正交试验法
我们知道如果有很多的因素变化制约着一个事件的变化,那么为了弄明白哪些因素重要,哪些不重要,什么样的因素搭配会产生极值,必须通过做实验验证(仿真也可以说是试验,只不过试验设备是计算机),如果因素很多,而且每种因素又有多种变化(专业称法是:水平),那么试验量会非常的大,显然是不可能每一个试验都做的。那我们这个试验来讲,影响主轴温升的因素很多,比如转速、预紧力、油气压力、喷油间隙时间、油品等等;每种因素的水平也很多,比如转速从 8Krpm到20Krpm,等等,坤哥算了一下,所有因素都做,大概一共要900次试验,按一天3次试验计,要不停歇的做10个月,显然是不可能的。
能够大幅度减少试验次数而且并不会降低试验可行度的方法就是使用正交试验法。首先需要选择一张和你的试验因素水平相对应的正交表,已经有数学家制好了很多相应的表,你只需找到对应你需要的就可以了。所谓正交表,也就是一套经过周密计算得出的现成的试验方案,他告诉你每次试验时,用那几个水平互相匹配进行试验,这套方案的总试验次数是远小于每种情况都考虑后的试验次数的。比如3水平4因素表就只有9行,远小于遍历试验的81次;我们同理可推算出如果因素水平越多,试验的精简程度会越高。
建立好试验表后,根据表格做试验,然后就是数据处理了。由于试验次数大大减少,使得试验数据处理非常重要。首先可以从所有的试验数据中找到最优的一个数据,当然,这个数据肯定不是最佳匹配数据,但是肯定是最接近最佳的了。这是你能得到一组因素,这是最直观的一组最佳因素。接下来将各个因素当中同水平的试验值加和(注:正交表的一个特点就是每个水平在整个试验中出现的次数是相同的),就得到了各个水平的试验结果表,从这个表当中又可以得到一组最优的因素,通过比较前一个因素,可以获得因素变化的趋势,指导更进一步的试验。各个因素中不同水平试验值之间也可以进行如极差、方差等计算,可以获知这个因素的敏感度。等等等等...还有很多处理数据的方法。然后再根据统计数据,确定下一步的试验,这次试验的范围就很小了,目的就是确定最终的最优值。当然,如果因素水平很多,这种寻优过程可能不止一次。
讲了这么多,你也许会问,你说那个表很准,能代表大趋势,为什么呢?这个问题是有证明的,不过我们不必去看那个证明(很复杂,看不懂:P),我的考虑是这样的,如果我们将所有的试验情况排列成一条线,正交表所取得那些试验点,就肯定正好为于这条线的一组均分点上,由此就可以大致估算出整个试验的大致走向了,不过均分为多少个点倒是问题,取多了失去正交试验的意义,少了无法代表趋势,这点我还没考虑清楚。我师弟的考虑到是有道理,他认为取的这些点是所有试验点的一组最小正交基,也就是说所有试验点都可以由这几个基本点衍生表示,故而考虑基的性质就能推断所有的点的性质了,我觉得这个是个最好的解释了,呵呵。
在生产和科研中,为了研制新产品,改革生产工艺,寻找优良的生产条件,需要做许多多因素的试验。 在方差分析中对于一个或两个因素的试验,我们可以对不同因素的所有可能的水平组合做试验,这叫做全面试验。当因素较多时,虽然理论上仍可采用前面的方法进行全面试验后再做相应的方差分析,但是在实际中有时会遇到试验次数太多的问题。例如,生产化工产品,需要提高收率(产品的实际产量与理论上投入的最大产量之比),认为反应温度的高低、加碱量的多少、催化剂种类等多种因素,都是造成收率不稳的主要原因。根据以往经验,选择温度的三个水平:800C、850C、
900C;加碱量的三个水平:35、48、55(kg);催化剂的三个水平:甲、乙、丙三种。如果做全面试验,则需33=27次。如果有3个因素,每个因素选取4个试验水平的问题,在每一种组合下只进行一次试验,所有不同水平的组合有43=64种,如果6个因素,5个试验水平,全面试验的次数是56=15,625次。对于这样一些问题,设计全面的试验往往耗时、费力,往往很难做到。因此,如何设计多因素试验方案,选择合理的试验设计方法,使之既能减少试验次数,又能收到较好的效果。“正交试验法”就是研究与处理多因素试验的一种科学有效的方法
正交试验法在西方发达国家已经得到广泛的应用,对促进经济的发展起到了很好的作用。在我国,正交试验法的理论研究工作已有了很大的进展,在工农业生产中也正在被广泛推广和应用,使这种科学的方法能够为经济发展服务。
正交试验法就是利用排列整齐的表 -正交表来对试验进行整体设计、综合比较、统计分析,实现通过少数的试验次数找到较好的生产条件,以达到最高生产工艺效果。正交表能够在因素变化范围内均衡抽样,使每次试验都具有较强的代表性,由于正交表具备均衡分散的特点,保证了全面试验的某些要求,这些试验往往能够较好或更好的达到试验的目的。正交试验设计包括两部分内容:第一,是怎样安排试验;第二,是怎样分析试验结果。
