光催化分解水制氢催化剂的研究进展

第39卷第2期2010年4月当代化工ContemporaryChemicalIndustryVo1.39,No.2April,2010

光催化分解水制氢催化剂的研究进展*

华,汪淑影,李

(大庆石油学院化学学工学院,黑龙江大庆163318)

摘要:太阳光光催化分解水制取氢气作为一种环境友好的再生能源制备技术被进行了大量的研究,

这种技术被认为是最终的解决能源和环境问题的最佳途径。在可见光照射下光解水制氢的关键是光催化剂的制备。介绍了利用光解水制氢的几种光催化剂:TiO2及钛酸盐光催化剂、铌酸盐光催化剂、钽酸盐光催化钒酸盐光催化剂、钨酸盐光催化剂等的研究进展。综述了提高光催化剂反应活性的途径,其中主要包括光剂、

催化剂纳米化法、离子掺杂法、半导体复合法。展望了该领域未来的研究方向。关

词:光催化;光催化剂;氢气

文献标识码:A

文章编号:1671-0460(2010)02-0202-04

中图分类号:TQ031.3

化石能源燃烧引起的环境污染和温室效应,促

使人们不得不寻找新的能源。所有能源中氢气作为

煤和天然气无污染可再生的能源,无疑是继石油、

等非再生能源之后,最有前景的新一代能源。太阳一秒钟内照到地球上的能量相当于500万t标准煤燃烧所释放的能量。因此,把太阳能转化为氢能,发展高效、低成本的规模化制氢技术具有重大的社会、经济效益。利用太阳能光电化学或光催化分解水制氢是最具吸引力的可再生能源制氢途径。太阳能光催化制氢被认为是最终的解决能源和环境问题的最佳途径。

可见光照射下光解水制氢的关键是光催化剂的制备。本文介绍了TiO2及钛酸盐催化剂、铌酸盐催化剂、钽酸盐催化剂、铬酸盐和钒酸盐等光催化剂的改性及制氢性能和提高光催化剂性能的途径。

1光催化剂的分类

TiO2及钛酸盐光催化剂

TiO2是研究得最多也最深入的光催化剂。TiO2

能吸收较多的紫外光,但对可见光的吸收能力较差。可以通过对TiO2进行改性、制备条件优化来改善TiO2对可见光的吸收性能。Ji[1]等采用两步水热合成法制备了Bi-TiO2复合纳米光催化剂,紫外特征吸收能力比较纯的TiO2有明显的红移。以往研究大多是对TiO2进行单一元素的掺杂,最近几年不少研究者对共掺杂TiO2进行了研究[2-4],结果表明共掺杂可以进一步提高TiO2的光催化活性[5]。Zhang[6]等1.1

提高了其可见用CdS和S6+改性后的TiO2纳米管,

光的催化活性。S6+的掺杂使TiO2得带隙变窄,增强

S6+的掺杂降低了导了对可见光的响应。进一步说,

带电子的还原电位,从而提高了CdS上的导带电子跃迁到TiO2的能力。由于CdS和S6+的协同作用,CdS/S-TiO2与CdS/TiO2或S-TiO2相比活性较高。

在钛酸盐这类化合物中,TiO8八面体共角或共边形成带负电的层状结构,带正电的金属离子填充在层与层之间,而扭曲的TiO8八面体被认为在光催化活性的产生中起着重要作用。Puangpetch等[7]采用溶胶凝胶法合成了介孔组装的SrTiO3,对不同的孔清除剂进行了研究,结果表明,当孔清除剂为甲醇时,介孔组装的SrTiO3分解水制氢的活性最高。进一步研究得出,Pt作为助催化剂不但可以提高其对可见光的吸收能力,还可以为氢的还原提供活性位,从而提高了光催化活性。Wang等[8]对SrTiO3进行了改性。对SrTiO3和硫脲混合物进行高能研磨,制备了氮、硫共掺杂SrTiO3催化剂。在λ>510nm的可见光区,氮、硫共掺杂SrTiO3催化剂的活性是SrTiO3的10.9倍。这可能是因为新带隙可以有效的吸收可见光。

1.2铌酸盐光催化剂

铌酸盐已经成为半导体光解水研究中的一个热点。ZielińskaB等[9]采用浸渍法把Nb2O5浸渍LiOH水溶液中,然后在温度为400~650℃范围内进行焙烧,制得铌酸盐催化剂。实验结果表明,LiNbO3和LiNb3O8制氢活性最高。这意味着,没有经过任何进

*收稿日期:2009-12-15

作者简介:宋华(1963-),女,工学博士,教授、博导,现系大庆石油学院化学化工学院副院长,从事绿色化学及催化理论等方面的研究。

电话:0459-6504035,E-mail:[email protected]

2010年4月宋华,等:光催化分解水制氢催化剂的研究进展203

一步的修饰或掺杂的铌酸锂作为一种新型材料被

应用。Lin等[10]经两步固相反应将Ni的氧化物置入层

制成K4Nb6O17-SSR(状铌酸盐K4Nb6O17,xNi/Nb为0.8

%~5%),与负载前和常规方法制备的NiOy/K4Nb6O17相比,K4Nb6O17-SSR0.2具有非常高的产氢活性。活性提高的原因是Ni的纳米颗粒氧化物植入到K4Nb6O17的体相结构中,在外部颗粒表面没有NiO颗粒。Shi等[11]用氮掺杂NaNbO3-xNx,发现其红移。并且,在煅烧温度为833K时,表现出最高的可见光催化活性。

1.3钽酸盐光催化剂

Zhou等[12]在没有使用任何模板的情况下,采用水热法合成纳米Sr2Ta2O7。所合成的纳米Sr2Ta2O7的厚度,宽度,长度分别为10~50nm,50~150nm。对合成的条件进行了考察:最佳条件为在260℃放置7d。在没有助催化剂的情况下,与Sr2Ta2O7相比纳米Sr2Ta2O7表现出较高的光催化活性。主要是因为其具有较大的表面积和纳米结构。

Zhang等[13]采用传统的固相法制备了BiTa1-x

CuxO()系列的催化剂。并且对其电子4x=0.00~0.04

结构和光催化活性进行了研究。紫外-可见光谱显示出Cu2+的载入不仅提高了其在紫外光下的光催化活性,也提高了在可见光(λ>400nm)下的活性。当掺杂摩尔分数2%Cu2+和负载0.3%质量分数的助催化剂RuO2时,其活性最高。1.4钒酸盐光催化剂

