幻方的N种构造方法
说起幻方,许多人见惯不怪了。最简单的莫过于三阶幻方或者说四阶幻方,三阶幻方是由1到9这9个数填进3×3的九宫图中,使每行,每列和对角线的三个数之和相等(3阶,幻和为15)。三阶幻方最早起源于我国,古代人们将三阶幻方称之为“河图”和“洛书”我国宋代数学家杨辉称之为“纵横图”。
好了,其他的不多说了,让我们直奔主题吧。 第一种:推理法①
1~9个数填入九宫图,容易推出幻和为15,而用1~9个数有以下的算式组合。 1+5+9=15 2+5+8=15 3+5+7=15 4+5+6=15 2+6+7=15 2+5+8=15 2+4+9=15 4+3+8=15 8+1+6=15
观察上面9条算式容易知道,5出现了4次,1、3、7、9出现了2次,2、4、6、8出现了3次。再回来想想九宫格的位置特性,中间的格
一定要满足4条算式(中间行,中间列,2对角线)成立,故中间应该填的是5;
四个角的格也要各满足3条算式成立,故四个角的格应该填的是2、4、6、8。
(其实不用下面步骤都可以构造出来了,因为幻和为15,可以推算出。)同理,1、3、7、9应该填在前行前列的中间。这样的话,就很容易构造出3阶幻方。
所以得出的3阶幻方如下:
第二种:推理法③
和第四种方法基本相似吧,但是更简单。前提条件:已知幻和=15,中间是5。分析:三个数构成幻和为15的等式,这三个数必定是“3个奇数”或者“2个偶数和一个奇数”。
假设①位置为奇数,则⑨位置也为奇数。可是,填下一个奇数时,都会推算出产生剩下的数都是奇数的情况。例如:
当②为奇数时,⑧为奇数,③为奇数,⑥为奇数,⑦为奇数,④为奇数。 当③为奇数时,②为奇数,⑦为奇数,⑧为奇数,⑥为奇数,④为奇数。 所以,①位置不能填奇数,只能填偶数。 第三种:楼梯法
在第一行的中间填上1.,然后依次在“右上角”填上2(下一个数),再在2的“右上角”(相对的)填上3,依次类推。当遇到“右上角”已经有数的时候,就填在原地的下一个格,再运用楼梯法继续填,知道填到最后一个数。
由于3的右上角已经有数了,所以4要填在3的下一个格。
再填5在4的右上角,就这样以此类推。
就这样就完成了。还有,这种方法适用于所有的奇数幻方。
下面是三宫格、五宫格、七宫格、九宫格图.
三宫格(和15) 五宫格(和65)
九宫格(和369)
偶数阶幻方的一种制作方法-双偶阶、单偶阶幻方
1. 双偶阶幻方(对称交换法)
n为偶数,且能被4整除 (n=4,8,12,16,20……) (n=4k,k=1,2,3,4,5……)
先说明一个定义。互补:如果两个数字的和,等于幻方最大数和最小数的和,即 n×n+1,称为互补。
先看看4阶幻方的填法:将数字从左到右、从上到下按顺序填写:
这个方阵的对角线,已经用颜色标出。将对角线上的数字,换成与它互补(同色)的数字。 这里,n×n+1 = 4×4+1 = 17;把1换成17-1 = 16;把6换成17-6 = 11;把11换成17-11 = 6……换完后就是一个四阶幻方。
对于n=4k阶幻方,我们先把数字按顺序填写。写好后,按4×4把它划分成k×k个方阵。因为n是4的倍数,一定能用4×4的小方阵分割。然后把每个小方阵的对角线,象制作4阶幻方的方法一样,对角线上的数字换成互补的数字,就构成幻方
。
2. 单偶阶幻方(斯特雷奇Ralph Strachey法)
n为偶数,且不能被4整除 (n=6,10,14,18,22……) (n=4k+2,k=1,2,3,4,5……)
这是三种里面最复杂的幻方。 以n=10为例,10=4×2+2,这时k=2
(1) 把方阵分为A,B,C,D四个象限,这样每一个象限肯定是奇数阶。用楼梯法,依次在A象限,D象限,B象限,C象限按奇数阶幻方的填法填数。
(2)在A象限的中间行、中间格开始,按自左向右的方向,标出k格。A象限的其它行则标出最左边的k格。将这些格,和C象限相对位置上的数,互换位置。
(3)在B象限任一行的中间格,自右向左,标出k-1列。(注:6阶幻方由于k-1=0,所以不用再作B、D象限的数据交换), 将B象限标出的这些数,和
D象限相对位置上的数进行交换,就形成幻方。
