第一讲-电磁波的产生分类及数学描述

Introduction to waves

Waves have crests and troughs.The crest of a wave is sometimes called a wave front.

The shape of a wave is determined

by its wave front.

In physics, a wave front is the locus (a line, or, in a wave propagating in 3 dimensions, a surface) of points having the same phase.

1

rr

E(x,t)=E0cos(kx-ωt+ϕ0)

Waves have cycles, frequency, and amplitude, just like

oscillations.

The frequency of a wave tells how often each point oscillates.

The wavelength of a wave is the length of one complete cycle.

The amplitude of a wave is the maximum movement from equilibrium.

2

X

rr

E(x,t)=E0cos(kx-ωt+ϕ0)

空间参量与时间参量

空间周期

λ

时间周期T=

λ

v

空间频率f=

1

λ

1

时间频率υ=

T

传播数k=2πf=

λ

时间角频率ω=2πυ=

T

ω=kv

•简谐波相位的多种表达形式

⎛zt⎫⎛z⎫φ=2π -⎪+φ0=ω -t⎪+φ0

⎝λT⎭⎝v⎭⎛z⎫

=2π -vt⎪+φ0=2π(fz-υt)+φ0

⎝λ⎭

3

rrrrr

E(r,t)=E0cos(k⋅r-ωt+ϕ0)

f(z,t)=Acos⎡kz-vtω=kv⎤()⎣⎦

Transverse Wave:

• Note how the wave pattern definitely moves

4

to the right.

• However any particular point (look at the blue one) just moves transversely (i.e., up and down) to the direction of the wave.

Wave Velocity (Wave Phase Velocity): • The wave velocity is defined as the wavelength divided by the time it takes a wavelength (green) to pass by a fixed point

(blue).

5

The phase velocityof a wave is the rate at which the phase of the wave propagates in space. This is the velocity at which the phase of any single frequency component of the wave will propagate. We can pick one particular phase of the wave (for example the crest) and it would appear to travel at the phase velocity.

vphase

2π/τλ===k2π/λτ

ω

0.0,

r1n

..r1

Snapshots of a wave with angular frequency ωare shown at 3 times:

Which of the following expressions describes this wave?

=0

(a) y = sin(kx-ωt)

(b) y = sin(kx+ωt) (c) y =cos(kx+ωt)

π

=2ω

In what direction is this wave traveling?

t=

x

πω

(a) +x direction (b) 6

0.0,

r1n

..r1

=0

π

=2ω

πt=ω

x

•We claim this wave moves in the -x direction.•The orange dot marks a point of constant phase.

It clearly moves in the -x direction as time increases!!

⏹ Wave-fronts are helpful for drawing pictures of interfering waves.

⏹ A wave's wave-fronts sweep along at the speed of light.

⏹ A plane wave has flat wave-fronts throughout all space. It also has infinite energy. It doesn’t exist in reality.

7

空间参量与时间参量

空间周期

λ

时间周期T=

λ

v

空间频率f=

1

λ

1

时间频率υ=

T

传播数k=2πf=

λ

时间角频率ω=2πυ=

T

ω=kv

rrrrr

E(r,t)=E0cos(k⋅r-ωt+ϕ0) urr

E(z,t)=E0cos⎡kz-vtω=kv⎤()⎣⎦

8

复数表示的优点

•将波函数中与空间坐标有关的因子和时间坐标有关的因子分离•简化运算运算规则

•线性运算:(加、减、乘常数、除常数、微分、积分),将复数形式代入进行运算,最后结果取实部

rrrrr

E(r,t)=E0cos(k⋅r-ωt+ϕ0)

rrrrrrrrrk⋅r-ωt+ϕ0(r)⎤i⎡k⋅r+ϕ0(r)⎤-iωt°r±i⎡±⎦=E⎣⎦E(r,t)=E0e⎣0ee

In Rectangular Coordinate System

•乘除:先分别取实部,再乘除。

9

In Spherical Coordinate System

常用的微分运算表达式为

A

ψ(r,t)=cos⎡k(r-vt)⎤⎣⎦r

10

Aik(r-vt)

ψ(r,t)=e

r

A spherical waveis a constant-frequency wave whose wavefronts(surfaces of constant phase) are

parallel concentric spheres of constant amplitude normal to the phase velocity vector.