InVO4的带隙仅有2.0eV,在λ

VO4也不是一个规则的四面体。2范围内都有响应。

个O与V离得较远,两个离得比较近,而且VO4四面体彼此之间是相互分离的。在其表面沉积Pt,可以从CH3OH溶液中释放H2,速率为7μmol/h,若是沉积NiOx,则可以直接分解纯水,H2的释放速率

[14]

可以达到5μmol/(g·h)。Lin等[15]的研究表明,NiO/InVO4首先在500℃下还原2h,然后在环境条件下氧化48h可使其具有较高的可见光分解水制氢活性。Huang等[16]采用低温水热合成法成功地合成了对可见光有很好吸收活性的钒酸银催化剂。在不同的合成条件下,钒酸银的结构随着合成时间和表面活性剂的改变而改变。UV-vis光谱显示钒酸银在带隙为2.2~2.5eV范围内有很强的可见光吸收能力。

1.5钨酸盐光催化剂

三氧化钨作为光解水催化材料引人注目。Gratian等[17]初步研究了三氧化钨在可见光诱导下的析氧情况;目前为止WO3在可见光辐射下光解水的速率很低,如何提高其光解水催化性能成为光催化领域的研究热点之一。研究表明掺杂是提高WO3光催化活性的有效手段。杜俊平等[18]采用低热固相反应法制

备了低量La3+(0.05%)掺杂的WO3催化材料,采用XRD、XPS和DRS对样品进行了表征和分析。结果

0.05%La3+掺杂可使WO3光谱响应范围向可表明,

见光区拓展。XPS分析表明,La3+掺杂可导致粉体表面晶格氧的增加。在可见光辐射下光催化分解水制氧的试验中,0.05%La3+掺杂WO3的光催化析氧速率高达177μmol/(L·h),是未掺杂WO3的1.8倍。

Dodd等[19]采用力化学反应法成功地合成了具有高光催化活性的ZnO-WO3催化剂。对H2WO4+12NaCl进行研磨和热处理可得到不规则的片状钨酸钠,而不是纳米WO3颗粒。使用ST技术进行顺磁共振光谱学分析,发现由于含有ZnWO4,其光催化活性降低。这是因为ZnWO4与ZnO相比,其颗粒尺寸较大,降低了界面转移光生载流子的有效面积。Xu等[20]研究了制备方法对光催化剂的影响。他们使用简单的溶剂热法,在180℃,2h条件下成功地合成了平均尺寸为12nm的Bi2WO6催化剂。使用XRD、SEM、TEM等进行分析,结果显示:与采用水热法合成的Bi2WO6相比,简单的溶剂热法合成的Bi2WO6对可见光的吸收活性得到很大地提高。

2提高光催化剂性能的途径

某些光催化剂在催化制氢的过程中存在电子-空穴复合快、光谱利用范围窄,光量子效率低等问题,使其实际应用受到了限制。为了提高光催化剂光量子效率,人们开始转向对光催化剂进行改性。目前,主要的改性方法有贵金属沉积法、离子掺杂

染料光敏化法等。本文主要介绍了光催化剂纳法、米化、离子掺杂、半导体复合。2.1光催化剂纳米化

纳米微粒由于尺寸小,表面所占的体积分数大,表面的键态和电子态与颗粒内部不同、表面原子配位不全等,导致表面的活性位置增加,这就使它具备了作为催化剂的基本条件。纳米半导体比常规半导体光催化活性高得多,原因在于量子尺寸效应使其导带和价带能级变成分立能级,能隙变宽,导带电位变得更负,而价带电位变得更正,这意味着纳米半导体粒子具有更强的氧化或还原能力。Zhou等[12]采用水热法合成纳米Sr2Ta2O7,其表现出较高的光催化活性。主要是因为其具有较大的表面积和纳米结构。2.2离子掺杂

离子的掺杂产生离子缺陷,可以成为载流子的获阱,延长其寿命。相对于金属离子掺杂,非金属离子掺杂光催化剂的研究较少。Yuan等[21]制备了高比表面积的N负载TiO2光催化剂,其光谱响应范围扩展至600nm。N在TiO2中以分子N2的化学吸附取代基N两种形态共存,它们都加强了可见光的效

204当代化工第39卷第2期

应,使N-TiO2具有较高的光催化制氢活性。Di等[22]和Yamada等[23]的研究证实N、F共掺杂TiO2可见

N共掺杂光下的光催化活性高于单掺杂的TiO2。S、

也可促使TiO2可见光响应。Wei等[24]发现S、N共掺

且杂可产生协同效应,使TiO2的光吸收带边红移,

在可见光区呈现强吸收。

近来人们又进行金属离子,非金属离子共掺杂的方法进一步提高光催化剂的活性。Song等[25]发现铜氮共掺杂TiO2在可见光区具有强吸收,光吸收带边红移,而且其光催化活性高于单掺杂和不掺杂的TiO2。Lv等[26]研究了铋、碳和氮共掺杂的TiO2,发现共掺杂TiO2不但提高了电子和空穴的分离效率,而且增强了催化剂对光的吸收,光吸收带边红移,光催化活性提高。2.3半导体复合

近几年,对半导体复合进行了许多研究,复合半导体使吸收波长大大红移,催化活性提高,这可归因于不同能级半导体间光生载流子易于分离。此外,复合半导体的晶型结构也使光催化活性得到提高。王艳华等[27]在超声条件下,采用溶胶凝胶法制备Zn(OH)2溶胶,然后在其上沉积沉淀CdS,制备CdS/Zn(OH)2催化剂前驱体。前驱体分别在空气和氮气下焙烧,制得两种CdS/ZnO复合光催化剂。催化剂表征和分解水制氢实验结果表明,两种CdS/ZnO复合光催化剂在可见光区均有强吸收。

borondopantinB,N-codopedanataseTiO2nanoparticles:AnavenueforprobingdiamagneticdopantsinTiO2byelectronparamagneticresonancespectroscopy[J].JournaloftheAmerican2008,130:2760-2761.ChemicalSociety,

[4]OzakiH,IwamotoS,InoueM.EffectsofamountofSiadditionand

annealingtreatmentonthephotocatalyticactivitiesofN-andSi-codopedtitaniasundervisiblelightirradiation[J].Industrial&EngineeringChemistryResearch,2008,47:2287-2293.

