上发表了他对勾股定理的这一证法.

1881年,这位中年人—伽菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法.

说明:这个环节完全由学生来组织开展,教师可在两天前布置任务,让部分同学收集勾股定理的资料,并在上课前拷贝到教师用的课件中便于展示,内容可灵活安排.

意图:(1)介绍与勾股定理有关的历史,激发学生的爱国热情;(2)学生加强了对数学史的了解,培养学习数学的兴趣;(3)通过让部分学生搜集材料,展示材料,既让学生得到充分的锻炼,同时也活跃了课堂气氛.

效果:学生热情高涨,对勾股定理的历史充满了浓厚的兴趣,同时也为中国古代数学的成就感到自豪.也有同学提出:当代中国数学成就不够强,还应发奋努力.有同学能意识这一点,这让我喜出望外.

第六环节: 回顾反思 提炼升华

内容:教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.

目的:(1)归纳出本节课的知识要点,数形结合的思想方法;(2)教师了解学生对本节课的感受并进行总结;(3)培养学生的归纳概括能力.

效果:由于这节课自始至终都注意了调动学生学习的积极性,所以学生谈的收获很多,包括利用拼图验证勾股定理中蕴含的数形结合思想,学生对勾股定理的历史的感悟及对勾股定理应用的认识等等.

第七环节: 布置作业,课堂延伸

内容:教师布置作业

1.习题1.2 1,2,3

2.上网或查阅有关书籍,搜集至少1种勾股定理的其它证法,至少1个勾股定理的应用问题,一周后进行展评.

意图:(1)巩固本节课的内容.(2)充分发挥勾股定理的育人价值.

六、教学设计反思

1.设计说明

勾股定理作为“千古第一定理”其魅力在于其历史价值和应用价值,因此我注意充分挖掘了其内涵.特别是让学生事先进行调查,再在课堂上进行展示,这极大地调动了学生,既加深了对勾股定理文化的理解,又培养了他们收集、整理资料的能力.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,我设计了拼图活动,先让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究得到方法1,最后由学生独立探究得到方法2.这样学生较容易地突破了本节课的难点.

2.教学建议

如果学生的程度较好可以按照本教学设计进行教学,并且可以把分层练习中“知识拓展”作为课堂教学内容.如果学生程度稍差,可以舍弃第三环节以及第五环节中的(2)(3)两个问题.而把分层练习中“基础训练”作为课堂过关使用.


相关文章

  • 1.1探索勾股定理(一)
  • 课题:§1.1 探索勾股定理 [学习目标] 1.经历探索勾股定理的过程,发展合情推理能力,体会数形结合的思想. 2.会解决已知直角三角形的两边秋另一边的问题. (3)SA,SB,SC之间有什么关系? 2.观察课本图1-3,SA,SB,SC之 ...查看


  • 1.1探索勾股定理教案2
  • 1.1探索勾股定理(二) 教学目标: 1. 经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和 合作交流的习惯. 2. 掌握勾股定理和他的简单应用 重点难点: 重点: 能熟练运用拼图的方法证明勾股定理 难点:用面积 ...查看


  • 1.1探索勾股定理(2)
  • 1.1(2)探索勾股定理 1.勾股定理的探索 如图,在单位长度为1的方格纸中画一等腰直角三角形,然后向外作三个外正方形: 观察图形可知: (1)各正方形的面积:正方形①的面积S1为1,正方形②的面积S2为1,正方形③的面积S3为2: (2) ...查看


  • 北师大版初中数学目录
  • 北师大版初中数学目录 七年级上 ∙ 3.5 探索与表达规律 第4章 基本平面图形 第1章 丰富的图形世界 4.1 线段.射线.直线 1.1 生活中的立体图形 ∙ 1.2 展开与折叠 ∙ 1.3 截一个几何体 ∙ 1.4 从三个方向看物体的形 ...查看


  • 苏教版初中数学原教材与新教材目录对照表
  • 苏教版初中数学原教材与新教材目录对照表 原教材 第一章 1.1生活 数学 新教材 第一章 数学与我们同行 1.1生活 数学 1.2活动 思考 2.1正数与负数 2.2有理数与无理数 2.3数轴 2.4绝对值与相反数 第二章有理数 2.5有理 ...查看


  • 1.1正弦定理和余弦定理
  • 第一章 解三角形 章节总体设计 (一)课标要求 本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上.通过本章学习,学生应当达到以下学习目标: (1)通过对任意三角形边长和角度关系的探索,掌握正弦定理 ...查看


  • 初中数学课本目录
  • 七年级(上册) 第一章:我们与数学同行 1.1 生活 数学 1.2 活动 思考 第二章:有理数 2.1 比0小的数 2.2 数轴 2.3 绝对值与相反数 2.4 有理数的加法与减法 2.5 有理数的乘法与除法 2.6 有理数的乘方 2.7 ...查看


  • 正弦定理第一课时教案1
  • §1.1 正弦定理第一课时教案 主讲人:李芳 共2课时第一课时 一.学习目标 1.知识目标: (1)使同学们理解正弦定理的推导过程:(2)能应用正弦定理解斜三角形 2.能力目标: 培养同学们分析归纳的能力.分析问题解决问题的能力 二.重难点 ...查看


  • 1.1等腰三角形1
  • 1.1 等腰三角形1 (1) 学习目标: 1.了解作为证明基础的几条公理的内容,掌握证明的基本步骤步骤和书写格式. 2.经历"探索---发现---猜想---证明"的过程,能够用综合法证明等腰三角形的有关性质定理. 3.通 ...查看


热门内容