When the distance from the source is very large, a spherical wave can be locally

approximated as a plane wave.

In Cylindrical Coordinate System

常用的微分表达式为

Harmonic cylindrical wave

° ψ

(

ρ,t)=

A

A

e

ik(ρ-vt)

ψ(

ρ,t)=

cos⎡⎣k(ρ-vt)⎤⎦

A perfect cylindrical wave

The length of wave train of a single photon

•单色均匀平面光波是一种理想模型,严格的单色平面

光波在时间和空间上都无限扩展,实际上是不存在的。

•实际上,普通光源,原子发出的光波是由一段段有限长的称为波列的光波组成的;每段波列,其振幅在持续时间内保持不变或缓慢变化,前后各段之间没有固定的相位关系,甚至光矢量的振动方向也不同。•时间上有限、空间上有限的实际光波,根据傅立叶变换,可以表示为不同频率、不同传播方向的单色波的叠加。

E(z,t)=∑E0lcos(klz-ωlt)

l

N

E(t)=⎰+∞

E(ν)exp(-i2πνt)d-1

-∞

ν=F

[E(ν)]

⎧eE(t)=⎨

-βt

e,t≥0

0,t

-i2πν0t

E(ν)=⎰e

-∞

+∞

-βt

e

-i2πν0t

e

i2πνt

dt=

i2πν-ν0+iβ

E(ν=E(ν)E(ν)=

2

*

1

4πν-ν0+β

2

2

2

(t-t0)2

ψ (r,t)=A2τ2

cos⎡⎣k(z-vt)⎤⎦

0e

-

Light source

Cd Lamp Kr Lamp Hg Lamp Ne Lamp Incandescent

Lamp He-Ne Laser

(CW) He-Ne Laser (Single Mode)

λ0(nm) Δλ(nm)

643.8 605.8 546.1 632.8 550 632.8 632.8

1.3*10-3 5.5*10-3

5

2.0*10-3

Τ L0

good 1.1ns 0.32m good 0.22ns 0.067m poor 0.2ps 60μm good 0.67ns 0.2m Very

300 ~3fs ~1μm

poor good

~1.3*10-3 ~1ns 0.2~0.3m 1.0*10-9

Very

1.3ms

good

4*105 m

The group velocityof a wave is the velocity with which the variations in the shape of the wave's amplitude (modulationor envelopeof the wave) propagate through space.

vgroup

dω=dk

21

22

Introduction to waves

Waves have crests and troughs.The crest of a wave is sometimes called a wave front.

The shape of a wave is determined

by its wave front.

In physics, a wave front is the locus (a line, or, in a wave propagating in 3 dimensions, a surface) of points having the same phase.

1

rr

E(x,t)=E0cos(kx-ωt+ϕ0)

Waves have cycles, frequency, and amplitude, just like

oscillations.

The frequency of a wave tells how often each point oscillates.

The wavelength of a wave is the length of one complete cycle.

The amplitude of a wave is the maximum movement from equilibrium.

2

X

rr

E(x,t)=E0cos(kx-ωt+ϕ0)

空间参量与时间参量

空间周期

λ

时间周期T=

λ

v

空间频率f=

1

λ

1

时间频率υ=

T

传播数k=2πf=

λ

时间角频率ω=2πυ=

T

ω=kv

•简谐波相位的多种表达形式

⎛zt⎫⎛z⎫φ=2π -⎪+φ0=ω -t⎪+φ0

⎝λT⎭⎝v⎭⎛z⎫

=2π -vt⎪+φ0=2π(fz-υt)+φ0

⎝λ⎭

3

rrrrr

E(r,t)=E0cos(k⋅r-ωt+ϕ0)

f(z,t)=Acos⎡kz-vtω=kv⎤()⎣⎦

Transverse Wave:

• Note how the wave pattern definitely moves

4

to the right.

• However any particular point (look at the blue one) just moves transversely (i.e., up and down) to the direction of the wave.

Wave Velocity (Wave Phase Velocity): • The wave velocity is defined as the wavelength divided by the time it takes a wavelength (green) to pass by a fixed point

(blue).