[5]DiamandescuL,VasiliuF,Tarabasanu-MihailaD,etal.Structural

andphotocatalyticpropertiesofiron-andeuropium-dopedTiO2nanoparticlesobtainedunderhydrothermalconditions[J].MaterialsChemistryandPhysics,2008,112:149-153.

[6]Zhangxw,LeiLC,ZhangJL,etal.AnovelCdS/S-TiO2

nanotubesphotocatalystwithhighvisiblelightactivity[J].SeparationandPurificationTechnology,2009,66(2):417-421.[7]

PuangpetchT,SreethawongT,YoshikawaS,etal.Hydrogenproductionfromphotocatalyticwatersplittingovermesoporous-assembledSrTiO3nanocrystal-basedphotocatalysts[J].JournalofMolecularCatalysisA:Chemical,2009,312(1-2):97-106.[8]WangJS,LiH,LiHL,etal.Preparationandphotocatalytic

activityofvisiblelight-activesulfurandnitrogenco-dopedSrTiO3[J].SolidStateSciences,2009,11(1):182-188.

PalenEB,RyszardJK.Preparationandcharacterization[9]ZielińskaB,

oflithiumniobateasanovelphotocatalystinhydrogengeneration[J].JournalofPhysicsandChemistryofSolids.2008,69(1):236-242.

[10]LinHY,LeeTH,SieCY.Photocatalytichydrogenproduction

withnickeloxideintercalatedK4Nb6O17undervisiblelightirradiation[J].InternationalJournalofHydrogenEnergy,2008,33(15):4055-4063.

[11]ShiHF,LiXK,ZouZG,etal.2-Propanolphotodegradationover

nitrogen-dopedNaNbO3powdersundervisible-lightirradiation[J].2009,70(6):931-935.JournalofPhysicsandChemistryofSolids,

[12]ZhouC,ChenG,LiYX,etal.PhotocatalyticactivitiesofSr2Ta2O7

nanosheetssynthesizedbyahydrothermalmethod[J].International2009,34(5):2113-2120.JournalofHydrogenEnergy,

[13]ZhangHJ,ChenG,LiX,etal.Electronicstructureandwater

splittingundervisiblelightirradiationofBiTa1-xCuxO4(x=0.00~0.04)photocatalysts[J].InternationalJournalofHydrogenEnergy,2009,34(9):3631-3638.

HironoriA.DirectwatersplittingintoH2andO2under[14]ZouZG,

visiblelightirradiationwithanewseriesofmixedoxidesemiconductorphotocatalysts[J].JournalofPhotochemistryandPhotobiologyA:Chemistry,2003,158(2-3):145-162.

[15]LinHY,ChenYF,ChenYW.Watersplittingreactionon

NiO/InVO4undervisiblelightirradiation[J].InternationalJournal2007,32(1):86-92.ofHydrogenEnergy,

[16]HuangCM,PanGT,LiYC.,etal.Crystallinephasesand

photocatalyticactivitiesofhydrothermalsynthesisAg3VO4andAg4V2O7undervisiblelightirradiation[J].AppliedCatalysisA:General,2009,358(2):164-172.

[17]GratianRB,HironoriA.Thevisiblelightinducedphotocatalytic

activityoftungstentrioxidepowders[J].AppliedCatalysisA:General,2001,210(1-2):181-191.

李洁,陈启元.赵娟低量La3+掺杂WO3的表征及其光解[18]杜俊平,

水催化性能的研究[J].有色金属,2008,1:48-50.[19]DoddA,McKinleyA,TsuzukiT,etal.Mechanochemicalsynthesis

ofnanoparticulateZnO-ZnWO4powdersandtheirphotocatalytic

3结论

氢能是一种清洁的绿色能源。对于能源日益短

缺和环境污染日益严重的今天,光解水制氢无疑具有重要的现实意义。目前的光解水催化剂还普遍存在光电转换效率低、大多仅能吸收紫外光,虽然也研制出了大量可响应可见光的催化剂,但所有可见光催化体系的产氢率较低,条件比较苛刻,生产成本较高,在规模化利用太阳能光解水方面还远远不够。因此,对光催化剂研究,关键是要提高催化材料的活性和稳定性,吸收波长可扩展到可见光区甚至所有波段,提高太阳光能的利用率,降低材料成本。光解水催化剂的制备和性能研究是一个非常复杂的过程,还需进一步的研究和认识,开发出新型高效的光催化剂,从而实现光解水制氢的实际应用。

参考文献

[1]JiTH,YangF,LvYY,etal.Synthesisandvisible-lightphotocatalytic

activityofBi-dopedTiO2nanobelts[J].MaterialsLetters,2009,63(23):2044-2046.

RossignolS,TatibouёJM,etal.Synthesisandsolid[2]KsibiM,

characterizationofnitrogenandsulfur-dopedTiO2photocatalystsactiveundernearvisiblelight[J].MaterialsLetters,2008,62:4204-4206.[3]GopalNO,LoHH,KeSC.Chemicalstateandenvironmentof

2010年4月宋华,等:光催化分解水制氢催化剂的研究进展205

activity[J].JournaloftheEuropeanCeramicSociety,2009,29(1):139-144.

[20]XuCX,WeiX,RenZH,etal.Solvothermalpreparationof

Bi2WO6nanocrystalswithimprovedvisiblelightphotocatalyticactivity[J].MaterialsLetters,2009,63(26):2194-2197.

ChenMX,ShiJW,etal.Preparationsandphotocatalytic[21]YuanJ,

hydrogenevolutionofN-dopedTiO2fromureaandtitaniumtetrachloride[J].InternationalJournalofHydrogenEnergy,2006(10):1326-1331.

FinazziE,PacchioniG,etal.Densityfunctional[22]DiValentinC,

theoryandelectronparamagneticresonancestudyontheeffectofN-FcodopingofTiO2[J].ChemistryofMaterials,2008,20:3706-3714.

GaoYF,NagaiM.Hydrothermalsynthesisand[23]YamadaT,

evaluationofvisibleightactivephotocatalystof(N,F)-codopedanataseTiO2fromanF-containingtitaniumchemical[J].JournaloftheCeramicSocietyofJapan,2008,116:614-618.

