圆的相关定理

圆幂定理

定义

圆幂=PO^2-R^2(该结论为欧拉公式) 所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有 PA·PB=PC·PD。

统一归纳:过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于

A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。

相交弦定理

圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等)

相交弦说明

几何语言:

若弦AB、CD交于点P

则PA·PB=PC·PD(相交弦定理)

推论:如果弦与直径垂直相交,那么弦的一半是它分

直径所成的两条线段的例中项

几何语言:

若AB是直径,CD垂直AB于点P, 则PC^2=PA·PB(相交弦定理推论)

切割线定理

定义

从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。是圆幂定理的一种。

几何语言:

∵PT切⊙O于点T,PBA是⊙O的割线

∴PT的平方=PA·PB(切割线定理)推论:

从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

几何语言:

∵PT是⊙O切线,PBA,PDC是⊙O的割线

∴PD·PC=PA·PB(切割线定理推论)(割线定理)

由上可知:PT∧2(平方)=PA·PB=PC·PD

证明

切割线定理证明:

设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT^2=PA·PB

证明:连接AT, BT

∵∠PTB=∠PAT(弦切角定理)

∠P=∠P(公共角)

∴△PBT∽△PTA(两角对应相等,两三角形相似)

则PB:PT=PT:AP

即:PT^2=PB·PA

割线定理

定义

从圆外一点引圆的两条割线,这一点到每条割线

与圆交点的距离的积相等。

从圆外一点L引两条割线与圆分别交于A.B.C.D 则有

LA·LB=LC·LD。如下图所示。(LT是切线)

证明

如图直线ABP和CDP是自点P引的⊙O的两条割线,则PA·PB=PC·PD 证明:连接AD、BC

∵∠A和∠C都对弧BD

∴由圆周角定理,得 ∠A=∠C

又∵∠APD=∠CPB

∴△ADP∽△CBP

∴AP:CP=DP:BP, 也就是AP·BP=CP·DP

切线的判定定理

经过半径的外端并且垂直于这条半径的直线是圆的切线

几何语言: ∵l ⊥OA,点A在⊙O上

∴直线l是⊙O的切线(切线判定定理)

切线的性质定理

圆的切线垂直于经过切点半径

几何语言: ∵OA是⊙O的半径,直线l切⊙O于点A

∴l ⊥OA(切线性质定理)

推论1 经过圆心且垂直于切线的直径必经过切点

推论2 经过切点且垂直于切线的直线必经过圆心

切线长定理

从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

几何语言: ∵直线PA、PB分别切⊙O于A、B两点

∴PA=PB,∠APO=∠BPO(切线长定理)

证明:连结OA、OB

∵直线PA、PB分别切⊙O于A、B两点

∴OA⊥AP、OB⊥PB

∴∠OAP=∠OBP=90°

在△OPA和△OPB中:

∠OAP=∠OBP OP=OP OA=OB=r ∴△OPA≌△OPB(HL)

∴PA=PB,∠APO=∠BPO

弦切角定理

弦切角(即图中∠ACD)等于它所夹的弧(弧AC)对的圆周角等于所夹的弧的读数的一半等于1/2所夹的弧的圆心角 [注,由于网上找得的图不是很完整,图中没有连结OC]

几何语言:∵∠ACD所夹的是弧AC ∴∠ACD=∠ABC=1/2∠COA=1/2弧AC的度数(弦切角定理)

推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 几何语言:∵∠1所夹的是弧MN ,∠2所夹的是PQ ,弧MN = 弧PQ

∴∠1=∠2

证明:作AD⊥EC

∵∠ADC=90°

∴∠ACD+∠CAD=90°

∵ED与⊙O切于点C ∴OC⊥ED ∴∠OCD=∠OCA+∠ACD=90° ∴∠OCA=∠CAD ∵OC=OA=r ∴∠OCA=∠OAC ∴∠COA=180°-∠OCA-∠OAC=180°-2∠CAD 又∵∠ACD=90°-∠CAD ∴∠ACDC=1/2∠COA

∴∠ACD=∠ABC=1/2∠COA=1/2弧AC的度数

弦切角概念

顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件:

(1)顶点在圆上,即角的顶点是圆的一条切线的切点;

(2)角的一边和圆相交,即角的一边是过切点的一条弦所在的射线;

(3)角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线.

