解读[2011版数学课程标准]

解读《2011版数学课程标准》 领会数学课标新精髓

认真学习《2011版数学课程标准》,进一步认识到数学课程改革已经从基本理念、课程目标、核心概念、课程内容、实施建议等方面进行了修订。

一、“课程基本理念”的修改

《2011版数学课程标准》将“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。这个理念能让我认识到义务教育是“普及教育”,不同于“精英教育”。

《2011版数学课程标准》将“数学学习”和“数学教学”两条合并成一条“教学活动”,整体上阐述数学教学活动的特征。表述为:“教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。”2011版《数学课程标准》重新提及“教师要发挥主导作用”,并指出:“学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者”。这里从整体上阐述数学教学过程的特征,教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,既能培养学生良好的学习习惯,也能让学生掌握有效的学习方法。

二、“课程设计思路”的修改

《2011版数学课程标准》对“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”四个方面的课程内容做了明确的阐述。

《2011版数学课程标准》将“空间与图形”改为“图形与几何”、“实践与综合应用”改为“综合与实践”。确立了“数感”、“符号意识”、“运算能力”、“模型思想”、“空间观念”、“几何直观”、“推理能力”、“数据分析观念”等八个关键词,并给出具体描述。并专门阐述了“应用意识”和“创新意识”。

三、“课程目标”的修改

数学课程标准修改前后的第二部分课程目标都是两个方面的内容:一、总目标,二、学段目标。总目标由原来的四条变为现在的三条,总目标由原来三个方面(知识技能,过程方法、情感态度)的具体阐述变为现在的四个方面(知识技能,数学思考、解决问题、情感态度)具体阐述。

《2011版数学课程标准》在原有“双基”的基础上,进一步明确提出了“基本思想”和“基本活动经验”的要求。,即“四基”基础知识、基本技能、基本思想和基本活动经验。

这里的基本思想不是前几年的教学实验“数学思想方法“,是指支撑数学科学发展的思想,核心在于数学推理、数学建模。如何让学生获得数学思想,关键要让学生经历概念的抽象过程。这里的基本活动经验,对学生而言,所谓数学的基本活动经验是指围绕特定的数学课程教学目标,学生经历了与数学课程教学内容密切相关的数学活动之后,所留下的,有关数学活动的直接感受、体验和个人感悟。经验的特征:具有数学目标的一种结果;是人们最贴近数学现实的部分。基本的数学操作的经验,基本的数学归纳的经验,类比的经验,思考的经验,发现问题、解决问题的经验等等。学生操作的未必就能获得经验,必须帮助学生归纳。基本活动经验在每个领域中表现不一样,在代数中强调代数建模;就是让学生学会数学化的过程中积淀下来的数学直观。

《2011版数学课程标准》把原有 “两能”转化成“四能”。在原分析问题的能力和解决问题的能力的基础上,进一步提出培养学生“发现问题的能力”和“提出问题的能力”。数学思想的感悟和经验的积累仅仅靠老师的讲解是不行的,更主要的是依赖学生亲自参与其中的数学活动,依赖于学生的独立思考,在注重结果性目标的基础上,进一步强调了更要注重过程性目标。

这里的发现问题的能力强调的是发现困惑。灾难性的作业是简单的重复,不是学生自己的问题。发现问题是指发现课本上没有的新问题,新方法。在发现问题的基础上可以选择某些问题用数学问题展示出来。要把貌似生活问题中抽象出数学问题。经过数学的学习获得抽象的思维方式。提出问题的关键是能够认清问题,撇

开无关要素,能够用概括的语言描述出来。数学是要把复杂的问题简单化,但不失去数学的内容。解弗莱登塔尔的话:与其说学数学,不如说实在学习数学化。就是现实问题数学化;数学内部规律化;数学内容现实化。分析问题的能力:运用用数学思想寻找条件与结论之间的逻辑关联。让学生经历发现、困惑的阶段。就是让学生会质疑,敢质疑。解决问题的能力:运用数学模型,既符合数学模型的结构、规律,又符合问题的实际意义。既要寻找数学问题的数学解,也要检验教学解与现实问题的吻合程度。

《2011版数学课程标准》完善了一些具体目标的描述:比如对于学习习惯,明确指出使学生养成“认真勤奋、独立思考、合作交流、反思质疑等学习习惯”。《2011版数学课程标准》规范了课程目标的若干术语。并在学段目标叙述中使用这些术语。