LiangSN,PengC.Preparationandcharacterizationof[24]WeiFY,

N-S-codopedTiO2photocatalystanditsphotocatalyticactivity[J].2008,156:135-140.JournalofHazardousMaterials,

[25]SongKX,ZhouJH,BaoJC,etal.Photocatalyticactivityof

(copper,nitrogen)-codopedtitaniumdioxidenanoparticles[J].JournaloftheAmericanCeramicSociety,2008,91:1369-1371.

ZuoHousong,SunJie,etal.(Bi,CandN)codoped[26]LvKangle,

TiO2nanoparticles[J].JournalofHazardousMaterials,2009,161:396-401.

[27]王艳华,白雪峰,张灵灵.JCdS/ZnO复合半导体光催化剂的制

表征及分解水制氢[J].化学与黏合,2009,31(1):4-6.备、

ResearchProgressinCatalystsofPhotoCatalyticDecompositionofWater

SONGHua,WANGShu-ying,LIFeng

(SchoolofChemistryandChemicalEngineering,DaqingPetroleumInstitute,HeilongjiangDaqing163318,China)Abstract:Asoneoftheenvironmentallyfriendlytechnologiesforpreparationofrenewableenergytoutilizesolaren-ergy,photocatalyticdecompositionofwaterintohydrogenhasbeenextensivelystudied.Ithasbeenregardedasthe

bestwayofsolvingtheenergyandenvironmentalproblems.Thekeytosuccessfullyrealizephotocatalyticdecompo-sitionofwaterintohydrogenundervisiblelightispreparationofphotocatalysts.Inthispaper,somenewtypesofphotocatalystsfordecompositingwaterintohydrogen,suchastitaniumdioxideandtitanates,niobates,tantalates,vanadates,tungstate,wereintroduced.Themethodsofimprovingphotocatalyticactivitiesincludingnanosizedphoto-catalysts,ion-doping,compositesemiconductors,werediscussed.Andtheprospectoffutureresearchfieldwasalsopreviewed.Keywords:Photocatalysis;Photocatalyst;Hydrogen

(上接第201页)

NanotubesbyControlledFunctionalization[J].ACSNano,2008,2:1833-1840.

[14]Y.Li,H.Shimizu.TowardaStretchable,Elastic,andElectrically

MorphologyandPropertiesofPolyConductiveNanocomposite:

[styrene-b-(ethylene-co-butylene)-b-styrene]/MultiwalledCarbonNanotubeCompositesFabricatedbyHigh-ShearProcessing[J].Macromolecules,2009,42(7):2587-2593.

[15]王平华,王贺宜,唐龙祥,等.碳纳米管/PVC复合材料的制备及

2008,24(1):36-43.表征[J].高分子材料科学与工程,

[16]E.L.Bakota,L.Aulisa,R.Bruce.MultidomainPeptidesas

Single-WalledCarbonNanotubeSurfactantsinCellCulture[J].Biomacromolecules,2009,10:2201-2206.

[17]X.Wang,C.Chen,P.Wen,etal.Orptionof243Am(III)to

MultiwallCarbonNanotubes[J].Environ.Sci.Technol,2005,39:2856-2860.

L.Duan,D.Q.Zhu.AdsorptionofPolarandNonpolar[18]W.Chen,

OrganicChemicalstoCarbonNanotubes[J].Environ.Sci.Technol,2007,41:8295-8300.

[19]N.Anton,Z.Zhang,A.Nilsson,etal.EnergeticsofC-HBonds

FormedatSingle-WalledCarbonNanotubes[J].NanoLett.,2009,9(4):1301-1306.

[20]W.Liu,Y.H.Zhao,Y.Li,etal.EnhancedHydrogenStorageon

Li-DispersedCarbonNanotubes[J].J.Phys.Chem.C.,2009,113(5):2028-2033.

ModificationandApplicationofCarbonNanotubes

WENChun-ya,LIGuang-lei,SUNXue-ling

(SchoolofMaterialsScienceandTechnology,ShenyangInstituteofChemicalTechnology,LiaoningShenyang

110142,China)

Abstract:Carbonnanotubes(CNTs)possessspecialphysicalandchemicalpropertiesandhavewide-rangepotentialapplications.SurfacemodificationofCNTsprovidesnewpossibilitiesforapplicationsofnanotubes.Inthispaper,re-searchprogressinsurfacemodificationofCNTswasintroduced.ApplicationsofthemodifiedCNTsincomposite,medicine,environmentprotectionandenergystoragefieldswerealsoreviewed.Keywords:Carbonnanotubes;Composite;Surfacemodification;Polymer

第39卷第2期2010年4月当代化工ContemporaryChemicalIndustryVo1.39,No.2April,2010

光催化分解水制氢催化剂的研究进展*

华,汪淑影,李

(大庆石油学院化学学工学院,黑龙江大庆163318)

摘要:太阳光光催化分解水制取氢气作为一种环境友好的再生能源制备技术被进行了大量的研究,

这种技术被认为是最终的解决能源和环境问题的最佳途径。在可见光照射下光解水制氢的关键是光催化剂的制备。介绍了利用光解水制氢的几种光催化剂:TiO2及钛酸盐光催化剂、铌酸盐光催化剂、钽酸盐光催化钒酸盐光催化剂、钨酸盐光催化剂等的研究进展。综述了提高光催化剂反应活性的途径,其中主要包括光剂、

催化剂纳米化法、离子掺杂法、半导体复合法。展望了该领域未来的研究方向。关

词:光催化;光催化剂;氢气

文献标识码:A

文章编号:1671-0460(2010)02-0202-04

中图分类号:TQ031.3

化石能源燃烧引起的环境污染和温室效应,促

使人们不得不寻找新的能源。所有能源中氢气作为

煤和天然气无污染可再生的能源,无疑是继石油、

等非再生能源之后,最有前景的新一代能源。太阳一秒钟内照到地球上的能量相当于500万t标准煤燃烧所释放的能量。因此,把太阳能转化为氢能,发展高效、低成本的规模化制氢技术具有重大的社会、经济效益。利用太阳能光电化学或光催化分解水制氢是最具吸引力的可再生能源制氢途径。太阳能光催化制氢被认为是最终的解决能源和环境问题的最佳途径。