它们是判断一个角是否为弦切角的标准,三者缺一不可。

(4)弦切角可以认为是圆周角的一个特例,即圆周角的一边绕顶点旋转到与圆相切时所成的角.正因为如此,弦切角具有与圆周角类似的性质.

相关公式

弧长计算公式:L=n兀R/180

扇形面积公式:S扇形=n兀R^2/360=LR/2

内公切线长= d-(R-r) 外公切线长= d-(R+r)

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆幂定理

定义

圆幂=PO^2-R^2(该结论为欧拉公式) 所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有 PA·PB=PC·PD。

统一归纳:过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于

A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。

相交弦定理

圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等)

相交弦说明

几何语言:

若弦AB、CD交于点P

则PA·PB=PC·PD(相交弦定理)

推论:如果弦与直径垂直相交,那么弦的一半是它分

直径所成的两条线段的例中项

几何语言:

若AB是直径,CD垂直AB于点P, 则PC^2=PA·PB(相交弦定理推论)

切割线定理

定义

从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。是圆幂定理的一种。

几何语言:

∵PT切⊙O于点T,PBA是⊙O的割线

∴PT的平方=PA·PB(切割线定理)推论:

从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

几何语言:

∵PT是⊙O切线,PBA,PDC是⊙O的割线

∴PD·PC=PA·PB(切割线定理推论)(割线定理)

由上可知:PT∧2(平方)=PA·PB=PC·PD

证明

切割线定理证明:

设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT^2=PA·PB

证明:连接AT, BT

∵∠PTB=∠PAT(弦切角定理)

∠P=∠P(公共角)

∴△PBT∽△PTA(两角对应相等,两三角形相似)

则PB:PT=PT:AP

即:PT^2=PB·PA

割线定理

定义

从圆外一点引圆的两条割线,这一点到每条割线

与圆交点的距离的积相等。

从圆外一点L引两条割线与圆分别交于A.B.C.D 则有

LA·LB=LC·LD。如下图所示。(LT是切线)

证明

如图直线ABP和CDP是自点P引的⊙O的两条割线,则PA·PB=PC·PD 证明:连接AD、BC

∵∠A和∠C都对弧BD

∴由圆周角定理,得 ∠A=∠C

又∵∠APD=∠CPB

∴△ADP∽△CBP

∴AP:CP=DP:BP, 也就是AP·BP=CP·DP

切线的判定定理

经过半径的外端并且垂直于这条半径的直线是圆的切线

几何语言: ∵l ⊥OA,点A在⊙O上

∴直线l是⊙O的切线(切线判定定理)

切线的性质定理

圆的切线垂直于经过切点半径

几何语言: ∵OA是⊙O的半径,直线l切⊙O于点A

∴l ⊥OA(切线性质定理)

推论1 经过圆心且垂直于切线的直径必经过切点

推论2 经过切点且垂直于切线的直线必经过圆心

切线长定理

从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

几何语言: ∵直线PA、PB分别切⊙O于A、B两点

∴PA=PB,∠APO=∠BPO(切线长定理)

证明:连结OA、OB

∵直线PA、PB分别切⊙O于A、B两点

∴OA⊥AP、OB⊥PB

∴∠OAP=∠OBP=90°

在△OPA和△OPB中:

∠OAP=∠OBP OP=OP OA=OB=r ∴△OPA≌△OPB(HL)

∴PA=PB,∠APO=∠BPO

弦切角定理

弦切角(即图中∠ACD)等于它所夹的弧(弧AC)对的圆周角等于所夹的弧的读数的一半等于1/2所夹的弧的圆心角 [注,由于网上找得的图不是很完整,图中没有连结OC]

几何语言:∵∠ACD所夹的是弧AC ∴∠ACD=∠ABC=1/2∠COA=1/2弧AC的度数(弦切角定理)

推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 几何语言:∵∠1所夹的是弧MN ,∠2所夹的是PQ ,弧MN = 弧PQ