5

The phase velocityof a wave is the rate at which the phase of the wave propagates in space. This is the velocity at which the phase of any single frequency component of the wave will propagate. We can pick one particular phase of the wave (for example the crest) and it would appear to travel at the phase velocity.

vphase

2π/τλ===k2π/λτ

ω

0.0,

r1n

..r1

Snapshots of a wave with angular frequency ωare shown at 3 times:

Which of the following expressions describes this wave?

=0

(a) y = sin(kx-ωt)

(b) y = sin(kx+ωt) (c) y =cos(kx+ωt)

π

=2ω

In what direction is this wave traveling?

t=

x

πω

(a) +x direction (b) 6

0.0,

r1n

..r1

=0

π

=2ω

πt=ω

x

•We claim this wave moves in the -x direction.•The orange dot marks a point of constant phase.

It clearly moves in the -x direction as time increases!!

⏹ Wave-fronts are helpful for drawing pictures of interfering waves.

⏹ A wave's wave-fronts sweep along at the speed of light.

⏹ A plane wave has flat wave-fronts throughout all space. It also has infinite energy. It doesn’t exist in reality.

7

空间参量与时间参量

空间周期

λ

时间周期T=

λ

v

空间频率f=

1

λ

1

时间频率υ=

T

传播数k=2πf=

λ

时间角频率ω=2πυ=

T

ω=kv

rrrrr

E(r,t)=E0cos(k⋅r-ωt+ϕ0) urr

E(z,t)=E0cos⎡kz-vtω=kv⎤()⎣⎦

8

复数表示的优点

•将波函数中与空间坐标有关的因子和时间坐标有关的因子分离•简化运算运算规则

•线性运算:(加、减、乘常数、除常数、微分、积分),将复数形式代入进行运算,最后结果取实部

rrrrr

E(r,t)=E0cos(k⋅r-ωt+ϕ0)

rrrrrrrrrk⋅r-ωt+ϕ0(r)⎤i⎡k⋅r+ϕ0(r)⎤-iωt°r±i⎡±⎦=E⎣⎦E(r,t)=E0e⎣0ee

In Rectangular Coordinate System

•乘除:先分别取实部,再乘除。

9

In Spherical Coordinate System

常用的微分运算表达式为

A

ψ(r,t)=cos⎡k(r-vt)⎤⎣⎦r

10

Aik(r-vt)

ψ(r,t)=e

r

A spherical waveis a constant-frequency wave whose wavefronts(surfaces of constant phase) are

parallel concentric spheres of constant amplitude normal to the phase velocity vector.

When the distance from the source is very large, a spherical wave can be locally

approximated as a plane wave.

In Cylindrical Coordinate System

常用的微分表达式为

Harmonic cylindrical wave

° ψ

(

ρ,t)=

A

A

e

ik(ρ-vt)

ψ(

ρ,t)=

cos⎡⎣k(ρ-vt)⎤⎦

A perfect cylindrical wave

The length of wave train of a single photon

•单色均匀平面光波是一种理想模型,严格的单色平面

光波在时间和空间上都无限扩展,实际上是不存在的。

•实际上,普通光源,原子发出的光波是由一段段有限长的称为波列的光波组成的;每段波列,其振幅在持续时间内保持不变或缓慢变化,前后各段之间没有固定的相位关系,甚至光矢量的振动方向也不同。•时间上有限、空间上有限的实际光波,根据傅立叶变换,可以表示为不同频率、不同传播方向的单色波的叠加。

E(z,t)=∑E0lcos(klz-ωlt)

l

N

E(t)=⎰+∞

E(ν)exp(-i2πνt)d-1

-∞

ν=F

[E(ν)]

⎧eE(t)=⎨

-βt

e,t≥0

0,t

-i2πν0t

E(ν)=⎰e

-∞

+∞

-βt

e

-i2πν0t

e

i2πνt

dt=

i2πν-ν0+iβ

E(ν=E(ν)E(ν)=

2

*

1

4πν-ν0+β

2

2

2

(t-t0)2

ψ (r,t)=A2τ2

cos⎡⎣k(z-vt)⎤⎦

0e

-

Light source

Cd Lamp Kr Lamp Hg Lamp Ne Lamp Incandescent

Lamp He-Ne Laser

(CW) He-Ne Laser (Single Mode)