可见光照射下光解水制氢的关键是光催化剂的制备。本文介绍了TiO2及钛酸盐催化剂、铌酸盐催化剂、钽酸盐催化剂、铬酸盐和钒酸盐等光催化剂的改性及制氢性能和提高光催化剂性能的途径。

1光催化剂的分类

TiO2及钛酸盐光催化剂

TiO2是研究得最多也最深入的光催化剂。TiO2

能吸收较多的紫外光,但对可见光的吸收能力较差。可以通过对TiO2进行改性、制备条件优化来改善TiO2对可见光的吸收性能。Ji[1]等采用两步水热合成法制备了Bi-TiO2复合纳米光催化剂,紫外特征吸收能力比较纯的TiO2有明显的红移。以往研究大多是对TiO2进行单一元素的掺杂,最近几年不少研究者对共掺杂TiO2进行了研究[2-4],结果表明共掺杂可以进一步提高TiO2的光催化活性[5]。Zhang[6]等1.1

提高了其可见用CdS和S6+改性后的TiO2纳米管,

光的催化活性。S6+的掺杂使TiO2得带隙变窄,增强

S6+的掺杂降低了导了对可见光的响应。进一步说,

带电子的还原电位,从而提高了CdS上的导带电子跃迁到TiO2的能力。由于CdS和S6+的协同作用,CdS/S-TiO2与CdS/TiO2或S-TiO2相比活性较高。

在钛酸盐这类化合物中,TiO8八面体共角或共边形成带负电的层状结构,带正电的金属离子填充在层与层之间,而扭曲的TiO8八面体被认为在光催化活性的产生中起着重要作用。Puangpetch等[7]采用溶胶凝胶法合成了介孔组装的SrTiO3,对不同的孔清除剂进行了研究,结果表明,当孔清除剂为甲醇时,介孔组装的SrTiO3分解水制氢的活性最高。进一步研究得出,Pt作为助催化剂不但可以提高其对可见光的吸收能力,还可以为氢的还原提供活性位,从而提高了光催化活性。Wang等[8]对SrTiO3进行了改性。对SrTiO3和硫脲混合物进行高能研磨,制备了氮、硫共掺杂SrTiO3催化剂。在λ>510nm的可见光区,氮、硫共掺杂SrTiO3催化剂的活性是SrTiO3的10.9倍。这可能是因为新带隙可以有效的吸收可见光。

1.2铌酸盐光催化剂

铌酸盐已经成为半导体光解水研究中的一个热点。ZielińskaB等[9]采用浸渍法把Nb2O5浸渍LiOH水溶液中,然后在温度为400~650℃范围内进行焙烧,制得铌酸盐催化剂。实验结果表明,LiNbO3和LiNb3O8制氢活性最高。这意味着,没有经过任何进

*收稿日期:2009-12-15

作者简介:宋华(1963-),女,工学博士,教授、博导,现系大庆石油学院化学化工学院副院长,从事绿色化学及催化理论等方面的研究。

电话:0459-6504035,E-mail:[email protected]

2010年4月宋华,等:光催化分解水制氢催化剂的研究进展203

一步的修饰或掺杂的铌酸锂作为一种新型材料被

应用。Lin等[10]经两步固相反应将Ni的氧化物置入层

制成K4Nb6O17-SSR(状铌酸盐K4Nb6O17,xNi/Nb为0.8

%~5%),与负载前和常规方法制备的NiOy/K4Nb6O17相比,K4Nb6O17-SSR0.2具有非常高的产氢活性。活性提高的原因是Ni的纳米颗粒氧化物植入到K4Nb6O17的体相结构中,在外部颗粒表面没有NiO颗粒。Shi等[11]用氮掺杂NaNbO3-xNx,发现其红移。并且,在煅烧温度为833K时,表现出最高的可见光催化活性。

1.3钽酸盐光催化剂

Zhou等[12]在没有使用任何模板的情况下,采用水热法合成纳米Sr2Ta2O7。所合成的纳米Sr2Ta2O7的厚度,宽度,长度分别为10~50nm,50~150nm。对合成的条件进行了考察:最佳条件为在260℃放置7d。在没有助催化剂的情况下,与Sr2Ta2O7相比纳米Sr2Ta2O7表现出较高的光催化活性。主要是因为其具有较大的表面积和纳米结构。

Zhang等[13]采用传统的固相法制备了BiTa1-x

CuxO()系列的催化剂。并且对其电子4x=0.00~0.04

结构和光催化活性进行了研究。紫外-可见光谱显示出Cu2+的载入不仅提高了其在紫外光下的光催化活性,也提高了在可见光(λ>400nm)下的活性。当掺杂摩尔分数2%Cu2+和负载0.3%质量分数的助催化剂RuO2时,其活性最高。1.4钒酸盐光催化剂

InVO4的带隙仅有2.0eV,在λ

VO4也不是一个规则的四面体。2范围内都有响应。

个O与V离得较远,两个离得比较近,而且VO4四面体彼此之间是相互分离的。在其表面沉积Pt,可以从CH3OH溶液中释放H2,速率为7μmol/h,若是沉积NiOx,则可以直接分解纯水,H2的释放速率

[14]

可以达到5μmol/(g·h)。Lin等[15]的研究表明,NiO/InVO4首先在500℃下还原2h,然后在环境条件下氧化48h可使其具有较高的可见光分解水制氢活性。Huang等[16]采用低温水热合成法成功地合成了对可见光有很好吸收活性的钒酸银催化剂。在不同的合成条件下,钒酸银的结构随着合成时间和表面活性剂的改变而改变。UV-vis光谱显示钒酸银在带隙为2.2~2.5eV范围内有很强的可见光吸收能力。

1.5钨酸盐光催化剂

三氧化钨作为光解水催化材料引人注目。Gratian等[17]初步研究了三氧化钨在可见光诱导下的析氧情况;目前为止WO3在可见光辐射下光解水的速率很低,如何提高其光解水催化性能成为光催化领域的研究热点之一。研究表明掺杂是提高WO3光催化活性的有效手段。杜俊平等[18]采用低热固相反应法制