正交试验法
我们知道如果有很多的因素变化制约着一个事件的变化,那么为了弄明白哪些因素重要,哪些不重要,什么样的因素搭配会产生极值,必须通过做实验验证(仿真也可以说是试验,只不过试验设备是计算机),如果因素很多,而且每种因素又有多种变化(专业称法是:水平),那么试验量会非常的大,显然是不可能每一个试验都做的。那我们这个试验来讲,影响主轴温升的因素很多,比如转速、预紧力、油气压力、喷油间隙时间、油品等等;每种因素的水平也很多,比如转速从 8Krpm到20Krpm,等等,坤哥算了一下,所有因素都做,大概一共要900次试验,按一天3次试验计,要不停歇的做10个月,显然是不可能的。
能够大幅度减少试验次数而且并不会降低试验可行度的方法就是使用正交试验法。首先需要选择一张和你的试验因素水平相对应的正交表,已经有数学家制好了很多相应的表,你只需找到对应你需要的就可以了。所谓正交表,也就是一套经过周密计算得出的现成的试验方案,他告诉你每次试验时,用那几个水平互相匹配进行试验,这套方案的总试验次数是远小于每种情况都考虑后的试验次数的。比如3水平4因素表就只有9行,远小于遍历试验的81次;我们同理可推算出如果因素水平越多,试验的精简程度会越高。
建立好试验表后,根据表格做试验,然后就是数据处理了。由于试验次数大大减少,使得试验数据处理非常重要。首先可以从所有的试验数据中找到最优的一个数据,当然,这个数据肯定不是最佳匹配数据,但是肯定是最接近最佳的了。这是你能得到一组因素,这是最直观的一组最佳因素。接下来将各个因素当中同水平的试验值加和(注:正交表的一个特点就是每个水平在整个试验中出现的次数是相同的),就得到了各个水平的试验结果表,从这个表当中又可以得到一组最优的因素,通过比较前一个因素,可以获得因素变化的趋势,指导更进一步的试验。各个因素中不同水平试验值之间也可以进行如极差、方差等计算,可以获知这个因素的敏感度。等等等等...还有很多处理数据的方法。然后再根据统计数据,确定下一步的试验,这次试验的范围就很小了,目的就是确定最终的最优值。当然,如果因素水平很多,这种寻优过程可能不止一次。
讲了这么多,你也许会问,你说那个表很准,能代表大趋势,为什么呢?这个问题是有证明的,不过我们不必去看那个证明(很复杂,看不懂:P),我的考虑是这样的,如果我们将所有的试验情况排列成一条线,正交表所取得那些试验点,就肯定正好为于这条线的一组均分点上,由此就可以大致估算出整个试验的大致走向了,不过均分为多少个点倒是问题,取多了失去正交试验的意义,少了无法代表趋势,这点我还没考虑清楚。我师弟的考虑到是有道理,他认为取的这些点是所有试验点的一组最小正交基,也就是说所有试验点都可以由这几个基本点衍生表示,故而考虑基的性质就能推断所有的点的性质了,我觉得这个是个最好的解释了,呵呵。
在生产和科研中,为了研制新产品,改革生产工艺,寻找优良的生产条件,需要做许多多因素的试验。 在方差分析中对于一个或两个因素的试验,我们可以对不同因素的所有可能的水平组合做试验,这叫做全面试验。当因素较多时,虽然理论上仍可采用前面的方法进行全面试验后再做相应的方差分析,但是在实际中有时会遇到试验次数太多的问题。例如,生产化工产品,需要提高收率(产品的实际产量与理论上投入的最大产量之比),认为反应温度的高低、加碱量的多少、催化剂种类等多种因素,都是造成收率不稳的主要原因。根据以往经验,选择温度的三个水平:800C、850C、
900C;加碱量的三个水平:35、48、55(kg);催化剂的三个水平:甲、乙、丙三种。如果做全面试验,则需33=27次。如果有3个因素,每个因素选取4个试验水平的问题,在每一种组合下只进行一次试验,所有不同水平的组合有43=64种,如果6个因素,5个试验水平,全面试验的次数是56=15,625次。对于这样一些问题,设计全面的试验往往耗时、费力,往往很难做到。因此,如何设计多因素试验方案,选择合理的试验设计方法,使之既能减少试验次数,又能收到较好的效果。“正交试验法”就是研究与处理多因素试验的一种科学有效的方法
正交试验法在西方发达国家已经得到广泛的应用,对促进经济的发展起到了很好的作用。在我国,正交试验法的理论研究工作已有了很大的进展,在工农业生产中也正在被广泛推广和应用,使这种科学的方法能够为经济发展服务。
正交试验法就是利用排列整齐的表 -正交表来对试验进行整体设计、综合比较、统计分析,实现通过少数的试验次数找到较好的生产条件,以达到最高生产工艺效果。正交表能够在因素变化范围内均衡抽样,使每次试验都具有较强的代表性,由于正交表具备均衡分散的特点,保证了全面试验的某些要求,这些试验往往能够较好或更好的达到试验的目的。正交试验设计包括两部分内容:第一,是怎样安排试验;第二,是怎样分析试验结果。