λ0(nm) Δλ(nm)

643.8 605.8 546.1 632.8 550 632.8 632.8

1.3*10-3 5.5*10-3

5

2.0*10-3

Τ L0

good 1.1ns 0.32m good 0.22ns 0.067m poor 0.2ps 60μm good 0.67ns 0.2m Very

300 ~3fs ~1μm

poor good

~1.3*10-3 ~1ns 0.2~0.3m 1.0*10-9

Very

1.3ms

good

4*105 m

The group velocityof a wave is the velocity with which the variations in the shape of the wave's amplitude (modulationor envelopeof the wave) propagate through space.

vgroup

dω=dk

21

22


相关文章

  • 遥感名词解释
  • 名词解释 1.遥感:遥感即遥远感知,是在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术.一般指的是电磁波遥感.p1 2.电磁波:根据麦克斯韦电磁场理论,变化的电场能够在它的周围引起变化的磁场,这个变化的磁场又在较远的区域内引 ...查看


  • 机电一体化技术总结
  • 机电一体化技术 第一章机电一体化技术导论 1.1概述:(1)核心:机械技术.微电子技术 支柱学科:力学.机械学.制造工艺学.控制学 (2)概念:机电一体化是从系统的观点出发,综合运用机械技术.微电子技术.自动控制技术.计算机技术.信息技术. ...查看


  • 麦克斯韦方程组(彩图完美解释版)
  • 麦克斯韦方程组 关于热力学的方程,详见"麦克斯韦关系式". 麦克斯韦方程组(英语:Maxwell's equations)是英国物理学家麦克斯韦在19世纪建立的描述电磁场的基本方程组. 它含有四个方程,不仅分别描述了电场 ...查看


  • SAR图像处理
  • SAR 图像处理 班级: 学号: 姓名: 一:SAR 图像概述: SAR 是一种可成像的雷达,它所用的雷达波段大约是300MHz 到30GH z .比如一般用的波段是1~10GHz的合成孔径雷达,大气对这种波段的影响不大.也就是说如果天上有 ...查看


  • 数学是发明还是发现的
  • 数学是发明还是发现的 环球科学·数学篇 关键词: 数学, 对称, 发明, 发现 1960年,诺贝尔奖得主.物理学家尤金·魏格纳(Eugene Wigner)以―有用得说不通来阐述数学的伟大,而作为一位活跃的理论天体物理学家,我在工作中也感同 ...查看


  • 波的基本性质
  • 在空间以特定形式传播的物理量或物理量的扰动.由于是以特定的形式传播,这个物理量(或 特定边界条件下的解.物理定义 wave 某一物理量的扰动或振动在空间逐点传递时形成的运动.不同形式的波虽然在产生机制.传播方式和与物质的相互作用等方面存在很 ...查看


  • 遥感作业答案
  • 第一章 遥感物理基础 1 遥感:在不接触的情况下,对目标或自然现象远距离感知的一门探测技术. 2电磁波谱: 把各种电磁波按照波长或频率的大小依次排列,就形成了电磁波谱. 3绝对黑体:能够完全吸收任何波长入射能量的物体 4灰体:在各种波长处的 ...查看


  • 大学期末考试(GIS真题9.18)
  • 2007 一名词解释 1. 数据库管理系统:是用于管理数据库的软件系统,又具有相互关联关系的大型数据集和 操作这些数据集的一套系程序组成 2. 空间对象:是GIS 空间分析的客体,它们是现实世界中客观存在的实体或现象.人们能 够感知空间对象 ...查看


  • 南开17春秋学期[世界科技文化史(尔雅)]在线作业
  • 一.单选题(共 35 道试题,共 70 分.)v 1. 下列哪一学科不是以科学技术为研究对象的? . 科学技术史 . 生命科学 . 科学哲学 . 科学社会学 标准答案: 2. 科技文化的特点有: . 系统性 . 国际性 . 基础性 . 以上 ...查看


热门内容