备了低量La3+(0.05%)掺杂的WO3催化材料,采用XRD、XPS和DRS对样品进行了表征和分析。结果

0.05%La3+掺杂可使WO3光谱响应范围向可表明,

见光区拓展。XPS分析表明,La3+掺杂可导致粉体表面晶格氧的增加。在可见光辐射下光催化分解水制氧的试验中,0.05%La3+掺杂WO3的光催化析氧速率高达177μmol/(L·h),是未掺杂WO3的1.8倍。

Dodd等[19]采用力化学反应法成功地合成了具有高光催化活性的ZnO-WO3催化剂。对H2WO4+12NaCl进行研磨和热处理可得到不规则的片状钨酸钠,而不是纳米WO3颗粒。使用ST技术进行顺磁共振光谱学分析,发现由于含有ZnWO4,其光催化活性降低。这是因为ZnWO4与ZnO相比,其颗粒尺寸较大,降低了界面转移光生载流子的有效面积。Xu等[20]研究了制备方法对光催化剂的影响。他们使用简单的溶剂热法,在180℃,2h条件下成功地合成了平均尺寸为12nm的Bi2WO6催化剂。使用XRD、SEM、TEM等进行分析,结果显示:与采用水热法合成的Bi2WO6相比,简单的溶剂热法合成的Bi2WO6对可见光的吸收活性得到很大地提高。

2提高光催化剂性能的途径

某些光催化剂在催化制氢的过程中存在电子-空穴复合快、光谱利用范围窄,光量子效率低等问题,使其实际应用受到了限制。为了提高光催化剂光量子效率,人们开始转向对光催化剂进行改性。目前,主要的改性方法有贵金属沉积法、离子掺杂

染料光敏化法等。本文主要介绍了光催化剂纳法、米化、离子掺杂、半导体复合。2.1光催化剂纳米化

纳米微粒由于尺寸小,表面所占的体积分数大,表面的键态和电子态与颗粒内部不同、表面原子配位不全等,导致表面的活性位置增加,这就使它具备了作为催化剂的基本条件。纳米半导体比常规半导体光催化活性高得多,原因在于量子尺寸效应使其导带和价带能级变成分立能级,能隙变宽,导带电位变得更负,而价带电位变得更正,这意味着纳米半导体粒子具有更强的氧化或还原能力。Zhou等[12]采用水热法合成纳米Sr2Ta2O7,其表现出较高的光催化活性。主要是因为其具有较大的表面积和纳米结构。2.2离子掺杂

离子的掺杂产生离子缺陷,可以成为载流子的获阱,延长其寿命。相对于金属离子掺杂,非金属离子掺杂光催化剂的研究较少。Yuan等[21]制备了高比表面积的N负载TiO2光催化剂,其光谱响应范围扩展至600nm。N在TiO2中以分子N2的化学吸附取代基N两种形态共存,它们都加强了可见光的效

204当代化工第39卷第2期

应,使N-TiO2具有较高的光催化制氢活性。Di等[22]和Yamada等[23]的研究证实N、F共掺杂TiO2可见

N共掺杂光下的光催化活性高于单掺杂的TiO2。S、

也可促使TiO2可见光响应。Wei等[24]发现S、N共掺

且杂可产生协同效应,使TiO2的光吸收带边红移,

在可见光区呈现强吸收。

近来人们又进行金属离子,非金属离子共掺杂的方法进一步提高光催化剂的活性。Song等[25]发现铜氮共掺杂TiO2在可见光区具有强吸收,光吸收带边红移,而且其光催化活性高于单掺杂和不掺杂的TiO2。Lv等[26]研究了铋、碳和氮共掺杂的TiO2,发现共掺杂TiO2不但提高了电子和空穴的分离效率,而且增强了催化剂对光的吸收,光吸收带边红移,光催化活性提高。2.3半导体复合

近几年,对半导体复合进行了许多研究,复合半导体使吸收波长大大红移,催化活性提高,这可归因于不同能级半导体间光生载流子易于分离。此外,复合半导体的晶型结构也使光催化活性得到提高。王艳华等[27]在超声条件下,采用溶胶凝胶法制备Zn(OH)2溶胶,然后在其上沉积沉淀CdS,制备CdS/Zn(OH)2催化剂前驱体。前驱体分别在空气和氮气下焙烧,制得两种CdS/ZnO复合光催化剂。催化剂表征和分解水制氢实验结果表明,两种CdS/ZnO复合光催化剂在可见光区均有强吸收。

borondopantinB,N-codopedanataseTiO2nanoparticles:AnavenueforprobingdiamagneticdopantsinTiO2byelectronparamagneticresonancespectroscopy[J].JournaloftheAmerican2008,130:2760-2761.ChemicalSociety,

[4]OzakiH,IwamotoS,InoueM.EffectsofamountofSiadditionand

annealingtreatmentonthephotocatalyticactivitiesofN-andSi-codopedtitaniasundervisiblelightirradiation[J].Industrial&EngineeringChemistryResearch,2008,47:2287-2293.

[5]DiamandescuL,VasiliuF,Tarabasanu-MihailaD,etal.Structural

andphotocatalyticpropertiesofiron-andeuropium-dopedTiO2nanoparticlesobtainedunderhydrothermalconditions[J].MaterialsChemistryandPhysics,2008,112:149-153.

[6]Zhangxw,LeiLC,ZhangJL,etal.AnovelCdS/S-TiO2

nanotubesphotocatalystwithhighvisiblelightactivity[J].SeparationandPurificationTechnology,2009,66(2):417-421.[7]

PuangpetchT,SreethawongT,YoshikawaS,etal.Hydrogenproductionfromphotocatalyticwatersplittingovermesoporous-assembledSrTiO3nanocrystal-basedphotocatalysts[J].JournalofMolecularCatalysisA:Chemical,2009,312(1-2):97-106.[8]WangJS,LiH,LiHL,etal.Preparationandphotocatalytic

activityofvisiblelight-activesulfurandnitrogenco-dopedSrTiO3[J].SolidStateSciences,2009,11(1):182-188.

PalenEB,RyszardJK.Preparationandcharacterization[9]ZielińskaB,

oflithiumniobateasanovelphotocatalystinhydrogengeneration[J].JournalofPhysicsandChemistryofSolids.2008,69(1):236-242.