下面是6阶幻方的填法:6=4×1+2,这时k=1
看起来很麻烦,其实掌握了方法就很简单了。
变形法
将1~9数依顺序填入下框;
2和6对调,4和6对调;
将2、4、6、8向四个角外移。
这样就快速完成3阶幻方了。
第四种:推理法②
前提条件:已知幻和=15,中间是5。分析:三个数构成幻和为15的等式,这三个数必定是“3个奇数”或者“2个偶数和一个奇数”。
我们知道5在中间,假设①位置填的是奇数,则⑨位置也是奇数。现在在这个条件下来确定⑦的位置的数的奇偶性:
当⑦为奇数时,则会出现③、④、⑧甚至②、⑥位置均为奇数,这与除5外的奇数只有4个矛盾。
当⑦为偶数时,则④、⑧、②、⑥甚至③也为偶数,这与只有4个偶数矛盾。
所以①位置不能填奇数,只能填偶数。(其实不单是①位置,由于刚才的假设是随机性的,即①位置也可能是③、⑦、⑨的四个角的方格位置。所以就很容易算出剩下的步骤。
第五种:
第六种:方程法
直接在九宫格构造方程,用字母a、b、c就可以设定。构成的3阶幻方的幻和为3a。
由于各个算式得数范围只能在1~9之间。则令a=5,由于a+b和a-b算式得数范围在1~9,故b取值只能是:1、2、3、4。 当b=1时,对于第一行,a+b=6;a-b+c=4+c;a-c=5-c
以此为条件,c只能取3或4。因为取1和2时有数重复。 当c=3时,推出的结果成立。
当c=4时,①:对于第一行,a+b=6;a-b+c=8;a-c=1,推出后面的结果不成立。②:对于a-b-c=0,a+b+c=10也不满足。
所以,a=5,b=1,c=3成立。
第七种:负数法
由“化零幻方”可以推出三阶幻方。
当然,肯定还另外有一些方法,掌握了这些方法不但培养我们对幻方的兴趣,还会对我们以后深入研究高阶幻方打好基础,即使,以上的方法有些是很简单的,但是,可不要忽视它的重要思想!
这仅仅只是开始。
摘自:童真白马的博客分类——幻方世界
》》欢迎光临《《
幻方的N种构造方法
说起幻方,许多人见惯不怪了。最简单的莫过于三阶幻方或者说四阶幻方,三阶幻方是由1到9这9个数填进3×3的九宫图中,使每行,每列和对角线的三个数之和相等(3阶,幻和为15)。三阶幻方最早起源于我国,古代人们将三阶幻方称之为“河图”和“洛书”我国宋代数学家杨辉称之为“纵横图”。
好了,其他的不多说了,让我们直奔主题吧。 第一种:推理法①
1~9个数填入九宫图,容易推出幻和为15,而用1~9个数有以下的算式组合。 1+5+9=15 2+5+8=15 3+5+7=15 4+5+6=15 2+6+7=15 2+5+8=15 2+4+9=15 4+3+8=15 8+1+6=15
观察上面9条算式容易知道,5出现了4次,1、3、7、9出现了2次,2、4、6、8出现了3次。再回来想想九宫格的位置特性,中间的格
一定要满足4条算式(中间行,中间列,2对角线)成立,故中间应该填的是5;
四个角的格也要各满足3条算式成立,故四个角的格应该填的是2、4、6、8。
(其实不用下面步骤都可以构造出来了,因为幻和为15,可以推算出。)同理,1、3、7、9应该填在前行前列的中间。这样的话,就很容易构造出3阶幻方。
所以得出的3阶幻方如下:
第二种:推理法③
和第四种方法基本相似吧,但是更简单。前提条件:已知幻和=15,中间是5。分析:三个数构成幻和为15的等式,这三个数必定是“3个奇数”或者“2个偶数和一个奇数”。
假设①位置为奇数,则⑨位置也为奇数。可是,填下一个奇数时,都会推算出产生剩下的数都是奇数的情况。例如:
当②为奇数时,⑧为奇数,③为奇数,⑥为奇数,⑦为奇数,④为奇数。 当③为奇数时,②为奇数,⑦为奇数,⑧为奇数,⑥为奇数,④为奇数。 所以,①位置不能填奇数,只能填偶数。 第三种:楼梯法
在第一行的中间填上1.,然后依次在“右上角”填上2(下一个数),再在2的“右上角”(相对的)填上3,依次类推。当遇到“右上角”已经有数的时候,就填在原地的下一个格,再运用楼梯法继续填,知道填到最后一个数。
由于3的右上角已经有数了,所以4要填在3的下一个格。
再填5在4的右上角,就这样以此类推。
就这样就完成了。还有,这种方法适用于所有的奇数幻方。
下面是三宫格、五宫格、七宫格、九宫格图.