四、“课程内容”(原“内容标准”)的修改

《2011版数学课程标准》对“数与代数”,“图形与几何”,“统计与概率”和“综合与实践”四个方面的内容及要求进行了适当的调整,使用规定的课程目标术语,对某些课程目标的表述进行了修改。为了更加突出课程内容的本质,课程标准又提出了与内容有关的十个核心概念:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。这十个核心概念虽然与四个部分内容没有明确的隶属关系,但与内容之间是有侧重的。

《2011版数学课程标准》从总体结构上看,“几何与图形”领域发生了一些变化,另外三个领域的结构基本没变。“几何与图形”结构的变化表现在:将实验稿中分四个方面对内容进行的要求(即“图形的认识”、“图形与变换”、“图形与坐标”、“图形与证明”)改为从三个方面展开内容要求,即“图形的性质”、“图形的变化”、“图形与坐标”,这三部分中的“图形的性质”基本上是整合了实验稿中的第一和第四部分而成,而其他两个部分与原来的两部分对应。

《2011版数学课程标准》四个领域中一些具体的内容的变化主要表现在以下几个方面,一个是删除了一些条目,第二是新增了一些内容(包括必学和选学内容),第三是对相同内容的要求不同(包括程度上的不同以及要求的进一步细化),具体如下。

(1)删除的内容

▲在“数与代数”领域,删除了一些内容,例如:

①对“大数”的认识与应用——“能对含有较大数字的信息作出合理的解释与推断”(实验稿P31)

②对有效数字的要求——“了解有效数字的概念”(实验稿P32)

③对一元一次不等式组的要求——“能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题”(实验稿P33)

▲在“图形与几何”(实验稿为“空间与图形”)领域,删除的主要内容和要求有:

①关于等腰梯形的相关要求(实验稿P39、P43)

②探索并了解圆与圆的位置关系(实验稿P39)

③关于影子、视点、视角、盲区等内容,以及对雪花曲线和莫比乌斯带等图形的欣赏等(实验稿P40) ④关于镜面对称的要求(实验稿P41)

▲“统计与概率”部分删除的内容

极差、频数折线图等内容

(2)新增加的内容

▲“数与代数”中既有必学的内容,也有选学的内容

①知道|a|的含义(这里a表示有理数)

②最简二次根式和最简分式的概念

③能进行简单的整式乘法运算中增加了一次式与二次式相乘

④能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等

⑤会利用待定系数法确定一次函数的解析表达式

以上为增加的必学内容,此外,此次《标准》修改,还以标注“*”的方式,增加了选学内容,具体如下: *⑥解简单的三元一次方程组

*⑦了解一元二次方程的根与系数的关系

*⑧知道给定不共线三点的坐标可以确定一个二次函数

▲在“几何与图形”领域中,增加的内容既有必学的内容,也有选学的内容。

①会比较线段的大小,理解线段的和、差,以及线段中点的意义

②了解平行于同一条直线的两条直线平行

③会按照边长的关系和角的大小对三角形进行分类

④了解并证明圆内接四边形的对角互补

⑤了解正多边形的概念及正多边形与圆的关系

⑥尺规作图:过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形

下面的要求是选学内容:

*⑦了解平行线性质定理的证明

*⑧探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧

*⑨探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等

*⑩了解相似三角形判定定理的证明

(3)在要求上有变化的内容(略)

4.在综合与实践领域,基本保持了实验稿的要求,如:要经历从实际问题抽象为数学问题并加以解决的过程,体会数学知识之间的联系,等等。此外,还提出更为具体的要求,如:反思参与活动的全过程,将研究的过程和结果形成报告或小论文,交流成果,总结参与数学活动的收获,进一步积累数学活动经验。这样使综合与实践的学习更加具有可操作性。

五、其他方面的修改

1、《2011版数学课程标准》“前言”的修改

《2011版数学课程标准》在前言里首先阐述了数学的定义,对于什么是“数学”?将原来课标中“数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。”改为“数学是研究数量关系和空间形式的科学。”恢复了它本质的数学定义,数学还是原来的数学。

《2011版数学课程标准》在前言里除了原来的课程基本理念和课程设计思路外,还增加了课程性质这部分内容。

2、《2011版数学课程标准》“实施建议”的修改

“实施建议”由原来按学段表述,改为三个学段整体表述,避免不必要的重复。

3、《2011版数学课程标准》“实例”的修改

增加了一些帮助教师理解、澄清困惑的实例。并且,对大部分实例不仅仅呈现了实例要求本身,而且提出了实例的设计思路及教学过程建议,有利于教师理解课程内容、体会数学思想、实施教学。