[10]LinHY,LeeTH,SieCY.Photocatalytichydrogenproduction

withnickeloxideintercalatedK4Nb6O17undervisiblelightirradiation[J].InternationalJournalofHydrogenEnergy,2008,33(15):4055-4063.

[11]ShiHF,LiXK,ZouZG,etal.2-Propanolphotodegradationover

nitrogen-dopedNaNbO3powdersundervisible-lightirradiation[J].2009,70(6):931-935.JournalofPhysicsandChemistryofSolids,

[12]ZhouC,ChenG,LiYX,etal.PhotocatalyticactivitiesofSr2Ta2O7

nanosheetssynthesizedbyahydrothermalmethod[J].International2009,34(5):2113-2120.JournalofHydrogenEnergy,

[13]ZhangHJ,ChenG,LiX,etal.Electronicstructureandwater

splittingundervisiblelightirradiationofBiTa1-xCuxO4(x=0.00~0.04)photocatalysts[J].InternationalJournalofHydrogenEnergy,2009,34(9):3631-3638.

HironoriA.DirectwatersplittingintoH2andO2under[14]ZouZG,

visiblelightirradiationwithanewseriesofmixedoxidesemiconductorphotocatalysts[J].JournalofPhotochemistryandPhotobiologyA:Chemistry,2003,158(2-3):145-162.

[15]LinHY,ChenYF,ChenYW.Watersplittingreactionon

NiO/InVO4undervisiblelightirradiation[J].InternationalJournal2007,32(1):86-92.ofHydrogenEnergy,

[16]HuangCM,PanGT,LiYC.,etal.Crystallinephasesand

photocatalyticactivitiesofhydrothermalsynthesisAg3VO4andAg4V2O7undervisiblelightirradiation[J].AppliedCatalysisA:General,2009,358(2):164-172.

[17]GratianRB,HironoriA.Thevisiblelightinducedphotocatalytic

activityoftungstentrioxidepowders[J].AppliedCatalysisA:General,2001,210(1-2):181-191.

李洁,陈启元.赵娟低量La3+掺杂WO3的表征及其光解[18]杜俊平,

水催化性能的研究[J].有色金属,2008,1:48-50.[19]DoddA,McKinleyA,TsuzukiT,etal.Mechanochemicalsynthesis

ofnanoparticulateZnO-ZnWO4powdersandtheirphotocatalytic

3结论

氢能是一种清洁的绿色能源。对于能源日益短

缺和环境污染日益严重的今天,光解水制氢无疑具有重要的现实意义。目前的光解水催化剂还普遍存在光电转换效率低、大多仅能吸收紫外光,虽然也研制出了大量可响应可见光的催化剂,但所有可见光催化体系的产氢率较低,条件比较苛刻,生产成本较高,在规模化利用太阳能光解水方面还远远不够。因此,对光催化剂研究,关键是要提高催化材料的活性和稳定性,吸收波长可扩展到可见光区甚至所有波段,提高太阳光能的利用率,降低材料成本。光解水催化剂的制备和性能研究是一个非常复杂的过程,还需进一步的研究和认识,开发出新型高效的光催化剂,从而实现光解水制氢的实际应用。

参考文献

[1]JiTH,YangF,LvYY,etal.Synthesisandvisible-lightphotocatalytic

activityofBi-dopedTiO2nanobelts[J].MaterialsLetters,2009,63(23):2044-2046.

RossignolS,TatibouёJM,etal.Synthesisandsolid[2]KsibiM,

characterizationofnitrogenandsulfur-dopedTiO2photocatalystsactiveundernearvisiblelight[J].MaterialsLetters,2008,62:4204-4206.[3]GopalNO,LoHH,KeSC.Chemicalstateandenvironmentof

2010年4月宋华,等:光催化分解水制氢催化剂的研究进展205

activity[J].JournaloftheEuropeanCeramicSociety,2009,29(1):139-144.

[20]XuCX,WeiX,RenZH,etal.Solvothermalpreparationof

Bi2WO6nanocrystalswithimprovedvisiblelightphotocatalyticactivity[J].MaterialsLetters,2009,63(26):2194-2197.

ChenMX,ShiJW,etal.Preparationsandphotocatalytic[21]YuanJ,

hydrogenevolutionofN-dopedTiO2fromureaandtitaniumtetrachloride[J].InternationalJournalofHydrogenEnergy,2006(10):1326-1331.

FinazziE,PacchioniG,etal.Densityfunctional[22]DiValentinC,

theoryandelectronparamagneticresonancestudyontheeffectofN-FcodopingofTiO2[J].ChemistryofMaterials,2008,20:3706-3714.

GaoYF,NagaiM.Hydrothermalsynthesisand[23]YamadaT,

evaluationofvisibleightactivephotocatalystof(N,F)-codopedanataseTiO2fromanF-containingtitaniumchemical[J].JournaloftheCeramicSocietyofJapan,2008,116:614-618.

LiangSN,PengC.Preparationandcharacterizationof[24]WeiFY,

N-S-codopedTiO2photocatalystanditsphotocatalyticactivity[J].2008,156:135-140.JournalofHazardousMaterials,

[25]SongKX,ZhouJH,BaoJC,etal.Photocatalyticactivityof

(copper,nitrogen)-codopedtitaniumdioxidenanoparticles[J].JournaloftheAmericanCeramicSociety,2008,91:1369-1371.

ZuoHousong,SunJie,etal.(Bi,CandN)codoped[26]LvKangle,

TiO2nanoparticles[J].JournalofHazardousMaterials,2009,161:396-401.

[27]王艳华,白雪峰,张灵灵.JCdS/ZnO复合半导体光催化剂的制

表征及分解水制氢[J].化学与黏合,2009,31(1):4-6.备、

ResearchProgressinCatalystsofPhotoCatalyticDecompositionofWater

SONGHua,WANGShu-ying,LIFeng

(SchoolofChemistryandChemicalEngineering,DaqingPetroleumInstitute,HeilongjiangDaqing163318,China)Abstract:Asoneoftheenvironmentallyfriendlytechnologiesforpreparationofrenewableenergytoutilizesolaren-ergy,photocatalyticdecompositionofwaterintohydrogenhasbeenextensivelystudied.Ithasbeenregardedasthe

bestwayofsolvingtheenergyandenvironmentalproblems.Thekeytosuccessfullyrealizephotocatalyticdecompo-sitionofwaterintohydrogenundervisiblelightispreparationofphotocatalysts.Inthispaper,somenewtypesofphotocatalystsfordecompositingwaterintohydrogen,suchastitaniumdioxideandtitanates,niobates,tantalates,vanadates,tungstate,wereintroduced.Themethodsofimprovingphotocatalyticactivitiesincludingnanosizedphoto-catalysts,ion-doping,compositesemiconductors,werediscussed.Andtheprospectoffutureresearchfieldwasalsopreviewed.Keywords:Photocatalysis;Photocatalyst;Hydrogen

(上接第201页)

NanotubesbyControlledFunctionalization[J].ACSNano,2008,2:1833-1840.