三宫格(和15) 五宫格(和65)
九宫格(和369)
偶数阶幻方的一种制作方法-双偶阶、单偶阶幻方
1. 双偶阶幻方(对称交换法)
n为偶数,且能被4整除 (n=4,8,12,16,20……) (n=4k,k=1,2,3,4,5……)
先说明一个定义。互补:如果两个数字的和,等于幻方最大数和最小数的和,即 n×n+1,称为互补。
先看看4阶幻方的填法:将数字从左到右、从上到下按顺序填写:
这个方阵的对角线,已经用颜色标出。将对角线上的数字,换成与它互补(同色)的数字。 这里,n×n+1 = 4×4+1 = 17;把1换成17-1 = 16;把6换成17-6 = 11;把11换成17-11 = 6……换完后就是一个四阶幻方。
对于n=4k阶幻方,我们先把数字按顺序填写。写好后,按4×4把它划分成k×k个方阵。因为n是4的倍数,一定能用4×4的小方阵分割。然后把每个小方阵的对角线,象制作4阶幻方的方法一样,对角线上的数字换成互补的数字,就构成幻方
。
2. 单偶阶幻方(斯特雷奇Ralph Strachey法)
n为偶数,且不能被4整除 (n=6,10,14,18,22……) (n=4k+2,k=1,2,3,4,5……)
这是三种里面最复杂的幻方。 以n=10为例,10=4×2+2,这时k=2
(1) 把方阵分为A,B,C,D四个象限,这样每一个象限肯定是奇数阶。用楼梯法,依次在A象限,D象限,B象限,C象限按奇数阶幻方的填法填数。
(2)在A象限的中间行、中间格开始,按自左向右的方向,标出k格。A象限的其它行则标出最左边的k格。将这些格,和C象限相对位置上的数,互换位置。
(3)在B象限任一行的中间格,自右向左,标出k-1列。(注:6阶幻方由于k-1=0,所以不用再作B、D象限的数据交换), 将B象限标出的这些数,和
D象限相对位置上的数进行交换,就形成幻方。
下面是6阶幻方的填法:6=4×1+2,这时k=1
看起来很麻烦,其实掌握了方法就很简单了。
变形法
将1~9数依顺序填入下框;
2和6对调,4和6对调;
将2、4、6、8向四个角外移。
这样就快速完成3阶幻方了。
第四种:推理法②
前提条件:已知幻和=15,中间是5。分析:三个数构成幻和为15的等式,这三个数必定是“3个奇数”或者“2个偶数和一个奇数”。
我们知道5在中间,假设①位置填的是奇数,则⑨位置也是奇数。现在在这个条件下来确定⑦的位置的数的奇偶性:
当⑦为奇数时,则会出现③、④、⑧甚至②、⑥位置均为奇数,这与除5外的奇数只有4个矛盾。
当⑦为偶数时,则④、⑧、②、⑥甚至③也为偶数,这与只有4个偶数矛盾。
所以①位置不能填奇数,只能填偶数。(其实不单是①位置,由于刚才的假设是随机性的,即①位置也可能是③、⑦、⑨的四个角的方格位置。所以就很容易算出剩下的步骤。
第五种:
第六种:方程法
直接在九宫格构造方程,用字母a、b、c就可以设定。构成的3阶幻方的幻和为3a。
由于各个算式得数范围只能在1~9之间。则令a=5,由于a+b和a-b算式得数范围在1~9,故b取值只能是:1、2、3、4。 当b=1时,对于第一行,a+b=6;a-b+c=4+c;a-c=5-c
以此为条件,c只能取3或4。因为取1和2时有数重复。 当c=3时,推出的结果成立。
当c=4时,①:对于第一行,a+b=6;a-b+c=8;a-c=1,推出后面的结果不成立。②:对于a-b-c=0,a+b+c=10也不满足。
所以,a=5,b=1,c=3成立。
第七种:负数法
由“化零幻方”可以推出三阶幻方。
当然,肯定还另外有一些方法,掌握了这些方法不但培养我们对幻方的兴趣,还会对我们以后深入研究高阶幻方打好基础,即使,以上的方法有些是很简单的,但是,可不要忽视它的重要思想!
这仅仅只是开始。
摘自:童真白马的博客分类——幻方世界
》》欢迎光临《《