∴∠1=∠2

证明:作AD⊥EC

∵∠ADC=90°

∴∠ACD+∠CAD=90°

∵ED与⊙O切于点C ∴OC⊥ED ∴∠OCD=∠OCA+∠ACD=90° ∴∠OCA=∠CAD ∵OC=OA=r ∴∠OCA=∠OAC ∴∠COA=180°-∠OCA-∠OAC=180°-2∠CAD 又∵∠ACD=90°-∠CAD ∴∠ACDC=1/2∠COA

∴∠ACD=∠ABC=1/2∠COA=1/2弧AC的度数

弦切角概念

顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件:

(1)顶点在圆上,即角的顶点是圆的一条切线的切点;

(2)角的一边和圆相交,即角的一边是过切点的一条弦所在的射线;

(3)角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线.

它们是判断一个角是否为弦切角的标准,三者缺一不可。

(4)弦切角可以认为是圆周角的一个特例,即圆周角的一边绕顶点旋转到与圆相切时所成的角.正因为如此,弦切角具有与圆周角类似的性质.

相关公式

弧长计算公式:L=n兀R/180

扇形面积公式:S扇形=n兀R^2/360=LR/2

内公切线长= d-(R-r) 外公切线长= d-(R+r)

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标


相关文章

  • 三角形内角和定理教案
  • 7.5三角形内角和定理教学设计(第1课时) 一.学生知识状况分析 学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严 ...查看


  • 考研数学:必考的定理证明整理(2)
  • Born to win 考研数学:必考的定理证明整理(2) 考研数学的定理证明是一直考生普遍感觉不太有把握的内容,而2016年考研数学真题释放出一个明确信号--考生需重视教材中重要定理的证明.下面跨考教育为考生梳理一下教材中那些要求会证的重 ...查看


  • 微分中值定理开题报告
  • -1-附件10:论文(设计)管理表一昌吉学院本科毕业论文(设计)开题报告论文(设计)题目微分中值定理的若干推广及其应用系(院)数学与应用数学专业班级07级数本(2)班学科理科学生姓名李娜指导教师姓名黄永峰学号0725809061职称助教 一 ...查看


  • 1.4.1初中数学角平分线说课稿
  • §1.4.1 角平分线 尊敬的各位领导.各位老师: 大家好! 我今天说课的课题是角平分线,它是北师大版八年级下册第一章第四节的内容.今天我将从教材分析,教学目标,教学重难点,教法学法,教学过程这五个方面谈谈我对这节课处理的一些不成熟的看法: ...查看


  • 拉格朗日中值定理的新证明
  • 第!&卷第%期 沈阳师范大学学报 (自然科学版) ,$%&/!&'%/%.12+! ! 文章编号:()& 拉格朗日中值定理的新证明 孟宪吉,王 瑾 (沈阳师范大学数学与系统科学学院,辽宁沈阳&)&am ...查看


  • 勾股定理公开课精品教案
  • 课题:18.1 勾股定理(1) --直角三角形三边的关系 袁婉霞 一.教学目标 (一)知识目标 1.创设情境引出问题,激起学生探索直角三角形三边的关系的兴趣. 2.让学生带着问题体验勾股定理的探索过程,并正确运用勾股定理解决相关问题. (二 ...查看


  • 常微分方程
  • < 常微分方程 >课程教学大纲 一.课程基本信息 课程代码:110044 课程名称:常微分方程 英文名称:Ordinary Differential Equation 课程类别:专业必修课 学 时:45 学 分:2.5 适用对象 ...查看


  • 浅议高中物理动能定理教学设计思路创新
  • 龙源期刊网 http://www.qikan.com.cn 浅议高中物理动能定理教学设计思路创新 作者:胡海荣 来源:<新课程·中学>2015年第04期 摘 要:高中动能定理是高中物理知识体系的重要内容,进入高中之后,在初中定性 ...查看


  • 经管应用数学B模块教学大纲
  • 经管应用数学B 模块教学大纲 模块编号:M071103 模块名称:经管应用数学B 理论学时:72 实践学时:8 总学时数:80 总学分:5 后续模块: 一. 说明部分 1. 模块性质 本模块是文科类本科各专业(包括经济系.管理系各专业)的学 ...查看


热门内容