[14]Y.Li,H.Shimizu.TowardaStretchable,Elastic,andElectrically

MorphologyandPropertiesofPolyConductiveNanocomposite:

[styrene-b-(ethylene-co-butylene)-b-styrene]/MultiwalledCarbonNanotubeCompositesFabricatedbyHigh-ShearProcessing[J].Macromolecules,2009,42(7):2587-2593.

[15]王平华,王贺宜,唐龙祥,等.碳纳米管/PVC复合材料的制备及

2008,24(1):36-43.表征[J].高分子材料科学与工程,

[16]E.L.Bakota,L.Aulisa,R.Bruce.MultidomainPeptidesas

Single-WalledCarbonNanotubeSurfactantsinCellCulture[J].Biomacromolecules,2009,10:2201-2206.

[17]X.Wang,C.Chen,P.Wen,etal.Orptionof243Am(III)to

MultiwallCarbonNanotubes[J].Environ.Sci.Technol,2005,39:2856-2860.

L.Duan,D.Q.Zhu.AdsorptionofPolarandNonpolar[18]W.Chen,

OrganicChemicalstoCarbonNanotubes[J].Environ.Sci.Technol,2007,41:8295-8300.

[19]N.Anton,Z.Zhang,A.Nilsson,etal.EnergeticsofC-HBonds

FormedatSingle-WalledCarbonNanotubes[J].NanoLett.,2009,9(4):1301-1306.

[20]W.Liu,Y.H.Zhao,Y.Li,etal.EnhancedHydrogenStorageon

Li-DispersedCarbonNanotubes[J].J.Phys.Chem.C.,2009,113(5):2028-2033.

ModificationandApplicationofCarbonNanotubes

WENChun-ya,LIGuang-lei,SUNXue-ling

(SchoolofMaterialsScienceandTechnology,ShenyangInstituteofChemicalTechnology,LiaoningShenyang

110142,China)

Abstract:Carbonnanotubes(CNTs)possessspecialphysicalandchemicalpropertiesandhavewide-rangepotentialapplications.SurfacemodificationofCNTsprovidesnewpossibilitiesforapplicationsofnanotubes.Inthispaper,re-searchprogressinsurfacemodificationofCNTswasintroduced.ApplicationsofthemodifiedCNTsincomposite,medicine,environmentprotectionandenergystoragefieldswerealsoreviewed.Keywords:Carbonnanotubes;Composite;Surfacemodification;Polymer


相关文章

  • 钌配合物光催化制氢
  • 配合物光催化氧化水研究进展 杨霞, 张晓梅, 毕晓丽 (云南师范大学化学化工学院,云南 昆明 650500) 剂在太阳能催化制氢方面的研究进展. 关键字:光催化,钌(II)配合物,太阳能,氢气 中图分类号: 文献标志码: 1.前言 当今世界 ...查看


  • 制备氢的方法
  • 热化学法制氢 太阳能直接热分解水制氢是最简单的方法,就是利用太阳能聚光器收集太阳能直接加热水,使其达到2500K(3000K以上)以上的温度从而分解为氢气和氧气的过程.这种方法的主要问题是:①高温下氢气和氧气的分离:②高温太阳能反应器的材料 ...查看


  • 制氢工艺技术分析
  • 煤制氢工艺技术分析 1. 氢气 16世纪,瑞士科学家帕拉塞斯和17世纪的一些科学家, 都发现了金属跟酸起反应产生一种可燃性气体----氢气.当时人们还不认识它,只把它当作一种可燃性的空气.直到1766年英国科学家卡文迪许才确认氢气与空气不同 ...查看


  • 从水中制取氢气的方法
  • 目前氢气主要来源是电解水,但是费用很高,下面说说另外的制氢气的方法 一.用氧化亚铜做催化剂从水中制氢气 通常,用电解水生产氢的方法比较昂贵. 过去,也曾有人研究过用氧化亚铜催化剂从水中制取氢的方法,但在实验中氧化亚铜在阳光的作用下很容易还原 ...查看


  • 甲醇水蒸汽重整制氢催化剂制备的研究(1)
  • 2006年4月工业催化Apr.2006 第14卷第4期INDUSTRIALCATALYSISVol.14 No.4 精细化工与催化 甲醇水蒸汽重整制氢催化剂制备的研究 石国军1,崔 群1,张嘉军2,玄美玲2,姚虎卿1 (1.南京工业大学化学 ...查看


  • 太阳能光解水制氢催化剂研究进展
  • 2011年 第10期 广 东 化 工 第38卷 总第222期 www.gdchem.com · 67 · 太阳能光解水制氢催化剂研究进展 (1.天水师范学院 生命科学与化学学院,甘肃省新型分子材料结构设计与功能重点实验室,甘肃 天水 741 ...查看


  • 太阳能分解水制氢技术研究进展
  • 化 工 进 展 2006年第25卷第7期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·733· 太阳能分解水制氢技术研究进展 王宝辉,吴红军,刘淑芝,盖翠萍 (大庆石油学院化学化工学院新能源化学与 ...查看


  • 浅谈氢能发电的发展趋势和存在问题
  • 浅谈氢能发电的发展趋势 和存在问题 课程: 新能源概论 班级: 姓名: 学号: 2013年5月 目 录 第一章 氢能的介绍 .......................................................... ...查看


  • 太阳能光解水制氢的研究进展
  • 618无机化学学报第17卷 117lShiS,jiW.etalJ.Am.Chem.Soc.,1994,116,3615. [18]ZHANGChi(张驰),JINGuo.Cheng(台崮城),XINXin-Qua]1(忻新泉)Wuji hm ...查看


热门内容