4、《2011版数学课程标准》增加附录

将课程目标中的“术语解释”和课程内容及实施建议中的实例统一放在附录中,分别成为附录1和附录2。对实例进行统一编号,便于查找和使用。

5、《2011版数学课程标准》是数学教材编写、数学教学、数学教学评估和数学教学考试命题的依据。

从《义务教育数学大纲》到《义务教育数学课程标准》,实现着下面的变化:教育理念:知识为本→育人为本;课程目标:双基→四基;内容方法:结果→过程+结果;评价体系:一维→三维。

解读《2011版数学课程标准》 领会数学课标新精髓

认真学习《2011版数学课程标准》,进一步认识到数学课程改革已经从基本理念、课程目标、核心概念、课程内容、实施建议等方面进行了修订。

一、“课程基本理念”的修改

《2011版数学课程标准》将“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。这个理念能让我认识到义务教育是“普及教育”,不同于“精英教育”。

《2011版数学课程标准》将“数学学习”和“数学教学”两条合并成一条“教学活动”,整体上阐述数学教学活动的特征。表述为:“教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。”2011版《数学课程标准》重新提及“教师要发挥主导作用”,并指出:“学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者”。这里从整体上阐述数学教学过程的特征,教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,既能培养学生良好的学习习惯,也能让学生掌握有效的学习方法。

二、“课程设计思路”的修改

《2011版数学课程标准》对“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”四个方面的课程内容做了明确的阐述。

《2011版数学课程标准》将“空间与图形”改为“图形与几何”、“实践与综合应用”改为“综合与实践”。确立了“数感”、“符号意识”、“运算能力”、“模型思想”、“空间观念”、“几何直观”、“推理能力”、“数据分析观念”等八个关键词,并给出具体描述。并专门阐述了“应用意识”和“创新意识”。

三、“课程目标”的修改

数学课程标准修改前后的第二部分课程目标都是两个方面的内容:一、总目标,二、学段目标。总目标由原来的四条变为现在的三条,总目标由原来三个方面(知识技能,过程方法、情感态度)的具体阐述变为现在的四个方面(知识技能,数学思考、解决问题、情感态度)具体阐述。

《2011版数学课程标准》在原有“双基”的基础上,进一步明确提出了“基本思想”和“基本活动经验”的要求。,即“四基”基础知识、基本技能、基本思想和基本活动经验。

这里的基本思想不是前几年的教学实验“数学思想方法“,是指支撑数学科学发展的思想,核心在于数学推理、数学建模。如何让学生获得数学思想,关键要让学生经历概念的抽象过程。这里的基本活动经验,对学生而言,所谓数学的基本活动经验是指围绕特定的数学课程教学目标,学生经历了与数学课程教学内容密切相关的数学活动之后,所留下的,有关数学活动的直接感受、体验和个人感悟。经验的特征:具有数学目标的一种结果;是人们最贴近数学现实的部分。基本的数学操作的经验,基本的数学归纳的经验,类比的经验,思考的经验,发现问题、解决问题的经验等等。学生操作的未必就能获得经验,必须帮助学生归纳。基本活动经验在每个领域中表现不一样,在代数中强调代数建模;就是让学生学会数学化的过程中积淀下来的数学直观。

《2011版数学课程标准》把原有 “两能”转化成“四能”。在原分析问题的能力和解决问题的能力的基础上,进一步提出培养学生“发现问题的能力”和“提出问题的能力”。数学思想的感悟和经验的积累仅仅靠老师的讲解是不行的,更主要的是依赖学生亲自参与其中的数学活动,依赖于学生的独立思考,在注重结果性目标的基础上,进一步强调了更要注重过程性目标。

这里的发现问题的能力强调的是发现困惑。灾难性的作业是简单的重复,不是学生自己的问题。发现问题是指发现课本上没有的新问题,新方法。在发现问题的基础上可以选择某些问题用数学问题展示出来。要把貌似生活问题中抽象出数学问题。经过数学的学习获得抽象的思维方式。提出问题的关键是能够认清问题,撇

开无关要素,能够用概括的语言描述出来。数学是要把复杂的问题简单化,但不失去数学的内容。解弗莱登塔尔的话:与其说学数学,不如说实在学习数学化。就是现实问题数学化;数学内部规律化;数学内容现实化。分析问题的能力:运用用数学思想寻找条件与结论之间的逻辑关联。让学生经历发现、困惑的阶段。就是让学生会质疑,敢质疑。解决问题的能力:运用数学模型,既符合数学模型的结构、规律,又符合问题的实际意义。既要寻找数学问题的数学解,也要检验教学解与现实问题的吻合程度。

《2011版数学课程标准》完善了一些具体目标的描述:比如对于学习习惯,明确指出使学生养成“认真勤奋、独立思考、合作交流、反思质疑等学习习惯”。《2011版数学课程标准》规范了课程目标的若干术语。并在学段目标叙述中使用这些术语。

四、“课程内容”(原“内容标准”)的修改

《2011版数学课程标准》对“数与代数”,“图形与几何”,“统计与概率”和“综合与实践”四个方面的内容及要求进行了适当的调整,使用规定的课程目标术语,对某些课程目标的表述进行了修改。为了更加突出课程内容的本质,课程标准又提出了与内容有关的十个核心概念:数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。这十个核心概念虽然与四个部分内容没有明确的隶属关系,但与内容之间是有侧重的。

《2011版数学课程标准》从总体结构上看,“几何与图形”领域发生了一些变化,另外三个领域的结构基本没变。“几何与图形”结构的变化表现在:将实验稿中分四个方面对内容进行的要求(即“图形的认识”、“图形与变换”、“图形与坐标”、“图形与证明”)改为从三个方面展开内容要求,即“图形的性质”、“图形的变化”、“图形与坐标”,这三部分中的“图形的性质”基本上是整合了实验稿中的第一和第四部分而成,而其他两个部分与原来的两部分对应。

《2011版数学课程标准》四个领域中一些具体的内容的变化主要表现在以下几个方面,一个是删除了一些条目,第二是新增了一些内容(包括必学和选学内容),第三是对相同内容的要求不同(包括程度上的不同以及要求的进一步细化),具体如下。

(1)删除的内容

▲在“数与代数”领域,删除了一些内容,例如:

①对“大数”的认识与应用——“能对含有较大数字的信息作出合理的解释与推断”(实验稿P31)

②对有效数字的要求——“了解有效数字的概念”(实验稿P32)

③对一元一次不等式组的要求——“能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题”(实验稿P33)

▲在“图形与几何”(实验稿为“空间与图形”)领域,删除的主要内容和要求有:

①关于等腰梯形的相关要求(实验稿P39、P43)

②探索并了解圆与圆的位置关系(实验稿P39)

③关于影子、视点、视角、盲区等内容,以及对雪花曲线和莫比乌斯带等图形的欣赏等(实验稿P40) ④关于镜面对称的要求(实验稿P41)

▲“统计与概率”部分删除的内容

极差、频数折线图等内容

(2)新增加的内容

▲“数与代数”中既有必学的内容,也有选学的内容

①知道|a|的含义(这里a表示有理数)

②最简二次根式和最简分式的概念

③能进行简单的整式乘法运算中增加了一次式与二次式相乘

④能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等

⑤会利用待定系数法确定一次函数的解析表达式

以上为增加的必学内容,此外,此次《标准》修改,还以标注“*”的方式,增加了选学内容,具体如下: *⑥解简单的三元一次方程组

*⑦了解一元二次方程的根与系数的关系

*⑧知道给定不共线三点的坐标可以确定一个二次函数

▲在“几何与图形”领域中,增加的内容既有必学的内容,也有选学的内容。

①会比较线段的大小,理解线段的和、差,以及线段中点的意义

②了解平行于同一条直线的两条直线平行

③会按照边长的关系和角的大小对三角形进行分类

④了解并证明圆内接四边形的对角互补

⑤了解正多边形的概念及正多边形与圆的关系

⑥尺规作图:过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形

下面的要求是选学内容:

*⑦了解平行线性质定理的证明

*⑧探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧

*⑨探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等

*⑩了解相似三角形判定定理的证明

(3)在要求上有变化的内容(略)

4.在综合与实践领域,基本保持了实验稿的要求,如:要经历从实际问题抽象为数学问题并加以解决的过程,体会数学知识之间的联系,等等。此外,还提出更为具体的要求,如:反思参与活动的全过程,将研究的过程和结果形成报告或小论文,交流成果,总结参与数学活动的收获,进一步积累数学活动经验。这样使综合与实践的学习更加具有可操作性。

五、其他方面的修改

1、《2011版数学课程标准》“前言”的修改

《2011版数学课程标准》在前言里首先阐述了数学的定义,对于什么是“数学”?将原来课标中“数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。”改为“数学是研究数量关系和空间形式的科学。”恢复了它本质的数学定义,数学还是原来的数学。

《2011版数学课程标准》在前言里除了原来的课程基本理念和课程设计思路外,还增加了课程性质这部分内容。

2、《2011版数学课程标准》“实施建议”的修改

“实施建议”由原来按学段表述,改为三个学段整体表述,避免不必要的重复。

3、《2011版数学课程标准》“实例”的修改

增加了一些帮助教师理解、澄清困惑的实例。并且,对大部分实例不仅仅呈现了实例要求本身,而且提出了实例的设计思路及教学过程建议,有利于教师理解课程内容、体会数学思想、实施教学。

4、《2011版数学课程标准》增加附录

将课程目标中的“术语解释”和课程内容及实施建议中的实例统一放在附录中,分别成为附录1和附录2。对实例进行统一编号,便于查找和使用。

5、《2011版数学课程标准》是数学教材编写、数学教学、数学教学评估和数学教学考试命题的依据。

从《义务教育数学大纲》到《义务教育数学课程标准》,实现着下面的变化:教育理念:知识为本→育人为本;课程目标:双基→四基;内容方法:结果→过程+结果;评价体系:一维→三维。


相关文章

  • [数学课程标准与教材分析]教学进度(2)
  • <数学课程标准与教材分析>教学进度表 总课时:36 授课时间:2013.10.15 -2014.4.30学期 有关交互时间的注意: 考虑到周一至周五,同学们有自身的工作安排,请同学们将需要跟我们交互的问题提到交互平台上,我们每周 ...查看


  • 中公面试教材主要内容
  • 面试主要内容 第一章面试概论 第一节教师面试概述 一.面试的含义 二.面试的构成要素 三.面试的特征 四.面试的作用 五.面试的发展趋势 第二节教师资格考试面试的形式及测评要素 一.面试的形式 二.面试的测评要素 第三节教师资格考试面试的标 ...查看


  • 2013小学数学新课标解读
  • 2013小学数学新课标解读 一.前言 <全日制义务教育数学课程标准(修定稿)>(以下简称<标准>)是针对我国义务教育阶段的数学教育制定的.根据<义务教育法>. <基础教育课程改革纲要(试行)> ...查看


  • 数学课程目标
  • 对<义务教育数学课程标准(2011年版)>课程目标的解读 一.导入: 二.主要内容简介 这节课我们主要从以下四个方面进行解读: 点课件 ○ "课标"对"课程目标"表述的思路 义务教育数学课 ...查看


  • 培养小学生模型思想的策略及思考
  • 培养小学生模型思想的策略及思考 岳口小学 蔡加晓 摘要:数学模型思想的形成过程是一个综合性的过程,是数学能力和其他各种能力协同发展的过程.在数学教学过程中进行数学建模思想的渗透,可以使学生感觉到利用数学模型的思想解决实际问题的妙处,进而对数 ...查看


  • 2016南京中考政策解读
  • [政策解读] 重磅!2016年南京中考各科考试说明!!!(附名师解析) 语文:扎实推进,稳步向前 南京市学科带头人.伯乐中学王芳 秉承素质教育精神,贯彻课程标准理念.近年来,在全民阅读的大背景下,南京市语文学科中考试卷高度重视学生语文素养的 ...查看


  • 2012年人教版教科书一年级数学上册解读
  • 2012年人教版<义务教育教科书 数学>一年级上册解读 人民教育出版社.课程教材研究所小学数学课程教材研究开发中心研制出版的<义务教育教科书数学(一-六年级)>是<义务教育课程标准实验教科书数学(一-六年级)& ...查看


  • 校本培训材料一
  • 2013--2014学年第二学期寨头堡乡小学校本教研 时间:2014.2.24 地点:寨头堡乡中心小学 主持人:王校长 主讲人:鞠红英 内容:<课改,路在何方> 老师一直在研究课文怎么讲,课文怎么讲才能讲好,走了60多年,基本上 ...查看


  • 2011版新课程标准解读
  • 2011版<数学课程标准>问答 1."新课标"前言中关于数学课程是如何描述的? 数学是研究数量关系和空间形式的科学,是人类文化的重要组成部分,数学素养是现代社会每个公民应该具备的基本素养. 2.义务教育阶段的 ...查看


热门内容